
AFDELING INFORMATICA

stichting

mathematisch

centrum·

(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS

IW 59/76

FROM ABSTRACT VARIABLE TO CONCRETE REPRESENTATION -
Prepublication

DECEMBER

2e boerhaavestraat 49 amsterdam
BiBL.!O MATHEMAT!SCH

-~AMSTERDAM---

PIC.i..n:ted at .the Mathematic.al. CentJr.e, 49, 2e BoeJr.ha.a.vu.tluuLt, Arn6.te/Ldam.

The Mathematic.al. Cen,t,,z.e, 6ou.nded .the 11-,th 06 Feb1tu.a11.y 1946, ,,u a. non
p1to6U ,lru,U:tatlon cum.lng at ,the, pltomo:ti.on 06 pUlte mathematiC6 a.nd .lt6
a.ppUca.uoru,. 1.t ,,u .6poru,01ted by ,the, Nethelli.a.nd6 GoveJtnmen:t fuough ,the,
NethVl-la.nd6 01tgmzation 601t ,the, Adva.nc.emen:t 06 PUite RueaJLc.h (Z.W.O),
by .the Mun,ie,i.paU;ty 06 Arn6.te1tdam, by .the Un,lveJL6Uy 06 Arn6.te1tdam, by
,the F1tee Un,lve/L6Uy at Arn6.te1tdam, a.nd by ,lndM:tJuu.

AMS(MOS) subject classification scheme (1970): 68A05, 68A30

ACM-Computing Reviews-categories: 5.24, 4.22

. . *) From abstract variable to concrete representation

by

L.G.L.T. Meertens

ABSTRACT

The method of structured programming introduces a number of abstrac

tion levels in the design of a program. The designer may use variables

of any type that are meaningful to him, such as sets, in order to specify an

abstract algorithm. When implementing this algorithm in a programming language,

he faces the task to implement these variables with the data types available

to him. This paper shows a technique, mainly presented informally by apply

ing it to examples, for deriving the implementation of the abstract opera

tions from an "interpretation function" which specifies the correspondence

between an abstract variable and its concrete representation.

The technique does not depend on the choice of a particular programming

language; for example, it may be used to implement an algorithm in languages

with poor data structuring capabilities as FORTRAN or ALGOL 60.

Even though the development of a program may have been structured, this

need not hold for the final program text: the abstract algorithm and the·

correspondence between the abstract variables and their representations have

been lost. Some problems are discussed which are encountered in the design

of a programming language which allows the textual expression of the abstrac

tion levels.

KEY WORD & PHRASES: abstract variable, concrete representation, structured

programming, ZeveZs of abstraction, correctness proof,

specification, interpretation function, data structure,

efficiency, automatic data structure choice, abstract

data type, uniform references.

This report will be submitted for publication elsewhere.

1. VARIABLES AND ASSIGNMENT

The expressive power of algorithms transcends that of formulas because

of two elements: repetition and variables. Both are essential. From a

theoretical point of view, it may be argued that these elements are not

fundamental, but, rather, special cases of two more fundamental principles:

(recursive) procedures and parameters, with the correspondence

(backward) Jump

assignment

(recursive) call

parameter passing.

This may be illustrated with the following two pieces of program:

k := O; proc r = (int k) void :

while k $ 9 if k $ 9

do print (k); then print (k);

k +:= 1 r (k + 1)

od fi;

r (0).

One may wonder to what extent the existence of special notations in

most progrannning languages for repetition and variables is a relic from the

machine code era, and to what extent it constitutes a recognition of their

special role in the design of algorithms. A related question is whether the

case against the unrestricted jump cannot be extended to the unrestricted

assignment (see, e.g., WULF & SHAW [1]). This paper will bypass these

questions; nevertheless it should be pointed out that much of what is 'stated

here about variables applies to parameters as well.

Before proceeding, some notations have to be introduced.

The expression A[v := e] stands for the expression obtained by substitu

ting the expression e for all occurrences of v in A. The treatment here is

informal; may it suffice that this substitution has to be interpreted

intentionally rather than literally.

If Sis a set of elements of type T, and e has type T, we write Sue,

rather than Su {e}, for S augmented withe.

The notation U x : p (x) denotes the set of all x satisfying p (x); a

more traditional notation would be {x I p (x)}.
If S"l is a dyadic operator, v:=vSle is abbreviated to vS"l:=e.

2

The set of consecutive integers U i : a s i s b, is denoted by [a: b].

Finally, the size (cardinality) of a set Sis denoted by #S.

The key to the notion of variable lies in the assignment, whose meaning

can be expressed by the general rule

{p[v :=e]} v :=e {p}.

In this rule, p stands.for an assertion, v for a variable and e for an

expression. The rule now states: if the assertion p has to hold afterwards,

this can be accomplished by the assignment v := e, provided that v and e are

chosen such that beforehand the assertion p[v := e] holds. This rule has

proved to be a powerful instrument in programming.

An example: We want the following to hold for a variable S, whose value

ranges over the sets:

V x. ES : Q (x).

Since the empty set</> contains no elements, we have, trivially,

\/XE</>: Q(X).

By applying the instance of the assignment rule

{V XE</>: Q (x)} S :=</> {V XE S: Q (x)},

we deduce that the goal is obtained by the assignment S :=</>.

2. ABSTRACT VARIABLES AND CONCRETE REPRESENTATION

In the above, a variable S was introduced to which a set can be assigned.

If we want to exploit the power of the assignment to its full extent, we

need the freedom to employ such variables. But most - even high level -

programming languages have no sets among their primitive data types*. So the

programmer who wants to implement an algorithm in which sets play a role,

will in general have to design himself a representation, composed from the

data types available to him. The same holds in general for all kinds of

data types that can be used to express algorithms. For example, it is quite

* Although PASCAL (WIRTH [2]) has sets, these are exclusively subsets of
predefined finite sets.

possible that an algorithm contains an assignment z3 := zl x z2, where zl,

z2 and z3 are complex variables. In ALGOL 68 this notation may be kept, but

for an ALGOL 60 program this has to be expressed differently, e.g. by

re3 := rel x re2 - iml x im2;

im3 := rel x im2 + iml x re2.

Even without the foregoing exposition one might guess that this piece of

program computes the product of two complex numbers. We can say: the pair

of real variables <re3, im3> is a concrete representation of the abstract

variable z3. The correspondence is given by z = re + ix im, the so-called

Cartesian representation. This is not the only possibility; a not unusual

representation is the polar one, with z = mod x exp(i x arg). The ALGOL 60

program might well have had:

mod3 : = modl x mod2;

arg3 := argl + arg2.

3. STRUCTURED PROGRAMMING

3

Abstract variables are a natural result of the method of top-down or

structured programming. The essence of this method lies in the use of a

number of levels of abstraction. The notions abstract and concrete, as used

above, are relative ones; for example, an integer, conceptually considered

an atomic entity, will be implemented on a very concrete level as a conglom

erate of two-valued variables. Luckily, we do not have to realize this in

order to design, say, a better factorization algorithm.

The advantages of structured programming,~ as far as variables are con

cerned, are easily underestimated by those who have not (yet) tried to use

this discipline of thought in order to guide their programming labour. In

the abstract description of the algorithm variables may be used for all

kinds of values that have a meaning to the designer of the algorithm:

values that he can think in. This gives a freedom of expression, much

greater than is offered by most current programming languages; it opens the

road for writing algorithms whose correctness is easy to see or to prove.

Meanwhile, the programmer has not yet committed himself at all as to the

concrete representation; he still has the freedom of choosing that repre-

4

sentation which suits him well, either with respect to the ease of implemen

tation, or with respect to the efficiency of the final program. Complex

addition, e.g., is formulated more easily in terms of the Cartesian repre

sentation; on the other hand, the polar representation is more manageable

for multiplication and much more so for taking the square root.

This way of doing offers at the same time the advantage that the cor

rectness proof can be structured in complete analogy with program develop

ment: the correctness proof of the abstract algorithm need only be augmented

with a proof of the correctness of the concrete representation. Because of

this separation in two independently provable parts, the complexity of the

whole proof is kept within reasonable bounds. A fully worked-out example,

which possibly has more convincing power than the - out of necessity -

toy-examples in this paper, can be found in HOARE [3].

4. INTERPRETATION AND ABSTRACT ASSIGNMENT

The correspondence between an abstract variable Va and its concrete

representation Ve (in general, a conglomerate of variables) can be specified

by means of an interpretation function I, namely by Va= I(Vc), (In the

example of complex numbers we have z = I((re, im)),with I((re, im)) =

re + ix im ..)

In the process of "concretization" of the algorithm, all occurrences of

Va have to disappear, in favour of Ve· A first step will be: the systematic

replacement of Va by I(vc), by which, e.g., "if abs Va> then .•. " is

changed into "if abs I (Ve) > 1 then ... ". This prescription fails, however,

where assignments are involved. It is not possible to concretize Va:= ea

by I(vc) := I(ec), since I(vc) is in general not a variable. Instead, we can

try to concretize Va:= ea by an assignment of the form Ve:= ec. The question·

becomes: how must ec be chosen? For this we call the assignment rule to our

aid: the meaning of Va:= ea is the transformation of p[va := ea] into p. We

want to achieve, by a suitable choice of a concrete expression ec:

if Va = I (vc), then {p[Va :=ea]} Ve := ec {p},

or, equivalently,

Va = I(vc) 11 p[va := ea] ~ p[vc := ec].

However, p[vc := ec] is meaningless, since p is defined 1.n abstract terms

and does not contain Ve. We have to use Va= l(Vc) in order to be able to

substitute an expression for Ve in p, namely by first replacing p by

p[Va := l(vc)]. So we have to obtain

Va= l(Vc) A p[va := ea] => p[va := l(vc)][vc := ec],

which may be simplified to

This implication holds for all p iff ec is chosen such that Va= l(vc)

implies ea= l(ec).

5

This hardly surprising result can also be derived in a different way

which offers an interesting view. We might imagine that in the· process of

concretization the concrete representation does not so much replace the

abstract variable, but that it comes next to it. (The abstract variable is,

of course, superfluous in the final program, and therefore we will remove

afterwards, when the program has been drawn up, all references to the ab

stract variable from the program text.) The assertion Va= l(vc) then has to

be kept invariant. Whenever the validity of Va= l(vc) is lost by an assign

ment Va :=ea, it has to be restored; we can try to use an assignment of the

form Ve := ec to this purpose.

We want to have

Working backwards according to the assignment rule, we obtain

and the goal is obviously reached by choosing Ve such that va = l(vc) im

plies ea= l(ec).

We now fix our attention upon the intermediate assertion Va= l(ec).

In general, the expression ec will be a function of Ve, so Va= l(ec) =

= I(f(vc)) = J(vc)' with J = I 0 f, and we obtain

{va = l(vc)} va :=ea {va = J(vc)}.

This can be interpreted as a switch from an interpretation function I (which

is merely based upon agreement) to a new interpretation function J. The

assignment Ve := ec then takes care of the return to I.

Now, in general, there will be no hurry to return to I. As long as for

6

the crucial spots Va= I(vc) holds, such an invariant may very well be tem

porarily broken 1.n the parts in between. It is quite possible that Va = I(vc)

is an invariant of a loop, and that Va= J(vc) is an invariant of an inner

loop. Provided that we choose J such that Va= I(vc) implies ea

we can always apply the rule

If we, as agreed, strike the assignment to the superfluous abstract variable

from the final program text, we have left

We see here that the assignment Va:= ea has been implemented u/ithout any

corresponding action, merely by switching interpretations. By shifting our

abstract point of view, the meaning of the unaltered reality is changed,

roughly like the image on our retina changes by viewing an object from a

different angle.

During an assignment

we return to the original point of view, and in doing so we simultaneously

move the object such that on the face of it - that is, on the abstract

level - nothing happens.

Applied to a simple example: The abstract real variable a is represented

by a pair, consisting of a real variable m and an integer variable e, where

I ((m, e)) = m x 2e. (This representation leaves the freedom to choose m

such that m=O v ½:s; Im[< I, which may be profitable in certain cases.) The

assignment ax:= 2 may then be realized by switching to such a J that a =

= I ((m , e >) imp 1 i es a x 2 = J (< m , e >) • Now a x 2 = I ((m , e >) x 2 = m x 2 e x 2

= mx 2e+I, so, obviously, J((m, e)) =mx 2e+I. If we want to return later on

to I, this is possible with the assignment e+:= l (or, possibly, with

m X: = 2) •

* Such a J always exists. Since ea is a function of Va, we have J(vc) =ea=
= g(va) = g(I(Vc)), so J = g 0 I is an obvious solution. In this way we also
see that each function f satisfying g 0 I = I 0 f provides a solution ec =
= f(Vc) for returning to I. However, it is in general much simpler to
manipulate the assertions directly, than to solve the equation g 0 I = I 0 f
explicitly first.

Finally, be it remarked that the assignments m x:= 2; e -:= 1 leave the

assertion a=I((m, e)} invari~nt; on the abstract level nothing happens

either. This type of assignments often occurs to restor~ invariants of the

concrete representation (such as m = 0 v · ½ :,; Im l < 1).

5. EXAMPLE: A RANDOM PERMUTATION

In order to further illustrate the idea of freedom of representation,

7

we consider the problem of obtaining a random permutation of a number of

given elements, e.g., letters. This can be performed by putting the elements

in a hat, and taking them out again one by one, each time dra~ing at random

from the elements still left in the hat:

hat:= the elements to be permuted;

seq := £ {{ the empty sequence}};

while hat not empty

do draw at random an element el from hat;

add el to seq

od

{seq contains the required permutation}.

Note that hat and seq together always contain just the elements to be per

muted (except perhaps for the fleeting moment the drawn element el is

floating between hat and seq).

An implementation in ALGOL 68 (assuming we want to permute the letters

of the word anagram):

string hat:= "anagram";

string seq:='"'•

while hat:/. 1111

do int r = entier (random x upb hat)+ l;

od.

char el= hat[r]; hat:=hat[:r-1] + hat[r+l];

seq+:= el

Using the observation that the number of elements in hat and seq togeth-

8

er is invariant, we are led to a less natural representation:

Let n be the number of elements to be permuted (for anagram: n = 7).

Let, moreover, s be a variable for an array of (fixed) length n, and let k

be an integer variable.

Then hat is represented by the pair <s, k>, namely with the interpreta

tion hat = (s[k + l J, .•• , s[nJ) , where the order of the elements is immate

rial*. Furthermore, seq is also represented by <s, k>, but this time with

seq = <s [t J, •.. , s[k]), or, for short, seq = s[l : k]. The implementation

then runs as follows:

*

int n = 7; [l :n] char s:="anagram";

int k:=O;

{hat= (s[k+l], •.• , s[n]) A seq= s[l: k]}

while k :/: n

{ hat = (s[k+ l J , , s[n]) A seq = s[l : k]}

do int r = entier (random x (n-k)) + k + l ; {{ k+ l :s; r :s; n}}

char el:= s[r]

{hat= (s[k+l], ... , s[r-1], s[r+l], ... , s[n]) A seq= s[l: k]}

s[r] := s[k+l J

{ hat = (s[k+2], ... , s[n]) A seq = s[l : k]}

k +:= 1

{hat = (s[k+l], ... , s[n]) A seq= s[l : k-1]}

s[k] := el

{hat= (s[k+I], ... , s[n]) A seq= s[l: k]}

od

{hat= (s[k+IJ, ... , s[n]) A seq= s[l: k]}

{{ so, since k = n, seq= s[l: n] = s}}.

Note that the interpretation hat= (s[k+I], ... , s[n]) A seq= s[l: k]

So, e.g., (a, a, b) = (a, b, a):/: (a, b). Such a data type, for which the
terms bag and multiset have been suggested, lies as it were between sets
(for which {a, a, b} = {a, b, a}= {a, b}) and sequences (for which all
three cases diffeo, It is a pity that bags, which often play an important
role in algorithms, are treated so stepmotherly in mathematics. Examples
of possible mathematical applications: the eigenvalues of a matrix, and
the edges of a graph (if two vertices may be connected by several distinct
edges).

9

does not hold continually inside the do-·part, but that it does hold at the

beginning and at the end; in other words, this representation is invariant

with respect to the do-part, and, therefore, to the whole loop-clause. What

was accomplished in the first implementation by hat := hat[: r-J] + hat[r+l : J

is brought about in this version by switching temporarily to another inter

pretation, namely hat= (s[k+l], ... , s[r-1], s[r+l], ... , s[n])., without cor

responding action.

It is interesting to see how a part of this version may be programmed

almost "automatically" on the basis of the assertions.

We want to get from the assertion

(p) hat= (s[k+I], ... , s[r-1], s[r+l], ... , s[n]) A seq= s[J :k],

which clearly expresses the fact that the element s[r] has just been lifted

from hat, to the assertion

(q) hat = (s[k+l], ... , s[n]) " seq= s[I : k-1],

which shows that the drawn element still has to be added to seq. It is not

clear how to transform q directly into p, but a contribution is supplied by

the substitution[k+:=1]. We thenobtain{q[k+:=l]} k+:=l {q}, so we now

have a simpler problem, getting from p to q[k +:= l], which may be written as

(t) hat = (s[k+2], ... , s[n]) A seq = s[I : k].

The difference between p and t may be expressed slightly more explicitly by

rewriting the assertions as, respectively,

(p') hat= (.s[k+IJ,s[k+2], ... ,s[r-lJ,s[r+l], ... ,s[n])" seq,=s[I :k]

and

(t') hat= (s[k+2], ... ,s[r-1],s[r],s[r+IJ, ... ,s[n]) "seq=s[l :k],

or, since the order of thes[i] in hat is immaterial,

(t") hat= (s[rJ,s[k+2J, ... ,s[r-1],s[r+IJ, ... ,s[n])" seq=s[I :k].

It is now clear that t" is transformed into p' by the substitution

[s[r] := s[k+l J~, so we have

{ p} s [:r> J : = s [k+ I J { t} k +: = l { q} .

10

To conclude this example, we will examine what is needed in either imple

mentation of the abstract algorithm in order to put the elements from seq

back in hat afterwards, so that executing the loop-clause once more would

yield another random permutation.

As for the first implementation, this becomes

hat : = seq; seq : = "".

As for the second implementation, we want to get from hat=() A seq=

= s[l: n] to hat= (s[l], ... , s[n]) A seq= s[l: OJ, which, under invariant

interpretation hat= (s[k+l], ... , s[n]) A seq= s[l: k], can be expressed

ask= 0. Consequently, the required transfer is obtained by

k := o.

6. REPRESENTATION AND EFFICIENCY

Above we have already hinted at the possibility of improving the effi

ciency of an algorithm by a suitable choice of representation. If we make

the quite reasonable assumption that in ALGOL 68 implementations the time of

string assignments increases proportionally with the length of the string

assigned, the order of the process for the example just worked out has been

reduced by the second implementation from n2 ton. For a given operation

some representations happen to allow a considerably more efficient imple

mentation than some others, If, for example, we have a large set S whose

elements are pairs consisting of a name and a number, an abstract operation

such as

N : = U nr : <name, nr > E S

(i.e., finding the numbers belonging to a given name) may be implemented

much more efficiently if the elements of Sare sorted by name in the con

crete representation. This representation is used in telephone directories.

In ALGOL 68 we might write

flex [1 : n] struct (string name, int number) list.

Of course, we must maintain the correspondence between S and its represen

tation, which is specified by S = U list[i] : i E [1 : upb list]. But during

1 1

look-up the following assertion must also hold:

i :s: j =c> name of list[i] :,; name of list[j], for i, j E [1 : upb list].

If care is taken that this assertion is an invariant of the algorithm, by

"establishing 11 its validity at the initialization of list and by restoring

it after each assignment to (one of) its elements, the validity of this in

variant may be used in the correctness proof for the implementation of an

operation such as looking up a name.

Here we see a new element: an invariant which has no mean~ng ~n terms of

the abstract variable is adjoined to the concrete representation.

Another regularly occurring phenomenon is adjoining variables to the

concrete representation in order to formulate invariants which do have a

relation in meaning to the abstract variable. If we represent a vector V by

V = c[l : n], and the norm llvll has to be determined often, it may be sensible
n

to introduce a variable sc2 with invariant sc2 = .L c[i] 2 , which then may be
~=I

written llvll == V sc2.

It might be argued that the ordinary prograrmner, who does not know about

abstract variables and invariants, already does intuitively what is suggested

in these reflections. The fact that programmers sometimes succeed in writing

even large, complicated programs and next making them "operational" by de

bugging, indicates that they have made use, possibly without realizing so,

of structuring techniques during progranm1ing. The point, however, is that

the programmer is often simply compelled to choose a representation (with

adjoined invariants) which makes possible an efficient program, but that

this is also a precarious matter: he has, in the back of his mind, if not orr

paper, the abstract algorithm, and the task of establishing or restoring the

adjoined invariants forms no part of it! If this task is performed incom

pletely, the program may still appear correct to him. An additional problem

is that this type of error - which, according to experience, seems much

more conm1on than errors in the underlying abstract algorithm - gives rise

to phenomena that do not facilitate tracing the error: the error will usual

ly manifest itself at a completely different spot in the program from where

it was made, namely at the concretely worked-out efficiently implemented

abstract operation. Quite often it will not come to light at all during test

runs.

12

The following conclusions are inescapable:

- It is imperative that the adjoined invariants be explicitly formulated

as part of the specification of the concrete representation of an ab

stract variable.

-The check that these invariants are established and that they are

maintained or restored at each assignment which threatens to destroy

them must be a routine part of the correctness proof for the implemen

tation.

In the case of adjoined variables, this may often be done as follows.

Let V+ stand for the adjoined variables, and p for the invariant to be main

tained. We assume that V+ is disjoint from Ve, so that V+ does_ not occur in

I(Vc) and an assignment to V+ does not threaten the invariant Va= I(Vc).

Moreover, we assume that Ve does not occur in p, sop depends only on V+ and

va and is not threatened by an assignment to Ve. The only threat top then

comes from an abstract assignment Va:= ea.

The simplest approach is found by assigning to V+ before the assignment

to Va, as in

Applying the assignment rule backwards for the abstract assignment, this

reduces to the problem of finding an expression V+ to satisfy

7. EXAMPLE: THE EIGHT QUEENS

The eight queens problem (chosen more often as example [4 : 8]) runs as

follows: give all configurations of eight queens on a chess-board in which

none of the queens covers a square occupied by one of the other queens. In

the figure below two configurations are shown: to the left a solution, and

to the right a configuration which does not meet the requirements, since

queen (2, 8) covers square (7, 3}.

A configuration C may be considered a set of pairs (f, r >, where f and

r are the file and rank coordinates of the individual queens. The squares

covered by a queen are characterized by the fact that one of the expressions

f, r, f + r (for \-diagonals) and f - r (for /-diagonals) equals the corre-

r = 8

7

6

5

4

3

2

f=

ro1

lg1
~

ro1
~

~
~·

ro1
2 3 4 5 6 7 8

r = 8

7

6

5

4

3

2

f=

~

ro1
~

ro1
ro1

lg1
~

~
2 3 4 5 6 7 8

sponding expressions for the square of that queen. If we define

OK(C) = \;/ (f, r>, (f', r') EC:

< f, r) f < f' , r ') ~ ff f' A r f r ' A f +r f f '+r ' A f-r f f '-r ',

13

or, in plain English, no queen covers the square of another queen, then a

solution C is characterized by OK(C) A #C = 8, with the tacit assumption that

f E [I: 8] and r E [I: 8] for all (f, r) EC. It is clear that in an OK-con

figuration each file contains at most one queen, so that a solution has

exactly one queen per file, which can be expressed as

F(C) =[I: 8], where F(C) = U f: (f, r)EC.

Note that a solution therefore satisfies OK(C) A F(C) = [1 :#CJ, which we

abbreviate to OKF(C).

If we have some C' with OKF(C'), #C' ~ I, then the configuration C =

= U (f, r) E C' : f 'f #C', which is obtained from C' by removing the queen

from the rightmost non-empty file, will satisfy OKF(C). We have, therefore,

the following fact: given a method to generate, for some given value f, all

OKF-configurations C with #C = f, we also have a method to find all OKF

configurations C' with #C' = f+l, since each can be obtained by adding an

element (f', r) to some C, where f' = f + I • For #C = 0 we already know the

only possible configuration, C =~.which is also allowed, since we have

OKF (~).

We then obtain, in pseudo ALGOL 68 notation, the algorithm

config C := ~; extend,

where extend is recursively defined by

14

proc extend = void :

{OKF(C)}

if #C = 8

then {OK(C) A #C = 8}

print(C)

else for (f, r): OKF(C u (f, r))

do { OKF (C u (f, P >)}

Cu:= <f, r>

{OKF(C)}

od

fi.

extend;

C-:= (f, r)

Note that the correctness is partially based on the fact that the net

effect of extend on C is nil. The simple inductive assertion method is not

powerful enough to prove this, but it is easily proved, e.g., by induction

on the recursion depth or by a generalization of the inductive assertion

method (DE BAKKER & MEERTENS[9J).

The part

for < f, r>

do.

od

OKF (C u (f, P >)

can be worked out slightly further, using f = #C + 1 and P E [I : 8J, to·

int f = #C + I;

for r to 8

do if OK(C u (f, r))

then.

fi

od.

Here the OK- rather than the OKF-test may be used, since we know from OKF(C)

that F(C) = [I :#CJ, so F(C u (f, r)) = F(C) u f = [I :#CJ u (#C +I)=

[I : (#C + I)J. Moreover, since obviously f i F(C), we know (f, p) i C, so

(C u (f, P >) = #C + 1 •

15

For the concrete representation of C we can use

[I : 8 J int rank, int f, ·

with the interpretation C =U < i, rank[i]>: i E [I :f],or-, for short,

C = C(f) (which implies #C = f), but we will also use the interpretation

C = C(f-1). The action Cu:= (f, r> is then simply implemented by assigning

rank [f] := r and switching simultaneously from the C{f-1)- .to the C{f)-repre

sentation. We then obtain

[I : 8 J int rank, int f := 0

{C = C(f) { = C(O) :::</)}}

proc extend = void :

if f = 8

then print ((rank, new line))

else { C = C(f)}

f +:= I

{C = C(f-1)}

for r to 8

do if OK (C u (f, r))
then { C = C (f-1)}

rank[f] :=r

{C = C(f)}

extend

{ C = C(f)}

{C = C(f-1)}

fi

od

{ C = C (f-1)}

f-:= l

{ C = C(f)}

fi;

extend.

Here we see another fine example of how an abstract assignment such as

C-:= <f, r) is brought about, purely by switching from the interpretation

C = C(f) to C = C(f-l), relying, of course, on the fact that <f, r> EC. The

16

interpretation C = C(f-1) is an invariant of the loop-clause; the invariant

C = C(f) of extend therefore has to be restored afterwards by f-:= I, which

has no effect on the abstract level.

We are still left with the test OK(C u (f, r)). This is easily seen to

be equivalent with

OK(C) 11 (V <f', r')EC: f,ff' I\ rfr' /\ f+rff'+r' I\ f-rff'-r').

Fortunately, we know that OK(C) holds from the invariant of the abstract

algorithm. We rewrite the remainder, distributing the quantifier, as

(V (f 1, r' > E C : ff f') /\ (V (f ', r' > E C : r f r ') /\

/\ (V (f', r') EC: f+r,ff'+r') I\ (V (f', r') EC: f-rff'-r'),

which we abbreviate to

VER (f) I\ HOR (r) A

/\ DIA! (f+r) A DIA2 (f-r).

VER(f) is the question: f i F(C), which, as we saw, may be answered in the

affirmative. For f, r E [l : 8] we have f+r E [2 : 16] and f-r E [-7 : 7], and in

the hope to obtain an efficient implementation for the tests, we adjoin

[l: 8] bool hor, [2: 16] bool dial, [-7: 7] bool dia2,

with invariants

hor[i J = HOR (i) , i E [I : 8 J ,

dial[i] DIA! (i), -i E [2: 16] and

dia2[i J = DIA2 (i) , -i E [-7 : 7 J.

The test OK(C u <f, r)) can now be easily implemented as

hor[r'] /\ dial[f+r] I\ dia2[f-r],

but we have also taken on the task of maintaining the invariants.

For C = ID we find

hor[i'.J = HOR(i) = (V (f', r'} E ¢: i,f r') = true, i E [I 8],

and, similarly, dial[i], i E [2: 16] and dia2[i], i E [-7: 7].

For the assignment C u: = (f, r) we obtain

HOR(i)[C u:= (f, r}] =

(V <f 1, r' > E C u <f, r) if Y' ') =

(('v' (f', r') E C: if r') /\ i fr) =
= (HOR (i) A i f r) .

17

In order to maintain the invariant ~e therefore have to find a concrete

assignment for

{hor[i] = HOR(i), iE [1: 8]} v+:= e + {hor[il= (HOR(i) A i =/: r), i E [1 : 8]},

which succeeds with the choice hor[i] I\:= i =/: r, i E [1 : 8], or, simply,

hor[r] :=false. For the other two invariants we find similarly dial[f+r] :=

false and dia2[f-r] := false.

After the assignment C-:= <f, r>, the invariants must once more be re

stored. For the same reason for which the simple assertion method failed -

non-trivial recursion - this cannot be accomplished using analogous reason

ing. Using recursion induction, however, it is quite simple. We take as in

ductive hypothesis that extend not only leaves C undisturbed, but also hor,

dial and dia2, so that it suffices to repair the "ostentatious" damage.

Since the program point after "then", where the assignments will take place,

is reachable only if hor[r J A dial [f+r] A dia2[f-r], the invariants can be re

stored by resetting hor[r], dial[f+r] and dia2[f-r] to true. The fully

worked-out algorithm now becomes:

[1 : 8] int rank, int f := O;

[1 : 8 J boo 1 hor, [2 : 1 6 J boo 1 dial , [- 7 : 7 J boo 1 dia2 ;

for i to 8 do hor[i] := true od;

for i from 2 to 16 do dial[i] := true od;

for i from -7 to 7 do dia2[i] := true qd;

proc extend = void :

if f = 8

then print ((rank, new line))

else f+:= l

fi;

for r to 8

do if hor[r] Adial[f+r] Adia2[f-r]

od;

then rank[f] := r; hor[r] := dial[f+r] := dia2[f-r] := false;

extend;

hor[r] := dial[f+r] := dia2[f-r] := true

fi

f-:= 1

extend.

18

8. AUTOMATIC CHOICE OF REPRESENTATION

At present, there is a trend in higher-level language design to introduce

such modes (data types) as sets and sequences, and free_the programmer from

the task of choosing, specifying and implementing a concrete representation

(SETL, see SCHWARTZ[IO], or VERS2, see EARLEY[ll]).

Some remarks on this development are in order. First of all, the value

of sets, bags, sequences and trees in designing and specifying algorithms

is so outstanding, that the language designer who addresses the problem of

designing yet another general-purpose high-level programming language better

have a good reason if he does not incorporate such modes. Secondly, automa

ting the step from an algorithm using these modes to an efficient implemen

tation has proved to be no child's play (LOW[l2], SCHWARTZ[l3], EARLEY[l4]);

the fear may be voiced that the time spent on optimizing during compilation

will appear to be a (psychological?) threshold for acceptance. Finally, and

this is the major point, it would be an illusion to think that even the most

sophisticated system for automatic data representation choice will ever suf

fice to relieve the programmer from the task of specifying concrete represen

tations. One example should serve to establish this point.

Suppose we have an algorithm which is concerned with a finite but very

large set S of points in the Euclidean plane lR2• The operation of determin

ing, given a point z0 E lR.2, an element of S which minimizes the distance to

z0 is frequently performed, and so it has to be implemented efficiently.

Nonetheless, the operation of merging two such sets must remain possible at

reasonable cost. To these ends we can use the following representatioµ:

We denote the square U (x1, YI) : x s; x 1 < :p+h A y s; y 1 < y+h by D (x, y, h).

The representation R = REPR(S, Q), where Q = □ <x, y, h>, is then defined

recursively as follows:

Case A: Sn Q = ~:

• R = empty;

Case B: Sn Q contains one point z:

• R = z;

Case C: #(Sn Q) ~ 2:

• R is the quintuple (Q, REPR(S, Q1), REPR(S, Q2), REPR(S, Q3),

REPR(S, Q4)>, where Q1 = □ <x,y,h/2>, Q2 = □ <x+h/2,y,h/2>, Q3 =

= D <x, y+h/2, h/2> and Q4 = D <x+h/2, y+h/2, h/2>. (Note that QI' Q2,

Q3 and Q4 are mutually disjoint, and that Q1 u Q2 u Q3 u Q4 = Q.)

19

R is obviously a quaternary tree. rt Q0 is chosen sufficiently large, so

that Sc Q0 , we can take REPR(S, Q0) as the representation of s. Under this

representation one can use an efficient branch-and-bound method to determine

an element minimizing the distance to a given point.

However, this representation has one disadvantage: if two points of S

are very near each other, this is very likely to cause R to contain a long

linear branch. This causes the amount of storage space occupied by R to be

rather unstable and influences the efficiency unfavourably. (In fact, as is

proved in VAN DE LUNE[l5], even if the points of Sare drawn at random from

a uniform distribution over Q0 , the ratio between the expected number of

nodes in Rand #S does not tend to a limit as #S tends to infinity, but os

cillates between positive bounds,) Therefore, we amend the representation in

Case C as follows: if only one set Sn Qi from the partitioning Sn Qi•
0

i E [I: 4], is non-empty, we take R = REPR(S, Qi), thus retracting one edge
0

in the tree. This retraction process is, of course, applied recursively.

(This new representation can be viewed as a more concrete representation of

the former one. Indeed, a progrannner wishing to implement the latter repre

sentation would be well-advised to use the first representation as a step

ping-stone.) Another important advantage of the latter representation is that

we may consider REPR(S, Q0) as being descended from an infinitely regressing

sequence REPR(S, Q_ 1), REPR(S, Q_2), •.• , with Q0 c Q_ 1 c Q_2 c ••• and Q0 u

u Q_ 1 u Q_2 u ••• =lR2 . All elements in this sequence have identical (new)

representations! This means that we need not bother with an initial choice

of Q0 : if Q0 no longer accomodates the current S, we simply move up the

tree, changing the semi-abstract variable without corresponding concrete

action.

Even a hypersophisticated compiler having this particular representation

built-in - such a compiler might as well have The complete Art of Computer

Programming built-in first - still cannot use it unless it "understands" the

nature of the original problem, and especially the fact that a metric is in

volved. If it were not possible to give a simple expression for

inf d(z0 , z) : z E Q,

the whole branch-and-bound approach would fall flat. Moreover, the correct

ness critically depends on x < x0 < x+h implying x < x+h/2 < x+h, which seems a

very reasonable property for digital arithmetic, and yet it cannot be derived

20

from the thirty axioms defining "proper" arithmetic postulated in VAN WIJN

GAARDEN[l6]. Understanding algorithms is as hard as any problem in mathemat

ics, and each attempt at formalization merely gives rise to another undecid

ability result.

This digression is not meant to argue that automatic choice of data rep

resentations is not valuable. On the contrary, the more we can rely on the

compiler to make a sensible choice in the simple cases with little to be

gained, the more we can devote our ingenuity to the harder parts. Not only

is reprogramming stacks for the hundredth time a tedious job, it is also

begging for clerical errors due to waning attention. But a really (or very)

high level programming language should nevertheless still cater for the pro

grammer's need of specifying representations as a clearly discernible part

of his program, not hidden in the murky details. It is then very natural to

consider the "automatic" representation choice as a standard representation

specification that can be overridden by the programmer.

9. HIGH-LEVEL PROGRAMMING LANGUAGES AND ABSTRACT VARIABLES

Programs are sometimes proclaimed to be well structured. If this has any

meaning at all, it surely means that the structure of program development is

reflected in the program text. Indeed, in order to understand a program text,

it is necessary to understand the underlying abstract program, and it is very

helpful if the program text is suggestive in this respect. The most important

part of the documentation should be the abstract program, so a program text

from which the abstract program is apparent may be termed self-documenting ..

One might even use the extent to which progr~mming languages allow self-docu

menting programs as a measure of the height of their level.

If this principle is applied to abstract variables, one finds that high~

level programming languages should allow the expression of a conglomerate of

concrete variables as a single entity. This is in fact the essence of records

as proposed by HOARE[17], and the above may be offered as an explanation

after the fact of the fecundity of this proposal. Records have found their

way into most recent programming languages; in ALGOL 68, e.g., they appear

as structured values.

The ideal situation is that in which it is possible to separate the pro

gram in two parts: one part specifying the abstract algorithm, and one part

21

specifying the concrete implementation of the abstract variables and opera

tions, (If more than two levels of abstraction are involved, this should, of

course, be done recursively.) To some extent, this is possible in any high

level languag«~. Alphard (WULF, LONDON & SHAW[l8]) is centered around such a

capability. Some diverse tools in various other languages that are suited to

this purpose are the classes of SIMULA 67 (DAHL, MYHRHAUGH & NYGAARD[l9]),

the mode- and operation-definitions of ALGOL 68 (VAN WIJNGAARDEN & al.[20]),

the - quite different - mode definitions and generic routines of ELI (WEG

BREIT[2 l]) and the clusters of CLU (LISKOV[22]); see also section 5 of MEER

TENS[23]. The achievement of such separation through carefully controlled

interfaces, as implemented in CDL2 and SL.AN, is discussed in KOSTER[24].

For the ideal situation to be reached, several problems must be overcome.

The remainder of this section is devoted to a summary of some of the problems

for which no satisfactory solutions have yet been proposed if one adheres to

rigid criteria of security and efficiency.

(a) Several representations for one abstract mode. It may well happen

that an abstract algorithm contains several variables sharing one same mode

(e.g., the mode "set of sequence of boolean"), but that completely distinct

representations are called for. One approach is to adorn the abstract algo

rithm with pragmatic comments suggesting the particular representation de

sired, another is to discriminate in the specification section according to

the identity of the abstract entity. In either case, alas, the neat boundary

between abstract algorithm and representation specification is transgressed.

(b) Cross-representing. A change of (concrete) repesentation must occur

when a value with one representation is assigned to a variable of the same

abstract mode, but with a different representation (see under (a) above).

Also, a repre'.sentation change may be needed for "widening" from one abstract

mode to a second one of which the former is, abstractly viewed, a submode

(such as wide~ning from "rational" to 11real 11). In either case the representa

tion change is not expressible on the abstract level. It must therefore be

performed "subcutaneously". For example, if we have a package specifying

multi-precision real arithmetic and another package for multi-length integral

arithmetic, we probably also need transfer functions between these data

types. Now we could define something along the lines of

22

op widen = (int i) real :

if i < 0 then - widen - i

elif i = 0 then 0.0

else widen (i + 2) x 2.0 + if odd i then 1.0 else 0.0 fi

fi,

but this is painfully expensive, and possibly inaccurate. The transfer func

tion then must pierce the.hulls supposedly defending the packages against

illicit inquisition into their inwards.

(c) Uniform Peferences and overspecification. The uniform reference con

dition (ROSS[25]) in connection with abstract variables requi~es that the

syntactic form of operations on abstract variables depend on their abstract

mode only, not on their representation. Even though a sparse matrix a may be

implemented for some algorithm as two vectors of linear lists (one for the

rows and one for the columns), indexing should still be written with a nota

tion such as a[i, j], but this must not conunit the abstract algorithm to any

specific concrete representation.

An approach is to consider this notation as syntactic sugar for the

underlying construction ~sub(a, i, j). The meaning of ~sub may then be de

fined anew for each data type (cf. GESCHKE & MITCHELL[26]). Similarly, the

privileges now conferred on some modes in the form of constant denotations,

other special notations or coercions (implicit type conversions) must also

be conferred on the progranuner; otherwise, string z := "abc" would cease to

be valid as soon as the progranuner overrode the standard string representa

tion.

The core of the problem is that of overspecification: on the abstract

level the notation may already algorithmically specify the process beyond

the point where the choice of concrete representation is left open. This

problem is deeper than the mere notation of accessing operations. For exam

ple, the following piece of abstract program gives Warshall's method for

computing the transitive closure of a boolean matrix:

for i from 1 ton

do a v : = a[, i J x a[i, J od.

A next step would be the specification of MATRIX V:= VECTOR} x VECTOR2. One

might quite naturally give the following definition as a first approximation:

23

(ref [I: n, I: n] bool m) v:= ([I: n] bool vl) x ([I : n] bool v2) 4'=

for j from I ton

do if vl[j]

od.

then fork from I ton

do if v2[k]

od

fi

then m[j, k] := true

fi

But this makes it effectively impossible to specify a representation for

sparse a and obtain the following sensible implementation:

ref line aji:=(roos of a)[i];

while aji :;: ref line (nil)

do ref line aik := (aols of a)[i];

while aik :;: ref line (nil)

do insert (a, index2 of aji, index2 of aik);

aik : = next of aik

od;

aji := next of aji

od.

The problem is that the abstract program, in order to be less vague than

"solve(problem)", must specify some flow of control, and the concrete repre

sentation may be chosen such as to make the actual flow of control more

efficient. In the example, a better stepping-stone would be:

for j : vl[j], k : v2[k]

do m[j, k] := true od.

Even if such a clear intermediate specification is possible, it is not very

realistic to expect the programmer to find it unless he has foreknowledge of

the final concrete representation.

(d) Generia mode aonstruators. Once we have defined a representation for

"bag of character", say, and defined all sorts of operations for this mode,

it is a pity if we have to do this work all over again for "bag of integer

24

from I to N11'. It would be much better if we could give a mode as parameter

to the definition of "bag of". This mechanism would also be useful for de

scribing a standard representations specification section.

The desirability of such a feature is recognized, but no approach has

been suggested which is not unreasonably restrictive and at the same time

without run-·time overhead. The problem is that operations on entities with

generic modes can hardly be compiled until their actual modes are known

(which, if the constructors are sufficiently general, cannot be determined

statically anyhow). Maybe the solution here is to care less about this par

ticular kind of inefficiency in view of the overall gain in efficiency one

may expect to result from better progrannning techniques. An interesting and

powerful approach is the treatment of modes in ELI (WEGBREIT[21]).

REFERENCES

[l] WULF, W. & M. SHAW, Global variable consider>ed harmful, SIGPLAN Notices

§_, 2 (February 1973) 28-34.

[2] WIRTH, N., The programming language PASCAL, Acta Informatica

35-63.

(1971)

[3] HOARE, C.A.R., Proof of a structuy,ed pr>ogr>am: "The sieve of Er>atosthenes'~

The Computer Journal _!l_ (1972) 321-325.

[4] WIRTH, N., Progr>am development by stepwise r>efinement, Comm. ACM 14

(1971) 221-227.

[5] DIJKSTRA, E.W., Notes on structur>ed pr>ogramming, in: Str>Uctur>ed Pr>ogr>am

ming, 0.-J. Dahl, E.W. Dijkstra & C.A.R. Hoare, APIC Studies in

Data Processing~. Academic Press, London, 1972.

[6] NAUR, P., An experiment in pr>ogr>am development, BIT _12 (1972) 347-365.

[7] PLUM, T., Random sear>ch on the 8-queens pr>oblem, Software - Practice &

Experience~ (1974) 251-253.

[8] NEELY, P.M., A new pr>ogramming discipline, Software - Practice & Experi

ence 6 (1976) 7-27.

[9 J DE BAKKER, J. W. & L. G. L. T. MEERTENS, On the comp 7,,eteness of the inductive

assertion method, Journal of Computer and System Sciences ll

(1975) 323-357.

25

[1 OJ SCHWARTZ 1, J. T., On programming: An interim report on the SETL project.

Installment 1: Generalities; Installment 2: The SETL language

and examples of its use, New York University, 1973.

[11] EARLEY, J., High level operations in automatic programming, Proceedings

of a Symposium on Very High Level Languages, SIGPLAN Notices 2_,

4 (April 1974) 50-59.

[12] LOW, J.R., Automatic coding: choice of data structures, CS-452,

Stanford University, 1974.

[13] SCHWARTZ, J.T., Automatic data structure choice in a language of very

high level, Comm. ACM~ (1975) 722-728.

[14] EARLEY, J., High level iterators and a method for automatically design

ing data structure representation, (Journal of) Computer Languages

I (1976) 321-342.

[15] VAN DE LUNE, J., On the asymptotic behaviour of a sequence arising in

computer science, ZW 31/74, Mathematical Centre, 1974.

[16] VAN WIJNGAARDEN, A., Numerical 0nalysis as an independent science, BIT~

(l 966) 66-8 I.

[17] HOARE, C.A.R., Record handling, ALGOL Bulletin 21.3.6 (1965), also in:

Programming Languages, F. Genuys (ed.) , Academic Press, New York,

1968.

[18] WULF, W.A., R.L. LONDON & M. SHAW, Abstraction and verification in

Alphard, in: New Directions in Algorithmic Languages 19?5,

S.A. Schuman (ed.), IRIA, Rocquencourt, 1976.

[19] DAHL, 0.-J., B. MYHRHAUGH & K. NYGAARD, The Simula 6? common base

language, Norwegian Computing Centre, Oslo, 1968.

[20] VAN WIJNGAARDEN, A. & al. (Eds.), Revised Report on the Algorithmic

Language ALGOL 68, Acta Informatica 5 (1975) 1-236.

[21] WEGBREIT, B., The treatment of data types in ELl, Comm. ACM 17 (1974)

251-264.

[22] LISKOV, B., An introduction to CLU, in: New Directions in Algorithmic

Languages 19?5, S.A. Schuman (ed.), IRIA, Rocquencourt, 1976.

26

[23] MEERTENS, L., Mode and meaning, in·: New Direations in A'lgorithmia

Languages 1975, S.A. Schuman (ed.), IRIA, Rocquencourt, 1976.

[24] KOSTER, C.H.A., Visibility and types, Proceedings -0f Conference on Data:

Abstraction, Definition and Structure, SIGPLAN Notices.!.!..,

special issue; also FDT ~, 2 (1976) 179-190.

[25] ROSS, D.T., Uniform referents: an essential property for a software

engineering 'language, in: Software Engineering.!_, J.T. Tou (ed.),

Academic Press, New York, 1970.

[26] GESCHKE, C.M. & J.G. MITCHELL, On the problem of uniform referenaes to

data struatures, Proceedings International Conference onReliable

Software, SIGPLAN Notices .!.Q, 6 (June 1975) 31-42.

2 l f1 r f\
\)i,lJ}

