
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.C. VAN VLIET

IW 61/76

ON THE ALGOL 68 TRANSPUT CONVERSION ROUTINES

Prepublication

~
MC

SEPTEMBER

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK Mi\THEt,-" ,. :: ! ;:::.:>;:. ·
· -AMSTERCns/,-

PJunted a.:t .the Ma.:thema.tic.ai. Cen;tJr.e, 49, 2 e Boe.tr.haa.ve6:tltaa:t, Am6.teJul.am.

The Ma.:thema.tic.ai. Cen;tJr.e, 6ou.nded .the 11-.th 06 FebJtu.aJLy 1946, ,l6 a. non
pll.o6U .ln6-tltU,t,lon aimi.ng a.:t .the pll.omo:Uon 06 pUll.e ma.:thema.ti.C6 a.nd .i.t6
a.pp.U.c.a.;Uon6. 1.t ,l6 1:ipon60Jted by .the NetheJiia.nd6 GoveJtnment .thll.ou.gh :the
NetheJci,and6 O.tc.ga.n.lza.:tum 6oJt :the Adva.nc.ement o0 PU/l.e Re6ea.Jtc.h (Z. W. 0),
by .the Mu.n.lc..lpa.U:ty 06 Am6:teJtdam, by :the Un.lveMUy 06 Am6:teJtdam, by
:the FJtee Un.lveMUy a.:t Am6:teJtdam, a.nd by .lndUJ.i:tlue6.

AMS(MOS) subject classification scheme (1970): 68AIO, 68Al5

ACM-Computing Reviews-categories: 4.41

68 . . *) On the ALGOL transput conversion routines

by

J.C. van Vliet

ABSTRACT

In section 1O.3.2.l. of the Revised Report on the Algorithmic Language

ALGOL 68, a set of routines is given for the conversion of numerical values

to strings and vice versa. If this set is used as an implementation model,

the way in which the numerical aspects are dealt with causes considerable

trouble. A new version of these routines is given in which numbers are first

converted to a string of sufficient length, after which all arithmetic is per

formed on this string. In this way, for each direction only one place re

mains where real arithmetic comes in.

KEY WORDS & PHRASES: ALGOL 68, transput, conversion.

*)
This paper 1.s submitted for publication elsewhere.

INTRODUCTION

In section 10.3.2.l. of the Revised Report on the Algorithmic Language

ALGOL 68 [l] (in the sequel referred to as the Report), a set of routines

is given for the conversion of numerical values to strings and vice versa.

Compared with most other sections of the Report, this one seems to have re

ceived little attention from the editors.

This section may be looked upon from two different points of view: one

may take it either as a definition of the intention of the conversion, or as

some kind of implementation model. In any case, the following remark from

section 10.1.3. of the Report applies:

"Step 8: If, in any form, as possibly modified or made in the steps

above, a routine-text occurs whose calling involves the manipu

lation of real numbers, then this routine-text may be replaced

by any other routine-text whose calling has approximately the

same effect;"

Taking the former point of view, one might wonder whether the inten

tion is best described by a set of ALGOL-68 routines. (In that case, one

should at least add an extensive description in some natural language too.

For example,, it took me quite some time to discover when exactly undefined

is called. It seems to have been the intention to call undefined only when

it is obvious that no string may be delivered satisfying the constraints set

by the parameters, as in the case fixed(x., 3., 4). HowevE:r, when x and i are

of the mode real and int, respectively, whole(x., 1) calls undefined., while

whole(i, 1) does not.)

Using the routines as an implementation model, the remark from section

10.1.3. that is cited above will have to be invoked heavily. To give an ex

ample, it is: impossible to print L ma,x real by means of the routine fixed

from the Report, because of the statement

!!_ real y: = x + !!_ • 5 * L . 1 + after; ,

which is used for rounding. Adding one half of the last decimal that is

asked for excludes a whole class of numbers in the vicinity of L ma,x real

from conversion! Also, y may well be equal to x after execution of this

statement if the number that is being added is relatively small compared to

2

x; so the result is truncated rather than rounded.

The errors found in the section on conversion routines in the Report,

are listed below. The problems caused by the way in which the numerical

aspects are dealt with (overflow, accuracy) are also discussed. Next, aver

sion of the routines is given which bypasses these numerical problems. Here,

numbers are first conver~ed to strings of sufficient length, after which all

arithmetic is performed on these strings. This version may really be seen as

an implementation model: for each direction of conversion, there is only one

place where real arithmetic comes in.

The Control Data ALGOL 68 implementation [2] has been 9f great help in

testing both the routines from the Report and the ones given below. Numerous

talks with H. Boom, D. Grune and L. Meertens have contributed considerably

to the polished form of the various routines.

3

ERRORS AND PROBLEMS

The following errors have been found in section 1O.3.2,l. of the Report:

I. In fixed, a number less than 1 is, if possible, converted to a string

starting with "0.". However, the test whether "O" should be placed in

front of the string is performed on the non-rounded number. After round

ing, things may be different. For example, fixed(0.99~ 5~ 2) will yield

"01.00" instead of··"~l.00".

2. The routine float starts with the computation of the number of digits

that have to be placed before the decimal point. This computation is not

correct, since it does not cater for the situation in which the user

wants to suppress the plus-sign. Instead of

int before = abs width - abs exp - (after ~ 0 I after + 1 I 0) - 2;

it should read

int before = abs width - abs exp - (after ~ 0 I after + 1 I 0) -

(x <LO v width> 0 I 2 1);

For otherwise, in case x ~LO and width< 0, the resulting string starts

with ":.. n, which is never intended when width < 0.

3. The statement

s:= j~xed(sign x * Y~ ...);

in float is illegal. The two operands of* are of type int and~~_!_,

respectively. The statement might read:

s:= j~xed(!f:. sign x * Y~ ...);

4. Errors in string to L real: The line

for i from j + 1 to e - 1 while length < L real width

should read

for i from j + 1 to e - 1 while length < L real width.

A few lines further down, f_ max real should be L max real twice. Also,

the exponent should be converted using string to int instead of string

to L int.

4

When we try to use the routines from the Report as they are, the following

numerical problems arise (apart from the one already mentioned in the intro

duction):

- The statement in fixed:

while y + L • 5 * L • 1 + after ~ L 1 O + length do length +: = 1 od;

assumes that integers may take on the same values as reals, for

f_ 10 + length has mode 1 int. This may well not be the case, thus yielding

an integer overflow. Presumably, the intention has been to write

!:_ 10. O + length.

Notice however that the left-hand side of the boolean expression may

still cause a real overflow if y is approximately equal to L ma:,; real.

- The statement in subfixed:

while y ~ L 10. 0 + before do before +: = 1 od;

may cause an overflow if y and L maz real are of the same order of magni

tude. One could write something like

while y I L 10. 0 ~ L 10. 0 + (before - 1) do before +: = 1 od;,

but then the next statement will cause the overflow. One may combine the

two statements as follows:

while y ~ L 1.0 do y /:= !:_ 10.0; before+:= 1 od;

If, however, division is not too accurate, the repeated division may cause

large numbers to be converted much less accurately than small numbers.

ANOTHER SET OF CONVERSION ROUTINES

The main differences between the set of conversion routines presented

below and the set in section 10.3.2.1. of the Report are the following:

- numbers are converted to strings of sufficient length, after which the

rounding is performed on the strings. This seems to be the only reason

able way to ensure that numbers like L max reaZ may be converted using

fixed or fZoat. (One must be careful when rounding causes a carry out of

the leftmost digit. For example, in float this will cause the decimal

point to shift. This will in turn yield a new exponent wh1ch, after con

version, may need more (or less!) space.)

- the routines fixed and fZoat are written non-recursively.

- no use has been made of the routine L standa:t'dize. In general, I have

5

tried to minimize the number of places where real arithmetic comes in.

Only (part of) the routine subfixed, and a few lines in string to L reaZ

use real arithmetic and may therefore have to be rewritten for a specific

machine.

Care has been taken that whoZe, fixed and fZoat behave exactly as the

corresponding routines from the Report are intended to. However, as has al

ready been discussed briefly in the introduction, it is difficult to see

exactly when undefined is called. Therefore, I have decided to call

undefined in all cases where error characters are returned.

The (hidden) routines subwhole and subfixed behave slightly different

ly from their namesakes in the Report. In particular, error characters are

never delivered. Together with the removal 0£ L standardize, this necessi

tates some changes in the editing of integers and reals in the routine putf

in section 10.3.5.1. of the Report.

Conversion by ,means of whole.

The routine whole is intended to convert integer values. It has two

parameters:

- v, the value to be converted, and

width, whose absolute value specifies the length of the string that is

produced.

Leading zeros are replaced by spaces and a sign is normally included. The

user may specify that a sign is to be included only for negative values by

specifying a negative or zero width. If the width specified is zero, then

the shortest possible string is returned.

The routine whole proceeds as follows: First, using subwhole, a string

sis built up containing all significant digits and possibly the sign of the

number being converted. If the user has specified a width of zero, this

strings is delivered as a result. Otherwise, the length of s should not be

greater than the absolute value of the specified width. If it is, undefined

is called and error characters are returned; if not, spaces are added in

front of s if necessary, and the resulting string is delivered.

Examples:

whole(i, -4) might yield '~O", '~99", ":.. -99", "9999", or, if i were

greater than 9999, "****",where"*" is the yield of errorcha,p;

whole(i, 4) would yield ''.:...+99 11 rather than ''.:_:_99 11 ;

whole(i, 0) might yield 110 11 , "99 11 , "-99", 119999" or 1199999".

proc whole= (number v, int width) string:

case v in

Hf_ int ~r:J:

(boo:~ neg; strings:= subwhole(x, neg);

(neg I 11 - 11 I: width > o I 11+11 I 1111) plusto s;

if. width= 0 thens

elif int n = abs width - upb s; n?: 0

then n * ". " + s

else undefined; abs width* errorchar

fiH~,

f(f_ real x): fixed(x, width, 0)*

proc -? subwho le = (f_ int x, ref boo l neg) string:

begin string s:= 1111, f_ int n:= abs_ x; neg:= x < f_ O;

while dig cha,p(§_ (n mod f_ 10)) plusto s;

n overab L 10; n -;::. L 0

do skip ~-Yd;

s

7

Conversion by means of fi:xed.

The routine fi:xed is intended to convert real values to fixed point

form (i.e., without an exponent). It has an after parameter to specify the

number of digits required after the decimal point. The other parameters have

the same meaning as those for whole.

From the value of the width and after parameter, ~he amount of space

left in front of the decimal point may.be calculated. (The values of the

after and width parameter should be such that at least some number may be

converted according to the format they specify. If this is not possible,

undefined is called and error characters are returned.) If the space left in

front of the decimal point is not enough to contain the integral part of the

number being converted, digits after the decimal point are sacrificed. If

the number of digits after the decimal point is reduced to zero and the num

ber still does not fit, undefined is called and error characters are re

turned.

Implementation of the simple algorithm described above involved some

nasty problems. Therefore, the comprehensive description of the new version

of the routine fi:xed which follows is supplied with various examples toil

lustrate the places where great care is needed to maintain correctness. The

routine proceeds as follows: If the value of the after parameter is less

than zero, und.efined is called immediately, and error characters are re

turned. Otherwise, using subfixed, an unrounded strings is built up, con

taining all significant digits before the decimal point, and after+l ,digits

after the decimal point. As a side-effect, the variable point points to the

digit after which the decimal point has to be inserted, while the boolean

variable neg indicates the sign of the value submitted (neg=> v < 0). Thus,

for example,

s:= subfi:xed(3.13, 3, point, neg, false)=> s = "31300 11 & point= 1,

s:= subfi:xed(0.75, 1, point, neg, false) =>s = "?5" & point= 0.

In both cases, neg gets the value false. Then, a value w is calculated in

dicating the number of positions available for digits and the decimal point.

For example,

fixed(3.13, 10, 3) => w = 9,

fixed(0.75, 0, 1) => w = 0,

fixed(0.75, 2, 1) => w = 1.

8

In the last example, undefined will be called, because no number can be con

verted according to this format (the two positions specified are swallowed by

the sign and the decimal point, so no space remains for the one digit speci

fied after the decimal point). (Obviously, in case the value of the width

parameter is zero, undefined will not be called.)
Subsequently, two cases are distinguished:

• The user specified a width of zero, i.e., the shortest possible string

containing after digits after the decimal point has to be delivered. In

this case the string is simply rounded starting from the last element. If

this rounding causes a carry out of the leftmost digit, the decimal point

has to be inserted one place further to the right (fixed(0.95, 0, 1)

leads to s = "9:5" & point = 0 via sub fixed, and s = "10" & point = 1 via

round, ultimately resulting in the string 111.0 11 to be delivered);

• The user specified a non-zero width. Then, the number digits is calcula

ted: the number of positions available for digits. This number obviously

is either w - 1 or w: either a decimal point is to be delivered, or it is

not. A decimal point will not be delivered if after= 0, or if the deci

mal point just falls outside the available number of positions w. (Note

that the case after= 0 does not present any problem and may safely be

ignored.) Otherwise, the decimal point has to be inserted somewhere, so

digits= w - 1. (Note furthermore that if the room available for digits

is not even sufficient to contain all digits of the integral part (i.e.,

point> w), a call of undefined will ultimately result.)

The next step will be to round the string. Again, if the number of posi

tions available for digits is greater than the number of digits to be de

livered, the string is simply rounded starting from the last element. If·

this causes a carry out of the leftmost digit, the decimal point has to

be inserted one place further to the right, and the longer string is de

livered. Otherwise, the string is rounded starting from the digit at po

sition digits+ 1. If this rounding causes a carry, the string has to be

snipped at the position indicated by digits, except when the .decimal

point is now left just after position w. (This tricky case occurs, e.g.,

at the call fixed(99.7, -3, 1). Following the flow of control, we see

that digits = 2, so a call roun.d(2, "9970 11) results, which yields

tJ:>Ue & s = "100". As, however, the decimal point just shifted out of the

available number of positions (3), the whole string can be returned.)

9

We are now left with a strings containing all significant digits to be de

livered. If there is space for at least one more digit, and the decimal

point is at the extreme left, "O" is added at the front end, thus delivering

"O. 35" rather than "!;.• 35" (and "O" rather than ":." in a case like

fixed(0.3, -1, OJ!).

As a last step, undefined is called and error cha:i>acters are delivered if

the room available for digits is not sufficient to contain all digits of the

integral part of the value submitted, or the after and width parameters are

such that no number may be converted using that format. In all other cases,

a sign is added if necessary, and a decimal point may be inserted. If the

specified width is non-zero, the remaining positions are filled with spaces.

The resulting string is delivered.

Examples:

fixed(x, -6, 3) might yield "..:.-2.718", "27.183", "271.83" (one place after

the decimal point has been sacrificed in order to fit the number in),

"2718. 3", "~27183" or "271833" (in the last two examples, all positions

after the decimal point are sacrificed);

fixed(x, O, 3) might yield "2.718", "27.183 11 or "271.828".

·proc fixed= (number v, int width, after) string:

:!:f.. after < 0

then undefined; abs width* errorcha:i>

·else int point, boo l neg;

strings:= subfixed(v, after, point, neg, false)J

int w = abs width - (neg v width> O I 1 I O);

:!:f.. width= O

then (round(upb s - 1, s) I point+:= 1)

else int digits= (w = point I w I w - 1);

:!:f. digits> upb s - 1

then (round(upb s - 1, s) I point+:= 1)

else (round(digits, s) I point+:= 1; (point~ w I s:= s[:digits]))

ii
ti;
(point = 0 A (s = "" v w - 1 > upb s) I "O" plusto s; point:= 1);

:!:f.. upb s < point v (after ;::: w A width ;I! OJ

· then undefined; abs width* errorahar

eZse s:= (neg I "- 11 I: width > 0 I "+" I ""J +

ii
fi.;

(point = upb s I s I s[:pointJ + "." + s[point + 1: JJ;

(width= o Is I abs width - upb sJ * "•" + sJ

Notice that the above routine does not distinguish variable-length numbers;

they are just passed down to subfixed. The same will hold for the routine

fZoat given below.

The routine subfixed performs the actual conversion from numbers to

strings, and may be called from either fixed or fZoat. When called from

fixed, it has to return a string containing all digits from the integral

part of the value submitted, and after+ 1 digits from the fractional part.

When called from float, it has to return a string containing the first

after + 1 significant di~i~s ._ In both cases, the last digit is truncated,

and not rounded. (The rounding is done later on, and rounding the number

twice may cause something like 9.46 to be converted to "10.0".) Considering

this string as a number, the value of the parameter p will be the shift of

the decimal point from the first digit. The parameter neg will indicate the

sign of the value submitted (true if£ negative).

It goes without saying that the routine subfixed must be completely

accurate: it will be used to measure the accuracy of numerical algorithms,

and we want to be sure that that is really what is measured, and not the

accuracy of the conversion. It is therefore impossible to give an ALGOL-68

routine that will do. Instead, we give the following semantic definition:

It is a unit which, given a value V, yields a value Sand makes

p and neg refer to values P and B, respectively, such that:

Bis true if Vis negative, and false otherwise;

• it maximizes

upb S
M = >

i = 'lwb S

p - i
c. * 1 10

under the following constraints:

• lwb S = I;

• upb S = P +after+ 1 if floating is false, and after+ 1

otherwise;

• for all i from lwb S to upb S:

0 ~ c. ~ 9, where c. = char dig(S[i]);
1 1

• M ~ IV I.

1 1

(If one wants to circumvent the need to know the storage allocation tech

niques used by the compiler (which is needed to build the string), one may

construct an embedding like:

) .

proc 1!- subfixed = (number v., int after., ref int p., ref booZ neg., booZ fZoatingJ

string:

begin int size; guess storage(v., after., size., floating);

size:= some sufficientZy Zarge integer., an upperbound for

the number of digits that wiZZ resuZt #

[1 size] chars;

do subf'ixed(v., after, p., neg., floating., size, s);

the actual conversion; the characters are placed ins.

As a side-effect, size indicates the number of digits placed
ins#

s[size]

end;

The (hidden) routine round is used for rounding. The parameters refers

to the string that will be rounded, the parameter k refers to the last ele

ment of s that will be returned. The routine yields true if the rounding

causes a carry out of the leftmost digit.

proc i round = (int k, ref string s) bool:

if_ bool carry:= char dig(s[k + 1]) 2': 5; s: = s[

then

for j [.~ k Eli. -1 to 1 whiZe carry

do int d = char dig(s[j]) + 1; carry:= d = 10;

s[j]:= (carry I 11011 I dig char(d))

M/\THE~,-".;\T!SCH

k]; carry

12

od;

(ca:rry

else false

ti:_;

"1" p lusto s); carry

Conversion by means of float.

The routine float is intended to convert real values into floating

point form. It has an exp parameter to specify the width of the exponent.

Just as in the case of the width parameter, the sign of the exp parameter

specifies whether or not a plus-sign is to be included. (This possibility is

not mentioned too clearly in the Report.) If the value of the exp parameter

is zero, float acts as if minus one were specified, i.e., the exponent is

converted to a string of minimal length. (Again, this possibility is not

mentioned clearly in the Report. Moreover, it contradicts Fisker's remark

on page 3.4 of his thesis [3], where it is stated that in this case float

acts as if the value of the exp parameter were one! This seems to be a mis

take.) The other parameters are the same as those for the routine fixed.

(However, the value of the width parameter may obviously not be zero.)

The routine float proceeds as follows: From the values of width, after

and exp, it follows how much space is left in front of the decimal point {as

suming no sign will be delivered). Then subfixed is called, which returns a

strings containing a sufficient number of significant digits. As a side ef

fect, exponent gets the value of the exponent, assuming the decimal point to

be just in front of the first digit while neg gets to indicate the sign of

the number. For example,

s:= subfixed(321.0?3, 4, exponent, neg, true}_,,,.. s = "32107" & exponent= .3,

s: = subfixed(. 004379, 4, exponent, neg, true) ,,,.. s = "43790" & exponent = -2.

We now adjust before if a sign is to be delivered.
The number is then (conceptually) standardized, yielding the real exponent.

This exponent now has to fit in a string expart, whose length is bounded by

the width specified by the e:r:p parameter. If this is not possible, the

digits after the decimal point are sacrificed one by one; if there are no

more digits left after the decimal point and the exponent still does not fit,

digits in front of the decimal point are sacrificed too. Note that this has

repercussions on the value of the exponent (and thus possibly on the width

13

of the exponent). More precisely, this process goes as follows: Le·t before

· and aft denote the number of digits before and after the decimal point, res-
-- -----------~-------- -~-. .

pectively. Let expspace be the width allowed for the exponent. If the expo-

nent does not fit (upb expart > expspace), then one of the following happens:

i) If ·there are still digits after the decimal point to be given in

(aft> O), then aft-:= 1. If, however, as a result of this, aft=· O,

we threaten to deliver something like 3.e+5, so the decimal point has to

be left out too, which gives us one digit extra in front of the decimal

point, so

before+:= 1; exponent-:= 1.

ii) If there are no digits left after the decimal point, digits in front of

the decimal point are given in, so

before-:= 1; exponent+:= 1.

In either case, one position extra is assigned to the exponent, so

expace +:= 1. This shuffling will end, and then the string is rounded.

If this rounding causes a carry out of the leftmost oigit, the exponent must

be increased, which may cause some more shuffling. During this process~ we

have to check at each step whether all digits have been consumed

(!!.iJJ!!:_ before+ sign aft s 0., which also caters for wrong input parameters). In

that case, undefined is called and error cha.racters are delivered. Otherwise,

the various parts are glued together and the resulting string is delivered.

Examples:

float(x., 9., 3., 2) might yield "-2. 71811,~0"., "+2. 7210+11" (one place after

the decimal point has been sacrificed in order to make room for the

exponent);

fZoat(x., 6., 1., 0) might yield "-256101"., "+261012" or "+1101..-9" (in case x

has the value 0.996w-9).

proc float = (number v., int width., after., exp) string :

begin int before : = ·abs width - (after t- 0 1. after + 1 I_ 0) - (abs exp + 1).,

exponent., aft:= after., exspace:= abs exp;

bool neg., rounded:= false., possible:= true;

strings:= subfixed(v., before+ after., exponent., neg., true)., expart:=
(neg v width> 0 I before-:= 1); exponent-:= before;

while expart : = (exponent < 0 I "-" I : exp > o I "+" I ,,,,) +
subwhole(abs exponent);

,,,, . .,

14

if_ !!ifI!!:. before + ~ aft ~ 0

then possible:= false

eZif upb ex-part> ea:pspaae

then ea:pspaae +:= 1;

(aft> 0 f aft-:= 1;

(aft~ 0 1 befo~e +:= 1; ea:ponent -:= 1)

before-:= 1; ea:ponent +:= 1); tPUe

elif rounded then false

elif round(before + aft, s)

then ea:ponent +:= 1; rounded:= tPUe

else false

ti
do skip od;

if 7 possible then undefined; abs width* errorahaP -· -- --
else (neg I "~" I: width > O I "+" I "") + s [: before] +

(aft= 0 I "" I "·" + s[before + 1 : before+ aft])+

" 10 " + (ea:pspaae ..: upb ex-part) * '1 '' + ex-part

Conversion of strings to numbers.

The routine swing to Lint from section 10.3.2.1. of the Report works

fine, so we will not pay any attention to it. Although the routine string to

L real looks reasonable, it uses L staruia.Y'dize, and a new version of it is

given below. The routine needs real arithmetic, and thus must be rewritten

on most machines. The version given here is mer~ly an outline of how things

might be done.

The routine string to L real is hidden from the user. Therefore we may

safely assume that the layout of the string supplied is correct. The first

element of the string contains the sign of the number. Furthermore, the

string may contain a decimal point, and it may contain an exponent.

The routine proceeds as follows: First, we search for the exponent

part, the beginning of which is indicated by "e", and the decimal point"•"•

If there is an exponent part, it is converted using string to int, yielding

an exponent ex-part. If the conversion of the exponent is unsuccessful,

15

string to L real returns false, indicating unsuccessful conversion· too.

Otherwise, the first significant digit-is sought, pointed to by j. The expo

nent expart is now adjusted so that it yields the exponent of the number as

suming the decimal point to be just after the first significant digit. L max

real, being the largest value that may result from the conversion, is adjus

ted in the same way, yielding a value max and an exponent max exp. Of course,

conversion is unsuccessful if expart > max exp. Subsequently, the first L

reaZ,width significant digits are converted. (Note that any further digits

would not affect the value.) At each step of this conversion, we have to

cater for the case where expart = max exp; for then, the next digit of max

and the one from the string have to be compared to see whether conversion

may still continue. As a last step, if conversion has been successful, the

resulting number is (supplied with the correct sign) assigned to the para

meter r. The routine yields true if the conversion has been successful, and

false otherwise.

proa ~ string to L real = (string s, ref L real r) boot:

begin int e := upb s + 1; ahar in string("e", e, s);

int p: = e; ahar in string("•", p, s); int expart: = O;

boot safe:= (e < upb s I string to int{s[e + 1 :], 10, expart) I true);

if. safe
then int j: =: 1;

for i from 2 toe - 1

white s[i] = "O" v s[i] = "·" v s[i] =

do j:= i od;

expart +:= p - 2 - j;

,, ,,
.!.

I!._ real x:= I!._ 0, max:= L max real, int length:!: 0, max exp:= 0;

whi Ze max I L 10. 0 t max exp ~ I!._ 10. 0 do max e.xp + : = 1 od;

(expart > max exp I safe:= false);

for i from j + 1 toe - 1 white length< L real width A safe
do

if. s[i] = "•" then skip

eZif int si = ahar dig(s[i]); length .+:= 1; expart = max exp

then int d = S entier (max I I!._ 10.0 t max exp);

(si > d I safe:= false Ix+:= K si * !!._ 10.0 + expart);

max-:= K d * L 10.0 + max exp; max exp:= expart -:= 1

else x +:= K si * L 10.0 t expart; expart -:= 1

ti

16

od;

(safe I P::= {s[l] = "+" I x I -a:))

f:!:..;

safe

end;

REFERENCES

[1 J WIJNGAARDEN, A. VAN, et al (eds.), Revised Report on the :A ZgoPithmia

Language ALGOL 68, Acta Informatica 5 (1975) 1-236.

[2] ALGOL 68 VePsion I RefePenae Manual, Control Data Services B.V.,

Rijswijk, The Netherlands, 1975.

[3] FISKER, R.G., The Transput Section for the Revised ALGOL 68 RepoPt,

Dissertation, Dept. of Computer Science, University of

Manchester, August 1974.

