
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

D. GRUNE

A VIEW OF COROUTINES

Pre pub I i cation

~
MC

IW 63/76 NOVEMBER

2e boerhaavestraat 49 amsterdam

liilBLfOTHEEK. Mil.THEY/,T:SC', ,,,

- -AMSTE:1[/,:.-;---·-"

Ptu..n:te.d a,t .the. Ma.thema..tlc.o.1. Ce.n;tJte., 49, 2e. BoeJr.haavv.,.tJuut:t, Amo:teJr.dam.

The. Ma.thema:Uc..al. Ce.n;tJte., 6ou.nde.d :the. 11-:th 06 Fe.bnua.Jr.y 1946, ,L6 a non
pno6il ..i..n1>.t,Uu,tlon cum..i..ng a,t :the. pll.omotion 06 pull.e. ma.thema..ti..CJ.i and ..i..:t6
app.U.c.a;UoM. I:t ,L6 .6pon1>0Jz.e.d by :the. Ne.:the.Jli.a.nd6 GoveJr.nme.n:t :thll.ough :the.
Ne.:the.Jli.a.nd6 Ongan..i..za..tlon 6oJz. :the. Advanc..eme.n:t 06 Pulte. Rv.,e.a.Jz.c..h (Z.W.0),
by :the. Mun..i..c1.pa.U:ty 06 Amo:teJr.dam, by :the. Un..i..veJl..6ily 06 Amo:teJr.dam, by
:the. Fne.e. Uni.veJl..6ily a,t. Amo:teJr.dam, and by ..i..ndu1.dJue1,.

AMS(MOS) subject classification scheme (1970): 68A05

ACM-Computing Reviews-categories: 4.10, 4.20, 4.32

A View of Coroutines*)

by

D. Grune

ABSTRACT

The coroutine mechanism is explained as a simplified imple

mentation of a special case in parallel processing.

KEYWORDS & PHRASES: Coroutines, parallel processing, SIMULA 67,

ALGOL 68.

*) This report will be submitted for publication elsewhere.

1

1. Introduction.

Experience has shown that the coroutine mechanism is an
order of magnitude harder to understand and explain than the
subroutine mechanism, and I have always wondered why. The fol
lowing thoughts, though incomplete, may shed some light on the
subject.

There is one immediately striking result of the discrepancy
in difficulty: hardly any modern programming language provides
facilities for coroutine calling, although some make an attempt
[l]. So it is only natural that this paper arose in a study of
the flow of control in existing programming languages [4].

Both subroutines and coroutines rely for their flow of con
trol on return addresses1 these return addresses are addresses
in the calling routine, to where the called routine must (ulti
mately) return. In the case of a subroutine the return address
is kept with the called routine or, in the recursive case, on a
stack or stack segment that belongs to the called subroutine.

In the case of a coroutine, however, the return address is
kept with the calling routine, or, in the recursive case, on a
stack that belongs to the calling routine. Recursive coroutines
are exceedingly rare (2, 3]1 it is not clear whether this is so
because of conceptual difficulties or for lack of practical
use.

The above, though true, adds little to the understanding of
coroutines. An example is therefore in order. As Knuth re
marks [3], it is rather difficult to find short, simple, illus
trative examples of applications of coroutines. Since I shall
take the program apart and put it together again in several
languages I shall need a very simple application indeed. The
following highly contrived example will do.

We have a process A which copies characters from input to
output with the proviso that where the input has "aa" the out
put will have "b" instead. And we have a similar process B
which converts "bb" into "c". Now we want to connect these
processes in series by feeding the output of A· into B. In ord
er do to this, we could consider Bas the main program and have
it call the subroutine A for each character. But the process A,
in its most reasonable form, contains 4 calls of the output
routine in various places. If we turn A into a subroutine, all
4 of them have to be moved to the end (where the character is
to be delivered) which means major surgery to A. So we prefer
to keep A as a main program along with B, by connecting them

2

through a coroutine link. (A as a main program with B as
subroutine is, of course, no better).

2. The low-level version.

The following machine-code program, coded in ALGOL 68 [5],
shows the mechanism.

begin proc void
pro1~ void--

co call A =
co call B =

char ch, chl;

goto proc B;

proc A:

label A:= proc A, label B:= skip;

(proc void L) void: (label B:= L;
{proc void L) void: (label A:= L;

read(ch}; if ch= "a" then goto a found fi;
co call B(L2); L2: goto proc A;

a found: --

label
label

r1ead(ch); if ch= "a" then goto generate b fi;
chl:= ch; ch:= 11 a 11 ; co call7f(E3); L3:
clh:= chl; co call B(L4); L4: goto proc A;

genier ate b:
ch:= "b 11 ; co call B(LS); LS: goto proc A;

proc B:

A) ,
B) ;

co call A(L6); L6: if ch= "b 11 then goto b found fi;
print (ch); goto proc B;

b found: --
co call A(L7); L7:if ch= "b" then goto generate c fi;
print ("b"); print-(ch); goto proc ~

generate c: --
print ("c"); goto proc B

end

Explanation:
The void-procedures "label A" and "label B11 record the po~

sition in "proc A" and "proc B11 respectively: "co call A" (exe
cuted from "proc B") obtains the position in "proc B11 as its
parameter, stores it in "label B11 and causes "proc A" to con
tinue in the position 11 label A" (and vice versa).

This program invites several objections.

- I. We had to carve up processes A and B for their internal
positions to become available to the coroutine mechanism in
the form of labels.

3

- II. We had to introduce the labels L2 through L7 which con
tribute less than nothing to clarity and ease of program
ming.

- III. The text makes in no way evident the cardinal point
for each coroutine request: the information transfer
through variable "ch". Each time "proc A" has a new charac
ter ready it does a "co call B", and conversely, each time
"proc B" needs a character, it does a "co call A".

- IV. Nothing in the above notation prevents us from doing a
"co call A" from inside "proc A", and thus wreck the flow
of control.

- v. The initializations of "label A" and "label B" and the
initial jump to "proc B" are opaque.

The above shows that it is possible to write coroutines in
ALGOL 68 and at the same time makes it clear that this particu
lar method is not a reasonable one.

It is interesting to note in passing what would have hap
pened if I had written the program in traditional coroutine
fashion. Then "label A" and "label B" would coincide (since
only one is meaningfull at a given instant), coroutine calls
would be implemented as address exchanges (an optimization that
is valid for two coroutines only, and is extremely confusing in
the case of three) and labeled jumps would be shunted out. The
resulting program would open up new horizons in unreadability.

3. The Simula 67 version.

The coroutine mechanism is available explicitly in only one
major programming language, Simula 67 [l], and it is interest
ing to see how well it does. Here the program would be:

begin character ch;

class double a to b;
begin detach;

while true do
begin ch:= Inchar;

if ch= "a" then
begin ch:= inchar;

if ch= "a" then
begin ch:= "~resume (proc B) end
else begin character chl; chl:= ch;
-- ch:= "a"; resume (proc B);

ch:= chl; resume (proc B)
end

end else resume (proc B)
endlnfinite loop

end double a to b;

class double b to c;
begin detach;

while true do
bee;in -- -

if ch= "b" then
begin resume~oc A}J

if ch= "b" then outchar ("c") else
begin outchar("b"); outchar (ch)end

end else outchar (ch);
resume (proc A)

end infinite loop
end double b to c;

ref (double a to b) proc A;
ref (double b to c) proc B;

proc A:- new double a to b;
proc B :- new double b to c;
call (proc--xT

end

Explanation:

4

The construction delineated by class ••• begin ••• end de
fines a class of processes each of which performs the actions
described between the begin and end. The statements starting
with ref declare objects of thefndicated classes and each of
the two statements containing a:- creates a process of the
given class and assigns it to "proc A" or "proc B" respective
ly. The next statement starts the "proc A". A coroutine call is
written "resume (process)". A call of "detach" signals the end
of the initialization process, which is performed during crea
tion of the object.

This version is in many ways an improvement over the form
er; however, most objections still hold, though often in a mi
tigated form:

- I. The processes more or less retain their original form;
although they are conceptually identical, they still have
to be quite different textually.

- II. No spurious labels are required.
- III. The transfer of information through the variable "ch"

has not yet been given the prominent place it deserves.
- IV. We can still call "resume (proc A)" inside "proc A"

(run-time check?).
- v. The initialization is clearer (but traces of the initial

jump to "proc B" in the machine-code version are hidden in
the flow-of-control of "double b to c").

Moreover, a new objection can be raised. It does not become
evident in the given example but emerges in the example given
on pages 188-189 of [1]:

5

- VI. Ii: we connect three processes A, B and C in series,
then A calls Bin order to dispose of information whereas C
calls Bin order to obtain 1nformat10n, both by the same
instruction "resume B". And since the class-declaration
gives no indication whatsoever of the use of the process,
the semantics of "resume B" is statically obscure.

4. The ALGOL 68 Version.

In view of all these problems it is remarkable that ALGOL
68 allows the desired effect to be obtained by simple applica
tion of the otherwise rudimentary features par and sema,
without the explicit use of coroutines. The program will then
be:

begin
struct (sema write, ref char ch, sema read} interface=

(level 1, loc char , level 0} ;

proc co write= (char ch} void:
(do~in write of interface; ch of interface:= ch;
up read of interface),

proc co read= (ref char ch} void:
(do~in read of interface; ch:=chof interface;
~write ofinterface};

par begin # proc A: #
--a-o char ch; read (ch};

--if ch = 11 a 11

then read (ch):
-n ch = "a" then co write ("b")

else co write("a"); co write (ch) fi
else co write (ch)
n-

od-,-
T-proc B: #
do char ch; co read (ch);
--if ch = "b"

then co read (ch);
-n ch= "b" then write ("c")

else write ("b"); write (ch} fi
else write (ch)
n-

od-
end

encr-

QIBL!OTHEEK

6

The first two lines define an interface consisting of a·
"ref char ch", enclosed between two barriers, "sema write" and
"sema read". In the beginning the ba.rrier "write" is open,
"read" is closed.

The next six lines define two routines, "co write" and "co
read". The routine "co write" closes the write barrier (or
waits if the barrier happens to be down already), copies its
parameter "ch" onto the interface and opens the read barrier.
"Co read" does the reverse and empties the interface.

Exe.cution of the construction ~ begin A, B end causes A
and B to be executed (pseudo)simultaneously, so that any syn
chronization will be through semaphores only.

All objections but· one have disappeared: .
- I. Both processes are in perfect shape now, and
- III. Safeguarded information transfer holds

place.
- v. The initialization is perfectly clear.
- VI. The information transfer is governed by

well-defined procedure-calls.

identical.
a central

unambiguous,

Two problems remain: we can still
within "proc A" (risking deadlock) and
interface. This lack of protection is a
jor programming languages of today.

call "co read" from
we can tinker with the
sore point in all ma-

And in addition to solving most of the problems we have
gained something new. From the point of view of program struc
ture the last version expresses our intentions much better;
when A calls B for the transfer of a character it does not at
all require B to start processing it immediately, A only wants
to dispose of it. Only when the interface (pipe-line) gets full
must B proceed. This interplay cannot be specified in a
coroutine version; but it comes naturally to the semaphore ver
sion, which leaves it undefined in exactly the right measure
whether A or B shall proceed.

5. Conclusion.

We now perceive the coroutine mechanism as a simplified im
plementation of a special case in parallel processing. This
view opens several new avenues of thought. It facilitates
understanding recursive coroutines. Perhaps there are other
special cases in parallel programming that allow simplified im
plementation and result in useful features. Perhaps the above
interface mechanism is even so fundamental that it warrants a
special construction in parallel processing.

7

6. References.

[l] Dahl, 0-J., et al., Structured Programming, p. 175-220,
APIC Studies in Data Processing 8, Academic Press, London,
1972.

[2] Krieg, B., A Class of Recursive Coroutines, Proceedings
of IFIP Congress 1974, p. 408-412, North Holland Publ. Company,
Amsterdam, 1974.

[3] Knuth, D.E., The Art of Computer Programming, Vol I, p.
190-196, Addison-Wesley Publ. Company, London, 1969.

[4] Grune, D., Flow-of-control, Vergelijking van bestaande
programmeertalen, (Flow-of-Control, Comparison of Existing Pro
gramming Languages), in MC Syllabus 25, p. 1-20, Mathematical
Centre, Amsterdam, 1976° (in Dutch).

[5] van Wijngaarden, A., B.J.Mailloux, J.E.L.Peck,
C.H.A.Koster, M.Sintzoff, C.H.Lindsey, L.G.L.·T.Meertens &
R.G.Fisker (eds), Revised Report on the Algorithmic Language
ALGOL 68, Acta Informatica 5 (1975) 1-236.

ON ~.1 r. \ I
;,; ,.,j J~li

