
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

H.J. BOOM & W.J. HANSEN

THE REPORT ON THE STANDARD HARDWARE
REPRESENTATION FOR ALGOL 68

Prepublication

~
MC

IW 64/76 NOVEMBER

2e boerhaavestraat 49 amsterdam

lillBLIOTHEEK MATHEMATISCH CENTr.1 'f.n

PJr.in:te,d a.t .the, Ma.thema.:ti.c.al. Cen:tJr.e, 49, 2e BoeJLhaa.vv.,.buult, Am.o.teJLdarn.

The Ma.themat.t,i.c.al. Cen:tJr.e, 6ou.n.ded .the 11-.th 06 Fe,bJtuaJ1,y 1946, ,u., a. non­
pJto6U ..i.n.o:/.'J..tu;t.fon aJ.mi.ng a.t .the pJtomo.t.i.on 06 pWte, ma.thema.:ti.c..o and U-6
app..Uc.a.:ti.on.6. I.t ,u., .opon.ooJte,d by .the Ne.theJLia.nd.6 GoveJLnmen:t .th/tough :the,
Ne.theJLia.nd/2, 0Jtgan..i.za.:ti.on 6oJt :the. Advanc.eme.n:t 06 PWte, Rv.,ea.Jtc.h (Z.W.0),
by :the, Mu.n-Lupa..u.:ty O 6 Am.o.:teJtdarn I by :the Un..i.veJt.6Uy O 6 Am.o.:teJLdarn' by
.the FJte.e. UnJ .. veJt.6Uy a.t Arn-6.teJLdarn, and by ..i.ndu..o,t,r,.i.v.,.

AMS (MOS) subject classification scheme (1970): 68A-30

ACM-Computing Reviews-categories: 4.22

h . 6 **) The report on,the standard ardware representation for ALGOL 8

by

*)
H.J. Boom & W.J. ~ansen

ABSTRACT

This report defines the standard hardware representation for ALGOL 68

programs.

KEY WORDS & PHRASES: AZgoZ 68, Representations

W.J. Hansen, University of Illinois at Urbana-Champaign

This report will be submitted for publication elsewhere

The 1976 August 5 Draft of

The Report on the
Standard Hardware Representation
for ALGOL 68

Wilfred J. Hansen
University of Illinois at Urbana-Champaign

Hendrik Boom
Mathematisch Centrum

This report has been accepted by Working Group 2.1,
reviewed by Technical Committee 2 on Programming and
approved for publication by the General Assembly of the
International Federation for Information Processing.
Reproduction of this report, for any purpose, but only
of the whole text, is explicitly permitted without
formality.

0. Introduction

At its September, 1973, meeting in Los Angeles,
Working Group 2.1 of IFIP created a Standing
Subcommittee for ALGOL 68 Support. The January, 1975
meeting of this Subcommittee in Boston discussed at
length a standard hardware representation and
authorized a Task Force to draft a proposal
incorporating the conclusions of that meeting. An
initial draft was presented to the June, 1975, meeting
of the Informal Information Interchange at Oklahoma
State University. Many improvements and alterations
suggested at that meeting have been incorporated into
this final version. All suggestions were valuable,
even those that served only to stimulate discussion.
Subsequently, this report was accepted by the August,
1975, meeting of Working Group 2.1 in Munich and
forwarded to IFIP.

A standard hardware representation is desirable for
several reasons:

- First, together with the Report*, it provides a
complete definition of a single language. As
implementations have developed their own
solutions to the problems of representation,
there have arisen many related languages that
differ considerably in appearance. To read or
write a program for an alien implementation,
a programmer has been required to make a
considerable mental readjustment of deep
habits. One might argue that no precise
standards exist for natural language
punctuation and typesetting, but the argument

* In this document, "the Report" refers to the Revised
Report:

A. van Wijngaarden, et al., Revised Report on
the Algorithmic Language ALGOL 68, Acta­
Inrormat1ca, v.5, Fasc. 1-3, Springer-Verlag
(Berlin, 1975).-

References to it are in the form of "R" followed by a
section number. To avoid confusion, references to
sections in this report are prefixed with"*"

- 2 -

does not apply to artificial languages
intended to be read by machines.

- Second, processors other than compilers may be
defined for ALGOL 68 programs; for example,
macro processors, cross-reference programs,
and print formatters. Such processors may be
used by all implementations only if the
tokens they accept are defined by a standard.

-Third, a single representation convention will
promote portable programming. This document
specifies a minimum character set that every
compiler must accept and the maximum that may
be used in a portable program. Consequently,
program transportation requires only one-to­
one transliteration~ the transliterator need
not determine the extent of strings,
comments, and format-texts.

Several goals have been addressed in creating this
standard hardware- representation: it should require
only a small, widely available character set*; it
should minimize parsing problems; it (or some subset)

* With the exception of square brackets, the set of
worthy characters is a subset of most versions of
ISO-code, ASCII, and EBCDIC:

ISO Standard 646: 7 bit coded character sets for
information processing interchange. An earlier
version of this standard was considered in
Lindsey, C. H., "An ISO-code representation for
ALGOL 68", ALGOL Bulletin 31 (March, 1970), pp.
37-60 (corrected in AB 32.T:3).

ANSI, USA Standard Code for Info~mation Interchange
(X3.4-1968), Aiiiericar1National Standards
Institute (New York, 1968).

ANSI, American Standard Hollerith Punched Card Code
(X3.26-1970), American National Standards -­
Institute (New York, 1970) {defines a version of
EBCDIC}.

IBM Corp., IBM 1403 Ptinter Component Description,
Order no. GA24-3073, 1970 {defines the "TN-chain"
version of EBCDIC}.

Hansen, Wilfred J., "A Revised ALGOL 68 Hardware
Representation for ISO-code and EBCDIC",
UIUCDCS-R-73-607, University of Illinois, Urbana
(November, 1973); revised as "An ALGOL 68

- 3 -

should be teachable; it should be possible to write
portable programs that process other programs; it
should conform to the Report, existing usage, and usage
in other languages; and, above all, it should be a
practical, congenial means of expressing ALGOL 68
programs. With the exception of three representations
{see *3.7} and the "string break" {see *3.1}, an
implementation following this document is an
"implementation of the reference language" {R9.3.c}.

1. Definitions

Worthy character - one of these sixty characters:

A B C D E F G H I J K L M N 0 p Q R s T u V w X y z
0 1 2 3 4 5 6 7 8 9 ,

" # $ % (} * + I . < > @ [1 space . = , . . ,

{This document defines a representation of an
ALGOL 68 program as a sequence of worthy
characters and newlines.}

Base character - a "character" available at an
installation. {Each such character is a composite
of some set of marks and codes agreed upon by
local convention. The input to a compiler is a
sequence of base characters.}

{What I see is that, whereas
there is only one form of
excellence, imperfection
exists in innumerable
shapes ••••

The Republic, Plato}

Disjunctor - a typographical display feature {R9.4.d},
the start or end of a program text, or any worthy
character other than a letter, digit, or
underscore. {Tags and bold words are delimited by
disjunctors.}

Adjacent, follow, precede - Two character strings are
"adjacent" if there are no intervening characters
or typographical display features. If one string
is said to "follow" or "precede" another, they are
also adjacent.

Hardware Representation for ISO-code, ASCII, and
EBCDIC" (December, 1974}.

- 4 -

Bold word -
i) any representation composed of bold-faced

letters or digits in the reference language
{R9.4} {i.e., bold-TAG-symbols and the
representations shown as bold in R9.4.l}, or

ii) a symbol represented by a bold word, or

iii) the characters written for a bold word as
specified below {*3.5}.

Tag - a TAG-symbol {R9.4.2.2.a} {"End of file" is a
tag.}

Taggle - a nonempty sequence of letters and digits.
{As used in *3.5.1, "End of file" has three
taggles.}

2. Representation of ALGOL 68 Constructs

For each worthy character an implementation must
provide a base character different from the base
character for any other worthy character. The mapping
between worthy and base characters should be chosen so
as to minimize confusion while paying due regard to
prevailing usage. {For example, an implementer should
avoid assigning a base character to an unrelated worthy
character and also avoid using a character to represent
something other than that which it represents in the
Report.}

An implementation may augment the worthy characters
with the twenty-six lower-case letters. The two cases
of a letter are equivalent except as provided in *3.1
and *3.5.2. {This equivalence promotes portability;
for example, it prevents distinction between tags that
differ only by the case of one le~ter.}

The Report specifies {R9.3.b} that a "construct in a
representation language" is obtained by replacing
symbols with their representations. In this document,
a representation is specified for each symbol in terms
of worthy characters. Constructs in the representation
language are encoded for communication and computer
processing by replacing each worthy character with its
corresponding base character and inserting
typographical display features {where permitted}.

- 5 -

3. Specific Representations

3.1 String-items

The set of string-items {R8.l.4.l.b} is the set of
worthy characters (as possibly augmented with lower­
case letters) excluding quote and apostrophe but
including the quote-image-symbol and the apostrophe­
image-symbol. The intrinsic value of each worthy
character is itself; the upper- and lower-case versions
of a letter have distinct intrinsic values. The
quote-image-symbol is written as two adjacent quotes
and its intrinsic value is a quote. The apostrophe­
image-symbol is written as two adjacent apostrophes and
its intrinsic value is an apostrophe. {A single
apostrophe may be used as an escape character in some
implementations.}

An additional typographical display feature, the
"string break", is provided for use exclusively within
string- and character-denotations. It is written as

- a quote, followed by
- one or more typographical display features other

than string break, followed by
- another quote.

{When a string-denotation must be continued to more
than one line, a string break permits the number of
spaces at the end of one line to be indicated and
permits the next line to be indented without
confusion.}

3.2 Other-Pragmat-Items

Any sequence of characters {worthy or otherwise} may
appear as a STYLE-PRAGMENT-item-sequence {R9.2.l.c}
except one containing the sequence {including
disjunctors} which constitutes the representation of
the STYLE-PRAGMENT-symbol itself {because the latter
would terminate the pragment}. An implementation may,
however, further restrict the sequences of characters
allowed in pragmats {but not in comments}.

Four standard pragmat-items are defined: PAGE,
POINT, UPPER, and RES {see *3.2.1 for PAGE and *3.5 for
the rest}. All implementations must recognize these
items at least in the minimal form

STYLE pragmat symbol, item, STYLE pragmat symbol.

Each of these four pragmat-items is written as a
sequence of upper-case letters, and may be preceded or

- 6 -

followed by typographical display features. {Note that
in all stropping regimes a pragmat-symbol may be
written as ".PR" followed by a disjunctor.}

3.2.1 Newpage

When the base character representation of a
construct is printed by an ALGOL 68 processor, a
pragmat containing the pragmat-item PAGE causes the
line after the line containing its closing pragmat­
symbol to be printed at the top of a new page {possibly
after appropriate headers}. {The PAGE pragmat is,
however, not a typographical display feature.}

3.3 Typographical Display Features

The typographical display features are space,
newline, and string break. {Newline may be a unique
base character or a physical phenomenon like end of
record. String breaks are allowed only in certain
denotations; see *3.1.}

3.4 Style-TALLY Objects

No representations for any style-TALLY-letter-ABC­
symbols or style-TALLY-monad-symbols {R9.4.a} are
defined by this document.

3.5 Tags and Bold Words

The representation of tags and bold words is
determined by the "stropping regime", of which there
are three. A new regime is invoked by a pragmat
containing one of the pragmat-items POINT, UPPER, or
RES, and takes effect following the closing pragmat­
symbol. Stropping does not affect the 'STYLE' of a
representation {so in UPPER and RES, ".PR" matches
"PR"}. {Some rules below require disjunctors in
certain positions. If necessary, these can be obtained
by inserting typographical display features.} {In ALGOL
68, tags are distinct only when the concatenations of
their taggles are distinct. For example, "end of file"
may also be written "endo ffile".}

{"What did the rug, dog, and fish
have in common?"

"Each was a carp et."

Works, Mach Tartaruca}

- 7 -

[Examples are shown with each regime. A few, like
11 .elIF 111 , illustrate usages that cannot be recommended.
These usages are allowed because they are orthogonal
and they provide a measure of tolerance to unimportant
errors.}

3.5.1 POINT Stropping

Bold words.

Tags.

- A bold word is written as a point (".")
followed, in order, by the worthy letters or
digits corresponding to the bold-faced
letters or digits in the word.

- A bold word must be followed by a disjunctor.

- A tag is written as a sequence of {one or more}
taggles separated by zero or more
typographical display features.

- A taggle is written by writing, in order, the
corresponding worthy letters and digits
optionally followed by an underscore.

- If a taggle does not end with an underscore, it
must be followed by a disjunctor.

{Examp1es:

Program:
Bold:
Plain:

Xl,
Error:

a

.PR POINT .PR .BEGIN .REAL Xi X := x~l

.BEGIN, .Real, .elIF, .xl, .abs
BEGIN, Real, end of file, end of file,
ab,a b --
.BEGIN~ .X 1, .end~of_file, a __ b,
b, a_-b} -

3.5.2 UPPER Stropping

Tags and bold words are represented as they are in
POINT stropping with the addition of these rules:

- Upper- and lower-case letters may not be
intermixed in a bold word.

.END

- The point may be omitted from an upper-case bold
word if it is preceded by a disjunctor other
than a point, by a lower-case letter, or by a
digit that is not an "upper-case digit". An
"upper-case digit" is one that follows an

- 8 -

upper-case letter or an upper-case digit~

- An upper-case bold word need not be followed by
a disjunctor if it is followed by a lower­
case letter.

- Upper-case letters may be written only in bold
words and character-glyphs {R8.l.4.l.c; these
are constituents of string- and character­
denotations and of pragments}.

{Examples:

Program: .PR UPPER .PR BEGIN REAL x; x := x-1 END
Bold: BEGIN, .abs, Xl {even in "a3Xl"}·, .a3

{even in ".a3Xl"}, OF {even in "reOFz"}
Plain: begin, end of file, end of file, a3 {even

in "a3Xl"}, re {even in "re5Fzw}
Error: REAL_, .real_, X_ij, return_value_END

".aB" is equivalent to ".a B".}

3.5.3 ~'.ES Stropping

A "reserved word" is one of the bold words specified
in R9.4.l as a representation of some symbol. {See the
list in *B. By R9.4.2.2.b, these cannot be redefined
and are thus already reserved in another sense.} In the
RES regime, tags and bold words are represented as they
are in POINT stropping, with the addition of these
rules:

- The point may be omitted from a reserved word. if
it is preceded by a disjunctor other than a
point.

- A taggle must be adjacent to an underscore if
its letters and digits correspond, in order,
to those of a reserved word.

{Examples:

Program: .PR RES .PR BEGIN REAL X; X := X-1 END
Bold: BEGIN, .REAL, .Xl, Begin, .operator,

.AMODE
Plain: begin , end of file, end of file , xl,

AMODE, XI, endo ffile, X 1
Error: .BEGIN_, .X_l}

- 9 -

3.6 Composite Representations

Where the representation shown in R9.4.l appears to
be composed of two or more consecutive nonletter marks
{"", =:, :=, I:, :=:, :/=:}, the representation is the
sequence of worthy characters corresponding to those
marks.

The representation of any NOTION1-cum-NOTION2-symbol
is the representation of the NOTIONl-symbol followed by
the representation of the NOTION2-symbol. {The
NOTION1-cum-NOTION2-symbols are the composite operators
mentioned in R9.4.2.2.d,e.}

3.7 Other Representations

Any symbol whose representation in the Report {R9.4}
corresponds to some worthy character is represented by
that character. {There are no representations for the
times-ten-to-the-power-symbol, the plus-i-times-symbol,
or the brief-comment-symbol, but the Report provides
alternate constructs for all cases where these symbols
might be used.}

4. Transput

The transput representations of objects must use
only worthy characters {so that input may be prepared
and output interpreted without reference to an
individual implementation}. The environment enquiries
{Rl0.2.l} depend on worthy characters as follows:

flip:
flop:
errorchar:
blank:

No value is defined for "null character" by this
document. Since there are no worthy characters for
times-ten-to-the-power-symbol and plus-i-times-symbol,
"E" and "I" must be used instead. The two cases of a
letter are equivalent when they appear in the transput
representation of any value other than one of mode
'character' or 'row of character'.

As a result of transput and repr, string values may
contain characters that do not correspond to worthy
characters. This document does not define the actions
taken, if any, when such characters are transput.
{Ordinarily, most such characters will simply be read
and written as single characters, just as will an "A".}

- 10 -

{ Appendices

These appendices discuss the hardware
representation, but they are not to be construed as
further specification.

Appendix~- Worthy~ Base Characters.

A.l Rationale for worthy characters.

A.1.1 Specific Unworthiness

The following characters were carefully considered
as candidates for worthiness, but were rejected for
various reasons:

- because it may be needed as a base character
for "I"

\ because it is not in EBCDIC and "E" is an
alternative.

? - no explicit function is assigned in the
Report, so it was omitted to limit the size
of the worthy set.

~ ~ - there are severe difficulties with the
hardware representations of logical not and
tilde: they may be printed as themselves, as
each other, or as circumflex, overline, beta,
or even up-arrow.

& - with no monad for not or or, ampersand was
deleted to reduce-rfie setof worthy
characters.

A.1.2 Specific Worthiness

The following were considered worthy, despite
disadvantages:

I - because it is crucial to ALGOL 68, despite
device problems almost as severe as those for
logical not and tilde.

[] - they are traditional ALGOL characters (but
see*C.2).

% - well-defined meaning and commonly available:
moreover, a short snap quiz determined that
even some experts cannot remember the bold

- 11 -

alternatives for quotient and modulus.

@ - also well-defined and commonly available.

A.1.3 Transput Environment Enquiries

Flip and flop were chosen to be letters rather than
digits because the letters have more meaning when these
codes represent Boolean values. Neither a string of
letters nor a string of digits is easy to read as a
representation of a bits value.

The asterisk was chosen as the value of "errorchar"
because question mark was unworthy and asterisk is
traditional.

A.2 Relationships between Worth~ and~ Characters.

An important step in developing this standard was to
relate worthy characters to base characters rather than
to specific hardware codes. This has several
advantages:

- It avoids restricting the standard to any
specific character code.

- It makes the implementer responsible for
device-dependent decisions, such as the
representation of vertical bar {which may be
printed on various devices as any one of "I",
11 ! 11 , " i 11 , T, space, u, or O) .

- By eschewing diphthongs (e.g., 11 (/ 11 for "[") it
facilitates transportation by strict
transliteration.

- It specifies a standard external appearance of
programs rather than trying to specify a
standard internal appearance.

A.2.1 Disallowed Relationships.

If this report specifies one or more representations
for some symbol, an implementation should not provide
any additional representation for that symbol in the
following situations:

a) where there is an existing special character
representation for the symbol, or

b) where the new representation would be another

- 12 -

bold representation for a symbol that already
has a bold representation.

Situation (b) would not increase expressive power,
but would increase the potential for confusion.
(However, in a variant language {Rl.1.5.b}, alternative
bold representations might be appropriate.)

Situation (a) would introduce confusion and
ambiguity in transliteration of strings. For example,
if"%" and"?" both represent the percent-symbol, there
is no simple transliteration for"?" in a string.

To avoid similar ambiguity and transliteration
problems, implementations should not provide:

- additional style-TALLY-symbols1

- dipthongs specific to the ALGOL 68 environment.

(Thus 11 (/" should be neither a style-ii-sub-symbol
nor a diphthong for"[".)

A.2.2 Permitted relationships.

If system software commonly uses a diphthong for
some representation -- such as the diphthong proposed
for colon on some systems -- an ALGOL 68 compiler may
have no choice but to accept it as a single character.
No problem arises as long as the substitution is
universal and unambiguous inside and outside strings.

An implementation may specify two or more separate
base characters to represent some one worthy character.
This may be necesssary, for example, if some device
lacks "I" and "!" is to be allowed in its stead. The
two base characters should be treated as equivalent
everywhere except within strings and on program
listings, where each should represent itself. When a
program is transported it may be necessary to
transliterate both base characters to one new
character.

Difficulty arises only when trying to export a
program that has attempted to utilize the distinction
between the two characters. Such a program is not a
portable program.

- 13 -

A.3 Super-set Character Sets.

A.3.1 Escape Character.

Some implementations have defined an escape
convention for representing extra string-items. This
standard does not prescribe any such convention but, if
one is used, the apostrophe should be the escape
character.

A.3.2 Admissibility of Other Characters.

After adapting the local characters to the worthy
characters, an implementer may find he has "unused base
characters" that do not map to worthy characters. For
each such character C the implementer may choose from
the following interpretations:

a) Unused. C is erroneous except possibly inside
pragments.

b) As in the Report. If C appears as a
representation for some symbols in the
Report and there is no worthy representation
for s, then C - if allowed at all - should be
a representation for S. Thus, "\", " 10 11 , ".",

11011 , 11 ¢ 11 , and"&", 11 ..,v, "~", "T", and the -
other unworthy operators in R9.4.1.c may be
used only to represent themselves (unless a
desperately small character set forces their
use as worthy characters).

c) An unworthy representation. C may represent
some symbol for which no nonletter worthy
representation is given. For example, "?"
could be a skip-symbol.

d) Style-TALLY-monad-symbol. For example, if"?"
were not used as an unworthy representation
as in (c), it could be a monad. If this
option is chosen, C should look like an
operator. For example, "{" might make a poor
monad.

e) Style-TALLY-letter-ABC-symbol. Care should be
taken that C look somewhat like a letter
rather than-an operator.

f) A typographical display feature. Such an
additional feature should usually be ignored
in strings (unlike space).

In addition to one of the above, C may be permitted

- 14 -

as an other-string-item.

Appendix~- Bold Symbols and Plain Tags.

B.l Goals of Stropping Rules.

In addition to the goals listed in *0, the design of
the representations for bold symbols and plain tags was
motivated by the following criteria.

a) There should be a small number of stropping
regimes to minimize the size of token
scanners.

b) For compatibility with North American
expectations, at least one regime must be
some form of reserved words.

c) Numerous fortunate installations have two cases
and desire some form of case stropping.

d) For the sake of tradition, the standard must
include at least one regime where all bold
words must be stropped.

e) The standard should reduce the possibility of
error and enhance the probability of
detecting those errors which do occur.

f) Some means of explicit stropping should apply
in all stropping regimes so that, among other
reasons, pragmat-symbols may be written in a
regime-independent manner.

g) Because it is allowed by the Report, there must
be some way to represent a tag or taggle that
has exactly the same letters as a reserved
word.

B.2 List of Reserved Words.

In the RES regime, all bold words listed in R9.4.l
are reserved. There are sixty-one:

at, begin, bits, bool, by, bytes, case, channel,
char, co, comiiient-;-Tompr, do, elif-;-eTse, empty,
end, esac, exit, false, fi-;-fire;-flei-;-for,
Tor"mat";"rrom, ~, gdto, ~ap-;-Il, Tn-;-inr,-"is,
isnt, lo'c";long, mo e, ni , od-;-of-,-,£P-:-Ous'e; out,
par, pr, eragmat~prio, proc-;-reaI, ref, sema,­
short, skip, string, struct, t'fieri";' to, true,
union, void, while. - - -

- 15 -

Additional bold words may appear in section 9.4.1 of
a document defining a superlanguage {R2.2.2.c} or
variant {Rl.1.5.b} of ALGOL 68. These words should be
reserved in an implementation of the modified language.
(Programs using them are not very portable anyway.) If
a modified language does not give a meaning to some
word in the above list, it should nonetheless remain
reserved. Only thus can users of a sublanguage be
assured of compatibility with implementations of the
full language.

B.3 Other Stropping Regimes.

For compatibility with existing installation
practice, implementations may implement stropping
regimes in addition to those provided by the standard.
However,such additional regimes should be invoked by
pragmat-items distinct from those in *3.5. All
modifications to the defined regimes -- including
extensions -- should be avoided because they would
inhibit error detection and decrease portability.

8.4 Inside Pragmats and Strings.

To simulate stropping and taggle concatenation,
points and underscores may appear in pragments and
strings. This may improve the readability of pragments
by distinguishing between natural language words and
those from ALGOL 68. However, when appearing as
string- or comment-items, points and underscores
represent themselves and do not indicate stropping.

B.5 Classification of Points.

The following properties of points hold in correct
programs. Implementers may find them convenient.

a) Inside a format-text {10.3.4.1.1.a}, but
outside any constituent unit or enclosed­
clause, a point is a strop if and only if it
is followed, first, by one of "co", "pr",
"comment", or "pragmat", and next by a
disjunctor.

b) A point is not a strop if it is a character­
glyph {R8.l.4.l.b}. {Inside a pragmat an
implementation may treat a point as a strop.}

c) Elsewhere a point is a strop if it is followed
by a letter.

- 16 -

d) A stropped word is always bold.

Appendix£· Portable Programming.

Appendices *A and *B provide considerable latitude
for extension of this standard in response to local
conditions; however, no implementation will have all
these extensions. This appendix discusses the maximum
facilities that may be safely employed in a portable
program.

C.l Character Set Descriptions.

The standard is defined in terms of worthy
characters in order that program conversion will
require only a transliteration of character codes. To
facilitate the debugging of such a routine, a program
publisher should provide with published programs a file
containing the following:

- one or more lines, as necessary, containing all
the characters used in the program. This
should begin with all of the worthy
characters, in the order in which they appear
in *l;

- a description of each character.

Each implementer should provide such a file
describing the implemented character set.

C.2 Sub- and Bus-symbols.

Nonstandard implementations sometimes restrict the
representations for sub- and bus-~ymbols. For a
portable program, two schemes are possible.

a) use only square brackets. This scheme is
preferable because it is the one most likely
to be widely portable. Note that every
implementation is required to provide base
characters for the square brackets, even
though the characters provided may not
resemble brackets.

b) use parentheses, but follow this restriction:
No local-sample-generator {RS.2.3.1.b} may
begin with a style-i-sub-symbol. {This can
always be achieved by inserting a local­
symbol.} {Any sublanguage with this
restriction is easier to parse.}

- 17 -

All implementations of this report will perforce
accept programs written according to both of the above
schemes ..

C.3 UPPBR Case.

Some implementations will be unable to support two
alphabetic cases. Users with such implementations can
usually import programs by converting all the letters
to the single case; this succeeds because the standard
specifies that both cases of a letter are equivalent in
all but two contexts. The first such context is
strings; however, as long as the string is intended
only for printing, little damage will be caused by
converting its letters to a single case. Programmers
should be wary of any program whose correct execution
depends on the fact that there are two cases of letters
in a string.

The second context where case distinction is allowed
is in UPPER stropping. A program so stropped is
readily converted to POINT stropping, if every bold
word is preceded by a blank and followed by a
disjunctor. At its simplest the conversion changes
"blank, upper-case-letter" to "point, letter", but this
may unduly modify the contents of strings. With more
complex logic, even programs without blanks before
UPPER-stropped bold words can be translated to some
other stropping regime, by the recipient. There is,
however, the risk that the line length may be increased
by the insertion of stropping points or extra
disjunctors. It is possible that this may require that
some lines be broken if the receiving installation
imposes a maximum line length.

C.4 Newlines in Strings.

Some software environments routinely strip trailing
blanks from the end of each record; others pad all
records to a fixed length; others perform curious
mixtures of these procedures. In either case, the
number of blanks in a transported string may change if
the string includes a newline. To avoid such changes,
newlines in strings should appear only in string
breaks.

- 18 -

C.5 Other Characters.

A portable program should be written entirely in
worthy characters, because only these characters are
available in all implementations. With care, however,
it is occasionally permissible to use unworthy
characters. For example, unworthy characters can be
used in messages intended solely for output.
Transliteration of such a character may hinder
interpretation of the output, but it will not otherwise
affect execution of the program. In particular, "?"
and"&" are available in most character sets, so they
will cause little difficulty if used within strings.

In any case, if unworthy characters are used,
sufficient explanation must be provided to enable
correct adaptation of the program to a new character
set.

C.6 Character Code Dependence.

use of rdpr should be severely restricted. Programs
should not epend on the particular character code used
by the implementation. This can be accomplished with
cautious use of the environment enquiry abs. For
example, an array, "char type", to be useato
distinguish between letters, digits, and all other
characters, could be defined and initialized as
follows:

[0 : max abs char] int char type;
int kletter = 1, kdigit = 2, kother = 0;
1or i from 0 to max abs char
do
- char type[i] := kother
od;
ror i to 10
00
- char type[abs "0123456789" [i]] := kdigit
od; --
1or i to 52
00

od

char type[abs "abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"[i]]

:= kletter

{This succeeds even if the rece1v1ng installation lacks
lower case, because the lower-case letters will have
been translated to upper case.}

- 19 -

C.7 Portability of Compiler Character Codes.

Four worthy characters -- "I", " ", "[",and"]"
are often coded differently, even at installations
which nominally use the same character code.
Implementors should consider whether to provide means
enabling each installation to choose codes for these
characters for use in error messages, machine-readable
documentation, programs, and normal transput.

C.8 Reserved Words.

Although not allowed by this report, some
implementations may have reserved word lists that
differ from the list in *B. A portable program using
RES stropping should ignore the local list by
explicitly stropping words not on the official list and
placing underscores adjacent to plain taggles that
appear on the list.

C.9 Minimum Form Standard Pragmats.

Because some implementations may have special syntax
for pragmats, portable programs should employ only
minimum form pragmats:

pragmat-symbol, standard-item, pragmat-symbol.

where "standard-item" is PAGE, RES, UPPER, or POINT.
Implementers should provide PRAGMATS OFF {R9.2} (and
perhaps PRAGMATS ON) to control interpretation of
pragmats.

c.10 "PORTCHECK" Option.

Despite good intentions, a programmer may violate
portability rules by inadvertently employing a local
extension. To guard against this, each implementation
should provide a PORTCHECK pragmat option. While this
option is in force, the compiler prints a message for
each construct that it recognizes as violating some
portability constraint.

}

