
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

L. AMMERAAL

IW 65/76

ON FORWARD AND BACKWARD PROOF RULES FOR PROGRAM
VERIFICATION

Prepub I i cation

~
MC

NOVEMBER

2e boerhaavestraat 49 amsterdam

EIBLIOTHEEK MATHEL'./\Tl3CH C, ·; .. ,
-AMSTERDJ\l-' •·--'·

S'

Ptr..in:ted a;t the Ma;thema,t,i,c.ai. Cenbl.e, 49, 2e BoeJz.haa.vv.,.tJw.a;t, AmJ.:deJz.dam.

The Ma;themcttic.ai. Cenbl.e, 6ou.nded :the 11-:th 06 FebnuaJLy 1946, ,Lo a, non­
p1to6d ,i,n1.:,:tltr.Lt.f..on a-<.J'IU.ng a;t :the pll..omotion 06 pUll.e ma;thema,t,i,C6 and w
ctpp.U.c.a,t,i,on6. I:t ,Lo 1.:,pon1.:io1ted by :the NetheJr.1.a.ndJ.:, GoveJz.nmen:t :th/tough the
NetheJT.1.a.ndJ.:, Ongciniza,t,i,on 601t :the Advctnc.emen:t 06 Pune Re1iect1tc.h (Z.W.0),
by :the Muniupal.,Uy 06 A,n!.:,:teJz.dam, by :the UniveMay 06 Am1.:,:teJz.dam, by
:the Fnee UnfoeMdy a;t Am-0:teJz.dam, and by IndU.6.tJueJ.i.

AMS(MOS) subject classification scheme (1970): 68A05

ACM-Computing Reviews-category: 5.24

On forward and backward proof rules for program verification*)

by

L. Annneraal

ABSTRACT

The notions of "strongest verifiable consequent" and "weakest precon­

dition", introduced by Floyd and Dijkstra, respectively, suggest a partition

of proof rules into forward and backward rules. New notations for such rules

are proposed and motivated. The paper advocates the "total correctness"

point of view. Forward and backward rules are specified for assignment

statements, conditional statements and while statements. Proof rules may be

related to one another; some of such relationships are presented with refer­

ence to set theory.

KEY WORDS & PHRASES: program verification, program eorreetness.

*) This report will be submitted for publication elsewhere.

1. INTRODUCTION

To verify the correctness of a program it is helpful to insert valid asser­

tions as comments in the program text. Naur [7] describes how these comments

can be regarded as "general snapshots" and suggests to use them in correctness

proofs. Floyd [1] introduces the notion of the "strongest verifiable con­

sequent" for a given antecedent and a given program statement. Indeed, we

are not interested in just some assertion that holds upon the completion of

a statement, but only in the strongest one. In contrast to the ("forward")

derivation of a postcondition from a given precondition, there are "backward"

rules, introduced by Hoare [2], to derive the weakest precondition which

ensures that a given postcondition is satisfied upon completion of a state­

ment. Manna [4] deals with another classification of proof rules. He distin­

guishes between total and partial correctness (also termed strong vs. weak

verification). Proof rules are strong if preconditions for statements ensure

termination of the statements. If termination is not required, proof rules

are called weak. Like Hoare, Dijkstra [3] discusses backward rules and calls

them "predicate transformers". In this context he briefly refers to the con­

cept of a "state space" which has also been used in papers on semantics by

Scott, Strachey, De Bakker and others. How state-space transformations are

a basis for strong verification rules has been described in [10].

There is no reason to restrict our considerations to backward proof rules.

Their dominance over forward rules in most papers on program verification

is probably due to two circumstances. First, the actual application of

Hoare's (backward) axiom for the assignment statement involves less 'labour

than Floyd's (forward) axiom. Secondly, as we shall see later on, the former

behaves better than the latter with respect to the conjunction of conditions.

As far as backward rules are concerned, our subject matter is related to a·

paper of Basu and Yeh [9].

2. FORWARD AND BACKWARD PROOF RULES

We say that a (syntactically correct) program statement teY'l71inates if it

can be executed in a finite amount of time and yields a well-defined result.

We denote assertions about program variables by P and Q, and statements by

S. Instead of "immediately before the execution of S" we simply say "before S";

a similar meaning has "after S". In this terminology Hoare's notation

means:

P{S}Q

"If Pis true before Sand if S terminates,

then Q is true after S".

Proof rules of this type are called weak. They allow, for example, cases

like

lxl < {x := 1/x} lxl > 1. (1)

It is, however, a good convention in mathematics that formulas involving

division are complemented by conditions which ensure that every denominator

is non-zero. We therefore insist that lxl < I in (I) be replaced by

0 < lxl <I.Considerations like this lead to strong proof rules which we

write as

{P}S{Q}.

Their meaning is:

"If Pis true before S, then S terminates and Q

is true after S".

Unfortunately, even strong rules are too tolerant for our purposes. We do

not want the rule

{O < lxl < I} X := J/x {lxl > D.

Here we feel the need to require that the postcondition be as strong as

possible. There is another unsatisfactory aspect. In

{x= 3} X := X * X {x= 9}

the postcondition x = 9 is as strong as possible and we are completely

content with (2) as long as we regard it as the solution of

{x= 3} X := X*X { ? }.

(2)

(3)

3

However, (2) is dubious if it stems from

{ ? } x:=x*x {x=9}, (4)

since in (4) we would replace the question mark by !xi = 3 rather than

X = 3.

Cases like (3) and (4) need different kinds of proof rules. To solve (3)

we need a forward rule, which yields the strongest postcondition. For (4)

we need a backward rule yielding the weakest precondition. Obviously, the

notations P{S}Q and {P}S{Q} are too symmetric to serve both purposes. We

therefore introduce two new notations, using the previously defined form

{P}S{Q}:

a. {P}S[Q] is a forward rule.

Its meaning is given by

1. {P}S{Q}, and

2. If {P}S{Q'} then Q => Q'.

b. [P]S{Q} is a backward rule.

Its meaning is given by

1. {P}S{Q}, and

2. If {P'}S{Q} then P' => P.

Examples of (valid) rules in this notation are:

{ !xi > 3} X := X*X [x > 9]

{x > 3} X := X*X [x > 9]

[lxl > 3] X := X*X {x > 9}

{O<lxl<l}x := 1/x [lxl>l].

The following rules are invalid:

[x > 3] X := X*X {x > 9}

{ lxl < 1 } X := 1/x [lxl > 1]'

{O<lxl<l}x := 1/x [lxl > n.

4

Inherent preconditions

Associated with every statement Sis a weakest precondition which ensures

that S terminates. We call this condition the inherent precondition PS of S.

Formally PS can be defined by

[Ps]S{true}

3 (We identify equivalent conditions such as x > O, 0 < x and x > O;

similarly, true is identified with e.g. 1 + 1 = 2 and (x+l) (x-1) = x2 - 1.)

Examples of inherent preconditions are given within the square brackets in

[x,' OJ x := 1/x {true},

[i=0,1,2, ••• J while i,'O do i := i-1 od {true}.

There are many statements whose inherent preconditions are true. An example

of such a statement is

while i > 0 do i := i-1 od.

We call a precondition P strong enough (for S) if P;::> ~s· It follows from

our definitions that {P}S[Q] and [P]S{Q} can be valid only if Pis strong

enough for S.

3. PROOF RULES FOR SPECIFIC STATEMENT TYPES

We shall now deal with forward and backward proof rules for assignment

statements, conditional statements, and while statements. Notice that the

latter two statement types may contain other statements and may therefore

be arbitrarily complex. We shall restrict ourselves to unsubscripted

variables. In a more semantical context, De Bakker [5] has shown how to

cope with subscripted variables.

al. Assignment statements (forward)

If Pis strong enough then

{P(x)} x := c.p(x) [3x0

An example is:

By eliminating x0 the derived postcondition in this example is simplified

to x+2y > 0.

This forward rule was introduced by Floyd [l].

a2. Assignment statements (backward)

[Q(<.p(x))] x := <.p(x) {Q(x)}.

5

This backward rule was introduced by Hoare [2] and is often applied in text­

books on progrannning.

bl. Conditional statements (forward)

It is curious that this useful forward rule is missing in most papers on

program verification. As an example, we infer from

and

that

holds.

{ x+y > 0 A x > 0} x : = x-1 [x+y > - l A x > -1 J

{ x+y > 0 A x ::; 0} y : = y+ l [x+y > l A x ::; 0 J

{x+y > O} if x > 0 then x := x-1 else y := y+l fi

[(x+y > -1 A x > -1) v (x+y > l A x::; 0) J

b2. Conditional statements (backward)

This most useful backward rule is well-known. Dijkstra [3] calls it the

"Axiom of Binary Selection".

c I. While statements (forward)

If Pis strong enough (for the while statement), then

where Uk are given by:

(k = l , 2, ..•) •

c2. While statements (backward)

[v0vv 1vv2v ••• J while B dos od {Q},

where Vk are given by:

Vo= (-,BAQ), vk = (BAWk) with [Wk]S{Vk-1}

Remark on while statements

6

(k = 1, 2, •••) •

Due to the infinite disjunctions occurring in the rules for while statements,

these rules seem less attractive than the weaker but simpler "rule of itera­

tion" introduced by Hoare [2]. On the other hand, a user of Hoare's rule

must himself find an appropriate "loop invariant", which is not always easy.

In [IO] some simple applications of the rules given here are shown.

4. PROPERTIES OF PROOF RULES

A user of proof rules will sooner or later get interested in certain rela­

tionships between various rules. He might, for instance, wonder in what

circumstances forward and backward rules are mutually inverse, or he might

ask himself whether or not

{P 1AP 2}S[Q1AQ2J

is valid if it is given that {P 1}S[Q1J and {P2}S[Q2J are valid. We shall

therefore briefly deal with a number of those relationships. Their justifi­

cation is based on simple and well-known set-theoretical facts, such as

f(XnY) c f(X) n f(Y).

All proof rules under discussion can be formulated in terms of transforma­

tions in state spaces, which was the approach taken i~ [10]. Every condition

Pon program variables corresponds to a subset~ of a state space;~ is the

set of exactly those states that satisfy P. Then {P}S[Q] and [P]S{Q} corres­

pond, respectively, to

and

For some program statements the associated functions fare one-to-one. These

program statements are characterized by the following definition. We call a

statement S injective if P' = P" whenever both {P' }S[Q] and {P"}S[Q].

We mention the following six properties:

(i) If Sis injective, then

{P}S[Q] implies [P]S{Q}.

(ii) If {PS}S[true], then

[P]S{Q} implies {P}S[Q].

(iii) If {P 1}S[Q 1J and {P2}S[Q2J,

a. P 1 ~ P2 implies Q1 ~ Q2;

b. {P 1vP2}S[Q 1vQ2];

c. If Sis injective, then

{P 1AP 2}S[Q 1AQ2].

then

(iv) If [P 1]S{Q 1} and [P2]S{Q2}, then

a. Q1 ~ Q2 implies P1 ~ P2;

b. [p1vp2]S{QIVQ2};

c. [P 1AP 2]S{Q 1AQ 2}.

(Comparing (iii)c and (iv)c we see that backward rules behave better

than forward ones with respect to conjunction.)

(v) {P}S[false] if and only if P = false •

7

(Here~ our convention that P must be' "strong enough" for S is essential.)

(vi) [P]S{Q} implies [PSA7P]S{7Q}.

REFERENCES

[1] Floyd, R.W., Assigning Meanings to Programs, Proc. Symp., Appl. Math.

19, American Math. Soc. (1967) 19-32.

[2] Hoare, C.A.R., An Axiomatic Basis for Computer Progra:rroning, CACM 12

(1969) 576-580.

[3] Dijkstra, E.W., A simple Axiomatic Basis for Progra:rroning Language

Constructs, Proc. Kon. Ned. Akad., Ser. A, 77 (or Indagationes

Ma th • , 1§_) , (19 7 4) 1 - l 5) •

[4] Manna, Z., Mathematical Theory of Computation, McGraw-Hill (1974).

[5 J De Bakker, J. W. , Correctness proofs for assignment statements, Report

IW 55/76, Mathematisch Centrum, Amsterdam (1976).

8

[6] Igarashi, s., R.L. London, D.C. Ltickham, Automatia program verifiaation

I: A logiaal basis and its implementation, Acta Informatica

i (1975) 145-182.

[7] Naur, P., An Experiment on Program Development, BIT g (1972) 347-365.

[8] Mills, H.D., The Neu) Math of Computer ProgY'ClTl1lfling, CACM.!!_, 43-48.

[9] Basu, S.K., R.T. Yeh, Strong Verifiaation of Programs, IEEE Transactions

on Software Engineering,! (1975) 339-346.

[10] Ammeraal, L., How program statements transform prediaates, Informatik­

Fachberichte ~ (1976) 109-120, Springer-Verlag.

