
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

L. AMMERAAL

IW 66/76

AW-GRAMMAR FOR THE SEMANTICS OF INTEGER EXPRESSIONS

Prepublication

~
MC

NOVEMBER

2e boerhaavestraat 49 amsterdam

PJunted a:t :the Ma:thema.:ti.c.a.l Cen.tlz.e, 49, 2e Boell.ha.a.vu.tJc.aJLt, Am6teJLdam.

The Ma:thema.:ti.cae. Cen.tlz.e, 6oun.ded the 11-th 06 Feb~uaJr.y 1946, .U a non
p~o6U).nt,,tUU,t,lon cwnlng a:t the pll.omo:Uon 06 pUll.e ma:thema.:ti.C6 and Lt6
app.Uc.a.:ti.on!>. It .U -0pon1>o~ed by :the NdheJLf.a.nd6 GoveJLnment tMough the
NdheJLf.a.nd6 OJt.gan).za.:ti.on 60~ :the Advanc.ement 06 PU/Le RueMc.h (Z.W.O),
by the Mun).upa.uty 06 Am6teJLdam, by :the Un).veMUy o0 Am6teJLdam, by
the F~ee Un).veMUy a:t Am6teJLdam, and by indall:tlue-6.

AMS(MOS) subject classification scheme (1970): 68A30

ACM-Computing Reviews-category: 5.23

. *)
A W-grannnar for the semantics of integer expressions

by

L. An:nneraal

ABSTRACT

For parenthesized integer expressions with operators+ and* a W-grannnar

is presented which not only defines their syntactic structure but also pre

scribes their (semantic) value.

KEY WORDS & PHRASES: W-Grammar, Van Wijngaarden grammar, semantics.

*) This report will be submitted for publication elsewhere.

INTRODUCTION

In [l] Van Wijngaarden gave a W-grammar which generates the numerical

value of a·-b, where a and b are decimally written integer constants. As dis

cussed by Peck [2], W-grannnars (also called two-level-grannnars or Van

Wijngaarden grannnars) were used in the Revised Report on ALGOL 68 [3] more

extensively and in a more sophisticated way than in the original Report on

ALGOL 68. Especially the syntax of predicates developped by L. Meertens

proved to be very useful. In the present paper predicates are applied to the

evaluation of simple arithmetic expressions. We restrict ourselves to ex

pressions which are in the usual way composed of integer constants, paren

theses and operators for addition and multiplication. An example of such an

expression is:

(348 * (245 + 708) * 61) + 18 * 4711.

For those who are not familiar with the subject, we give a brief dis

cussion on W-grannnars in general, in terms of some well-known concepts of

formal language theory.

In context-free grannnars, there is an essentially finite set of produc

tion rules,, Exactly the same type of production rules are used in W-grannnars,

but there are infinitely many of them. They are therefore specified in an

indirect way, namely by means of a finite set of hyper-rules together with a

finite set of metaproduction rules. Hyper-rules can be viewed as skeleton

rules with "formal parameters" that have to be replaced by "actual para

meters". These "formal parameters" are called metanotions and usually writ

ten in capital letters. The "actual parameters" are called protonotions and

often written in small letters. The question which protonotions may be cho

sen for some metanotion is answered by the set of metaproduction rules. Each

metanotion acts as a start symbol of a context free grannnar whose production

rules are the given set of metaproduction rules. Each sentence thus produced

by a metanotion may be used as a protonotion to replace that metanotion in

a hyper-rule. This substitution should be done "consistently" i.e. the same

protonotion must replace all occurrences of the metanotion involved. When

all metanotions in a hyper-rule have been consistently replaced by the

appropriate protonotions, we have constructed a production rule of the W-

2

grannnar. Protonotions for which production rules can be derived are called
notions. The substitution process must of course not be interpreted in the

sense that the original hyper-rules are destroyed; they can be used more

than once. The working of W-grannnars is more precisely described in the Re

vised Report on ALGOL 68 [3]. Baker [4], Greibach [5], and others give more

formal definitions of W-grannnars.

Construction of the syntax

As in [3], we shall use the capital letters A,B, ••• ,Z as "large syntac

tic marks" of which metanotions are composed. The ten digits 0,1, ••• ,9 will

be used both as "small syntactic marks" and as (terminal) "symbols". This is

possible if we do not use single digits as "notions". Other "small syntactic

marks" are the small letters a,b, ••• ,z, the parentheses (and) and the oper

ators+ and*·

We now consider the following set of metaproduction rules:

E .. T; E + T. . .
T .. F; T * F. . .
F .. C• (E). . . ,
C .. D; CD. . .
D .. 0;1;2;3;4;5;6;7;8;9. . .

(Ml)

(M2)

(M3)

(M4)

(MS)

The expressions under consideration are then obviously all "terminal

metaproduction" of E. Our intension is now to introduce notions like

value of 3 + 4 * 5 is

along with a set of hyper-rules according to which this typical notion has

exactly one terminal production namely 23 (which is indeed a sequence of

(terminal) symbols in our terminology).

We start with the hyper-rule

value of Eis: E yields C, C. (Ht)

Here "E yields C" 1.s a typical "predicate"; its task 1.s to ensure that the

3

decimal integer constant C be the value of the expression E. If this has been

achieved, the second C in the hyper-rule is the same constant because of the

principle of "consistent substitution". Therefore "E yields C" is to vanish

after it has fulfilled its task, in other words its terminal production is

to be an empty sequence, provided that C represents the numerical value of

E. If C does not correspond to E in this way, the hypernotion "E yields C"

must not qave a terminal production; any attempt to derive such a terminal

production then leads to a "blind alley".

Working with computers, the internal representation of numbers is most

ly binary, whereas the decimal system is used on input and output. Similarly,

the actual "arithmetic" of our grammar will not be done decimally, although

it remains true that decimally written constants occur in (terminal metapro

ductions of) E and C. We shall, however, not use the binary but rather the

unary number system. In this system we shall represent an integer n (n~O)

by n consecutive occurrences of the "small syntactic mark" i. So e.g. the

decimal constant 12 corresponds to iiiiiiiiiiii. In informal explanations

we shall abbreviate the latter by {12}i. So we have for any integer n ~ 0:

n ii. .. i
'----,,.-----/

n times

{n}i
~
informal
notation

By virtue of the following metaproduction rules, the metanotions X, Y,

and Z stand for "unary constants":

X • • Xi.

y x.
Z •• X.

The next hyper-rule to be explained 1.s

E yields C: E eq X, C eq X.

The following production rule can be derived from (H2):

3 * 4 yields 12: 3 * 4 eq iiiiiiiiiiii, 12 eq iiiiiiiiiiii.

(M6)

(M7)

(M8)

(H2)

4

Predicate "E eq X" (of which "C eq X" is a special case) has to ensure

that the unary number (produced by) X corresponds to the expression (pro

duced by) E:. The following ten hyper-rules are obvious:

0

2

3

4

5

6

7

8

9

eq:.

eq 1: •

eq ii:.

eq iii:.

eq iiii: .

eq ii iii: .

eq iiiiii:.

eq iiiiiii:.

eq iiiiiiii:.

eq iiiiiiiii:.

(H3)

(H4)

(HS)

(H6)

(H7)

(H8)

(H9)

(HIO)

(HI I)

(HI 2)

Notice that (H3) ... (Hl2) list exactly all production rules that correspond

to D eq X. They show that D eq X "vanishes" if and only if X stands for the

unary constant that corresponds to the decimal constant represented by D.

The following hyper-rule is used for constants consisting of two or

more decimal digits:

CD eq XXXXXXXXXXY: C eq X, D eq Y. (HI3)

It says that XXXXXXXXXXY is the unary representation of the decimal constant

CD if and only if Xis the unary representation of the constant C and Y 1s

the unary representation of the decimal digit D. In (Hl3) the advantage of

the unary number system becomes clear: addition becomes concatenation and to

this end syntax rules are most appropriate. The following hyper-rule will

therefore not come as a surprise:

E + T eq XY E eq X, T eq Y. (Hl4)

Multiplication is recursively reduced to addition (i.e. concatenation)

1n the following way:

T * F eq X: T eq Y, F eq Z, Y * Z res X.

* Z res: .

Yi* Z res XZ: Y * Z res X.

(HI 5)

(H16)

(HI 7)

5

The only purpose of (HIS) is to switch to the unary number system. Explained

in terms of elementary arithmetic, (H16) stands for O • z = O. Rule (Hl6) is

used after repeated application of (Hl7) which says:

(y+l)z = x + z if and only if yz = x.

To deal with parentheses we need:

(E) eq X: E eq X. (Hl8)

Since we eventually wish to arrive at (terminal) symbol_s, we decompose

a decimal constant by

CD: C,D.

We now give a complete listing of our W-grammar:

E .. T• E + T. . .
'

T .. F• T * F. .. ,
F .. C; (E). . .
C . . D; CD • . .
D .. 0;1;2;3;4;5;6;7;8;9. . .
X .. ; Xi. ..
y .. x. . .
z . . x . . .

value of E is: E yields c,c.
E

0

2

3

4

5

6

7

8

9

yields C . E eq X, C eq x. .
eq:.

eq i:.

eq ii: .

eq iii:.

eq iiii:.

eq ii iii:.

eq iiiiii:.

eq iiiiiii:.

eq iiiiiiii:.

eq iiiiiiiii:.

BIBUOTHEEK MATHEi\1A TiSC:1 I CEf~; i?L';,1

--AMSTERD/,:,.' ····----

(Hl9)

(Ml)

(M2)

(M3)

(M4)

(MS)

(M6)

(M7)

(M8)

(HI)

(H2)

(H3)

(H4)

(HS)

(H6)

(H7)

(H8)

(H9)

(HIO)

(HI I)

(HI 2)

An example

CD eq XXXXXXXXXXY: C eq X, D eq Y.

E + T eq XY: E eq X, T eq Y.

T * F eq X: T eq Y, F eq Z, Y * Z res X.

* Z res:.

Yi* Z res XZ: Y * Z res X.

(E) eq X: E eq X.

CD: C,D.

6

(H13)

(H14)

(HIS)

(Hl6)

(H17)

(H18)

(H19)

We shall now show that the string of symbols 7054 is a terminal produc

tion of the notion

value of 34 + 45 * (67+89) is.

(It is left as an exercise to prove that it is the only terminal production

of this notion.)

We have

value of 34 + 45 * (67+89) is !ll 34 + 45 * (67+89) yields 7054,7054

Since we want only the four symbols 7054 to be the terminal production,

the precicate "34 + 45 * (67+89) yields 7054" must vanish:

34 + 45 * (67+89) yields 7054_g34 + 45 * (67+89) eq{7054}i, 7054 eq{7054}i.

We now proceed with second of the predicates produces:

7054 eq {7054}i H1 3 705 eq {705}i, 4 eq iiii ~

705 eq {705 }i 1!.!.l -70 eq {70 }1·, S HS eq 11111 -

70 eq { 70}i l!!..l 7 eq iiiiiii, 0 eq ~

7 HlO
eq 1111111 - empty.

Now follows the actual work:

34 + 45 * (67+89) eq {7054}i ~34 eq{34H, 45 * (67+89) eq{7020}i.

7

We now take it for granted that notions like 34 eq 34{i} vanish.

45 * (67+89) eq {7020}i ~
45 eq {45}i, (67+89) eq {156}i, {45}i * {156}i res {7020}i.

The first of these three predicates is trivial. We postpone the third

because the second is much simpler:

(67+89) eq { 156}i ~ 67 + 89 eq { 156}i ~
67 eq {67}i, 89 eq {89}i.

We will now do the multiplication:

REFERENCES

{45}i * { 156 }i res { 7020 }i

f44}i * {156}i res {6864}i

{43}i * { 156 }i res {6708}i

ii* {156}i res {312}i

i * {156}i res {156}i

* { 156}i res

HI 7 -
HI 7 -
HI 7 -
HI 7 -
HI 7 -
HI6

- empty.

[l] VAN WLJNGMRDEN, A., On the boundary between natural and artificial

languages, in: Bruno Visentini et al, Linguaggi nella societa

e nella tecnica, Milan, 1970.

[2] PECK, J.E.L., Two-level grammars in action. Proceedings of the IFIP

Congress, Stockholm, 1974, North-Holland Publishing Company,

Amsterdam.

[3] VAN WI.JNGAARDEN, A., et al (Eds), Revised Report on the Algorithmic

Language Algol 68, Springer Verlag 1976.

8

[4] BAKER, J .L., Grammars with Struatu:r>ed Voaabul,ary: a Model, for the ALGOL

68 Definition, Inf. and Control 20 (1972) 351-395.

[SJ GREIBACH, S.A., Some Restriations on W-Grammars, Intern. J. Comput.

Information Sci. 3 (1974) 289-327.

