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A W-grannnar for the semantics of integer expressions 

by 

L. An:nneraal 

ABSTRACT 

For parenthesized integer expressions with operators+ and* a W-grannnar 

is presented which not only defines their syntactic structure but also pre

scribes their (semantic) value. 

KEY WORDS & PHRASES: W-Grammar, Van Wijngaarden grammar, semantics. 

*) This report will be submitted for publication elsewhere. 



INTRODUCTION 

In [l] Van Wijngaarden gave a W-grammar which generates the numerical 

value of a·-b, where a and b are decimally written integer constants. As dis

cussed by Peck [2], W-grannnars (also called two-level-grannnars or Van 

Wijngaarden grannnars) were used in the Revised Report on ALGOL 68 [3] more 

extensively and in a more sophisticated way than in the original Report on 

ALGOL 68. Especially the syntax of predicates developped by L. Meertens 

proved to be very useful. In the present paper predicates are applied to the 

evaluation of simple arithmetic expressions. We restrict ourselves to ex

pressions which are in the usual way composed of integer constants, paren

theses and operators for addition and multiplication. An example of such an 

expression is: 

(348 * (245 + 708) * 61) + 18 * 4711. 

For those who are not familiar with the subject, we give a brief dis

cussion on W-grannnars in general, in terms of some well-known concepts of 

formal language theory. 

In context-free grannnars, there is an essentially finite set of produc

tion rules,, Exactly the same type of production rules are used in W-grannnars, 

but there are infinitely many of them. They are therefore specified in an 

indirect way, namely by means of a finite set of hyper-rules together with a 

finite set of metaproduction rules. Hyper-rules can be viewed as skeleton 

rules with "formal parameters" that have to be replaced by "actual para

meters". These "formal parameters" are called metanotions and usually writ

ten in capital letters. The "actual parameters" are called protonotions and 

often written in small letters. The question which protonotions may be cho

sen for some metanotion is answered by the set of metaproduction rules. Each 

metanotion acts as a start symbol of a context free grannnar whose production 

rules are the given set of metaproduction rules. Each sentence thus produced 

by a metanotion may be used as a protonotion to replace that metanotion in 

a hyper-rule. This substitution should be done "consistently" i.e. the same 

protonotion must replace all occurrences of the metanotion involved. When 

all metanotions in a hyper-rule have been consistently replaced by the 

appropriate protonotions, we have constructed a production rule of the W-



2 

grannnar. Protonotions for which production rules can be derived are called 
notions. The substitution process must of course not be interpreted in the 

sense that the original hyper-rules are destroyed; they can be used more 

than once. The working of W-grannnars is more precisely described in the Re

vised Report on ALGOL 68 [3]. Baker [4], Greibach [5], and others give more 

formal definitions of W-grannnars. 

Construction of the syntax 

As in [3], we shall use the capital letters A,B, ••• ,Z as "large syntac

tic marks" of which metanotions are composed. The ten digits 0,1, ••• ,9 will 

be used both as "small syntactic marks" and as (terminal) "symbols". This is 

possible if we do not use single digits as "notions". Other "small syntactic 

marks" are the small letters a,b, ••• ,z, the parentheses (and) and the oper

ators+ and*· 

We now consider the following set of metaproduction rules: 

E .. T; E + T. . . 
T .. F; T * F. . . 
F .. C• (E). . . , 
C .. D; CD. . . 
D .. 0;1;2;3;4;5;6;7;8;9. . . 

(Ml) 

(M2) 

(M3) 

(M4) 

(MS) 

The expressions under consideration are then obviously all "terminal 

metaproduction" of E. Our intension is now to introduce notions like 

value of 3 + 4 * 5 is 

along with a set of hyper-rules according to which this typical notion has 

exactly one terminal production namely 23 (which is indeed a sequence of 

(terminal) symbols in our terminology). 

We start with the hyper-rule 

value of Eis: E yields C, C. (Ht) 

Here "E yields C" 1.s a typical "predicate"; its task 1.s to ensure that the 
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decimal integer constant C be the value of the expression E. If this has been 

achieved, the second C in the hyper-rule is the same constant because of the 

principle of "consistent substitution". Therefore "E yields C" is to vanish 

after it has fulfilled its task, in other words its terminal production is 

to be an empty sequence, provided that C represents the numerical value of 

E. If C does not correspond to E in this way, the hypernotion "E yields C" 

must not qave a terminal production; any attempt to derive such a terminal 

production then leads to a "blind alley". 

Working with computers, the internal representation of numbers is most

ly binary, whereas the decimal system is used on input and output. Similarly, 

the actual "arithmetic" of our grammar will not be done decimally, although 

it remains true that decimally written constants occur in (terminal metapro

ductions of) E and C. We shall, however, not use the binary but rather the 

unary number system. In this system we shall represent an integer n (n~O) 

by n consecutive occurrences of the "small syntactic mark" i. So e.g. the 

decimal constant 12 corresponds to iiiiiiiiiiii. In informal explanations 

we shall abbreviate the latter by {12}i. So we have for any integer n ~ 0: 

n ii. .. i 
'----,,.-----/ 

n times 

{n}i 
~ 
informal 
notation 

By virtue of the following metaproduction rules, the metanotions X, Y, 

and Z stand for "unary constants": 

X • • Xi. 

y x. 
Z •• X. 

The next hyper-rule to be explained 1.s 

E yields C: E eq X, C eq X. 

The following production rule can be derived from (H2): 

3 * 4 yields 12: 3 * 4 eq iiiiiiiiiiii, 12 eq iiiiiiiiiiii. 

(M6) 

(M7) 

(M8) 

(H2) 
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Predicate "E eq X" (of which "C eq X" is a special case) has to ensure 

that the unary number (produced by) X corresponds to the expression (pro

duced by) E:. The following ten hyper-rules are obvious: 

0 

2 

3 

4 

5 

6 

7 

8 

9 

eq:. 

eq 1: • 

eq ii:. 

eq iii:. 

eq iiii: . 

eq ii iii: . 

eq iiiiii:. 

eq iiiiiii:. 

eq iiiiiiii:. 

eq iiiiiiiii:. 

(H3) 

(H4) 

(HS) 

(H6) 

(H7) 

(H8) 

(H9) 

(HIO) 

(HI I) 

(HI 2) 

Notice that (H3) ... (Hl2) list exactly all production rules that correspond 

to D eq X. They show that D eq X "vanishes" if and only if X stands for the 

unary constant that corresponds to the decimal constant represented by D. 

The following hyper-rule is used for constants consisting of two or 

more decimal digits: 

CD eq XXXXXXXXXXY: C eq X, D eq Y. (HI3) 

It says that XXXXXXXXXXY is the unary representation of the decimal constant 

CD if and only if Xis the unary representation of the constant C and Y 1s 

the unary representation of the decimal digit D. In (Hl3) the advantage of 

the unary number system becomes clear: addition becomes concatenation and to 

this end syntax rules are most appropriate. The following hyper-rule will 

therefore not come as a surprise: 

E + T eq XY E eq X, T eq Y. (Hl4) 

Multiplication is recursively reduced to addition (i.e. concatenation) 

1n the following way: 

T * F eq X: T eq Y, F eq Z, Y * Z res X. 

* Z res: . 

Yi* Z res XZ: Y * Z res X. 

(HI 5) 

(H16) 

(HI 7) 
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The only purpose of (HIS) is to switch to the unary number system. Explained 

in terms of elementary arithmetic, (H16) stands for O • z = O. Rule (Hl6) is 

used after repeated application of (Hl7) which says: 

(y+l)z = x + z if and only if yz = x. 

To deal with parentheses we need: 

(E) eq X: E eq X. (Hl8) 

Since we eventually wish to arrive at ( terminal) symbol_s, we decompose 

a decimal constant by 

CD: C,D. 

We now give a complete listing of our W-grammar: 

E .. T• E + T. . . 
' 

T .. F• T * F. .. , 
F .. C; (E). . . 
C . . D; CD • . . 
D .. 0;1;2;3;4;5;6;7;8;9. . . 
X .. ; Xi. .. 
y .. x. . . 
z . . x . . . 

value of E is: E yields c,c. 
E 

0 

2 

3 

4 

5 

6 

7 

8 

9 

yields C . E eq X, C eq x. . 
eq:. 

eq i:. 

eq ii: . 

eq iii:. 

eq iiii:. 

eq ii iii:. 

eq iiiiii:. 

eq iiiiiii:. 

eq iiiiiiii:. 

eq iiiiiiiii:. 

BIBUOTHEEK MATHEi\1A TiSC:1 I CEf~; i?L';,1 

--AMSTERD/,:,.' ····----

(Hl9) 

(Ml) 

(M2) 

(M3) 

(M4) 

(MS) 

(M6) 

(M7) 

(M8) 

(HI) 

(H2) 

(H3) 

(H4) 

(HS) 

(H6) 

(H7) 

(H8) 

(H9) 

(HIO) 

(HI I) 

(HI 2) 



An example 

CD eq XXXXXXXXXXY: C eq X, D eq Y. 

E + T eq XY: E eq X, T eq Y. 

T * F eq X: T eq Y, F eq Z, Y * Z res X. 

* Z res:. 

Yi* Z res XZ: Y * Z res X. 

(E) eq X: E eq X. 

CD: C,D. 

6 

(H13) 

(H14) 

(HIS) 

(Hl6) 

(H17) 

(H18) 

(H19) 

We shall now show that the string of symbols 7054 is a terminal produc

tion of the notion 

value of 34 + 45 * (67+89) is. 

(It is left as an exercise to prove that it is the only terminal production 

of this notion.) 

We have 

value of 34 + 45 * (67+89) is !ll 34 + 45 * (67+89) yields 7054,7054 

Since we want only the four symbols 7054 to be the terminal production, 

the precicate "34 + 45 * (67+89) yields 7054" must vanish: 

34 + 45 * (67+89) yields 7054_g34 + 45 * (67+89) eq{7054}i, 7054 eq{7054}i. 

We now proceed with second of the predicates produces: 

7054 eq {7054}i H1 3 705 eq {705}i, 4 eq iiii ~ 

705 eq {705 }i 1!.!.l -70 eq {70 }1·, S ..... HS eq 11111 -

70 eq { 70}i l!!..l 7 eq iiiiiii, 0 eq ~ 

7 ....... HlO 
eq 1111111 - empty. 

Now follows the actual work: 

34 + 45 * (67+89) eq {7054}i ~34 eq{34H, 45 * (67+89) eq{7020}i. 
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We now take it for granted that notions like 34 eq 34{i} vanish. 

45 * (67+89) eq {7020}i ~ 
45 eq {45}i, (67+89) eq {156}i, {45}i * {156}i res {7020}i. 

The first of these three predicates is trivial. We postpone the third 

because the second is much simpler: 

(67+89) eq { 156}i ~ 67 + 89 eq { 156}i ~ 
67 eq {67}i, 89 eq {89}i. 

We will now do the multiplication: 
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