
AFDELING INFORMATICA

stichting

mathematisch

centrum·

(DEPARTMENT OF COMPUTER SCIENCE)
IW 67/76

T. HAGEN, P.J.W. TEN HAGEN, P. KLINT & H. NOOT

THE INTERMEDIATE LANGUAGE FOR PICTURES

Pre pub !'i cation

~
MC

NOVEMBER

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK M,\THE:\'t,l\TiSCl u:~-r.;;t"..
-AMSTERDA'\l-

"'

Ptlnte.d a.:t .the. Ma.:thema;tic.a.l Ce.n:tJr.e., 49, 2e. BoeJLhaavu.tluult, Am6.teJLda.m.

The. Ma.:thema.:Uc.a.l Ce.n:tJr.e., 6ou.nde.d .the. 11-.th 06 Fe.bJt.u.aJr.y 1946, ..w a. non
pll.o 6,i..t .iYL6.:tUU-tio n cu..m.ing a.:t .the. pll.omo:Uo n o 6 pWLe. ma.:thema;Ueo and w
a.pp..Uc.a;tiono. I.t ..w .6poYL6oll.e.d by .the. Ne..the.tr.1o..nd6 GoveJLnme.nt .thll.ough the.
Ne..theJLta..ndo 01tga.n.iza;tion. 6oll. the. Adva.nc.eme.nt o 6 PWLe. Ru e.a.Jt.c.h (Z. W. 0),
by .the. Mun.iupal.Uy 06 Am-0.teJLdam, by .the. Un.ive.MUy 06 Am6.teJLda.m, by
.the. Fll.e.e. Unive.MUy a.:t Am-6.teJLda.m, a.nd by .indM.tJuu.

AMS(MOS) subject classification scheme (1970): 68K30, 68T35

ACM-Computing Reviews-categories: 8.2

~he Intermediate Language for Pictures*)

by

~. Hagen, P.J.W. ten Hagen, P. Klint & H. Noot

ABSTRACT

This paper describes the Intermediate Language for Pic
tures.

The ILP determines the structure of a graphics system
in which pictures are represented as ILP programs. The ILP
defines extensions to general purpose programming languages.
Input and output is defined as generating and interpreting
ILP programs.

The ILP enforces that a uniform concept is used during
design. System modules can be applied to symbolic ILP pro
grams for testing.

Applications can be defined in terms of extensions to
the, indeed easily extendable, ILP.

New language constructs present in the ILP are em
phasised.

KEYWORDS & PHRASES: computer graphics, graphical language,
picture representation.

*) ~his paper is not for review, it is meant for
publication elsewhere.

CONTENTS

1.
2.
3.
4.
4. 1
4.c
4.3
4.4
5.
5 • 1
5.2
5.3
6.
'7

I •

Introduction
basic The structure of the ILP

The interpretation
Picture elements
Coordinate type ••.
TEXT ••••
CURVE
LIBRARY
Basic attributes
Transformations
Style •....
Detection
Conclusion .••
References •..

of attribu"Ses

. . .

and pici:.ures

1
2
5
'7

'7

0

0

9
9
9

10
10
1 1

12
12

T.Hagen et.al. - 1 -

1. Introduction.

The Intermediate Language for Pictures (ILP) has been
designed as part of a research project on computer graphics.
The graphics system [1] being constructed will be the kernel
of a satellite system for the manipulation of structured da
ta.

The ILP fits into the structure of the system in the
following ways:

All pictures are represented as ILP programs. ILP pro
grams must therefore be stored, retrieved, classified
and communicated.

A high level graphical language is obtained by embed
ding the ILP in an existing high level general purpose
programming language.

The various drawing devices are logically connected by
defining a conversion between ILP and device code. This
is also true for input devices. As an important conse
quence, full symmetry between input and output is ob
tained.

These applications require that the ILP be a data
structure rather than a programming language. However, one
may equally well consider these data structures as programs,
which, when executed (interpreted) produce the picture as
output.

For the designers of the system the ILP plays a key
role both as design method and as a means of communication.
The ILP is treated as a programming language. in the sense
that a complete definition of syntax and semantics for it is
given. It cen be represented in symbolic form just as any
other programming language. Compilers and interpreters for
it are being developed. All these activities are at the same
time contributions to the graphics system. This is illus
trated with a few examples:

~he same syntactic skeleton is used for the definition
of the internal representation and for the language ex-
+ . ~ensions.

Each ILP program can be considered as a prog~am for an
abstract drawing machine. Each physical device is con
nected by defining a correspondence to this abstract
machine.

Syste~ modules can be tested separately by trying them
on symbolic ILP programs. In this way cooperation with
other modules can be simulated and the test results are
available in (human) readable form.

T.Hagen et.al. - 2 -

The most important achievement, however, is that con
ceptual uniformity is maintained throughout the system.

During the definition of the language, the designers
have found that the ILP is a means to isolate and character
ize the essentials of computer graphics. It is also possi
ble to compare the complexity of various operations on
graphical data by expressing these operations as transforma
tions on ILP programs.

£. "'.'he basic structure of the ILP.

:he ILP is described in [2]. Only a simplified version
is presented here.

Interpreting data can cause the interpreter to perform
two kinds of actions, namely, external actions and cha~ges
of state of the interpreter. We therefore choose data enti
ties that correspond with these two kinds of actions, name
ly, external action specifiers or actions, and state specif
iers which are called attributes. Furthermore one needs an
operator to connect attributes with actions, expressing the
fact that the actions should be carried out in the state
described by the attributes.

The basic construction for the connection operator has
the form:

WITH A DRAW P,

where 11 A11 denotes a collection of attributes, 11 P" denotes a
set of actions called picture and "WITH ••• DRAW ••• " deno+-,e
the connection operator. The construction as a whole is
again a plcture.

Fer both pictures and attributes there exist primitive
and complex constructions built by composition. ~he ILP is
a ow level language in the sense that, apart from a number
o r l. a ,1 g u a g e pr i m i t iv e s , on 1 y a few very el em e nr, a 10 y mean s o f
compc,sition are provided. They serve two ma:i.n p11rposes:

Data must be represented compactly. To this end a
subroutine-like construction exis~s both for pictures
and for attributes. Common state information need be
specified only once, and the WITH .•. DRAW construction,
which can be nested 1 makes it possible to create, lo
cal, partial exceptions ~o the current state.

Data must be structured to suit the anticipated manipu
lations. Inserting empty cells in picture lists a~d
attr~bute lists allows the skeletcn for a data struc
ture +:o be specified, in which the actual values ar·e
"· u- r_.,., r<'L i e. d l 2 ,_ "' r - ,,, he <' ~ m p' ..., c:: -i + 1· 0"' r' U 1 e ,- " 1· m p -, '"' " "' ,- i,, e y
....., J ,c- _ _,__ ,, •..._, ~ ~ .. ; l,..• : , 1._, '- ..i... ., ,,__ J...l " _ .'.:) 5 W L .. -\.. 7' C ,..:, _,., l l _

T.Hagen et.al. - 3 -

are, can be used to build arbitrary directed graph
structures.

The two basic entities, picture , and att~ibute , have
the following syntax:

<picture>: <picture element>
<pname> !
' {'<pictures>'}'
WITH <attribute> DRAW <picture> ;

<attribute>: [ABS ! REL] <basic attribute>
<basic attribute>:

<attribute class>
<aname> I
'('<attributes')'

The noncomposite constructions are "picture element" and
"attribute class". They will be discussed later. "Pname" and
"aname" are names of pictures and attributes, respectively.
An ILP program consists of a set of named pictures and a set
of named attributes. A named picture is called a root pic
ture if its name is external (global), it is called a sub
picture otherwise. Interpretation of an ILP program is
started in a root picture. We shall use the word "subpic
ture" to include "root picture" as a special case. A named
attribute is called an attribute pack.

<root picture>:
<subpicture>:
<attribute pack>:

PICT <pname> <picture> ;
SUBPICT <pname> <picture>
ATTR <aname> <attribute> ;

The subroutine and bracketing mechanisms can specify
(directed) attribute graphs and pic:ure graphs. The
WITH ••. DRAW operator combines picture and attribute graphs
into one picture graph. The concept of a picture graph will
be used to give the basic semantic rules. ':'he initial nDde
of the graph is a root picture. The direct descendants of
that node are the pict1.1res that constitute the body of i:.11<'?.
root picture. Picture elements are terminal nodes. The
other alternatives in the syntax rule for pictures describe
nonterminal nodes. The WI'T'H ••• DRAW nodes always l1 ave 4:wo
descendants, namely an attribute and a picture. An attri
bute node only contains attributes as descendants

At this moment recursive calls are not allowed, because
neither pictures nor attributes contain any farm of condi
tions. This and other constructions like assignment and
parameters, have been left out of the language fer two rea
sons:

ILP programs as such, will usually be produced by pro
grams rather than by human beings; programming conveni
ence is therefore less important.

T.Hagen et.al. - 4 -

The ILP will be embedded in high level languages where
all these constructions are already present.

The interpreter visits the nodes of the graph (or more
precisely: the tree obtained by expanding this acyclic
directed graph) in preorder. Each time an attribute node is
encountered, the attribute (which may be an entire subgraph)
is interpreted, resulting in a so-called "state descrip
tion". This new state is mixed with the current state into a
new current state. In principle effects of these state
descriptions are accumulated. The picture node of the same
parent node is then interpreted in this new state. Upon re
turn to the parent node the original state is restored.
Each time a picture element is encountered the element at
hand is transformed according to the current state ·and con
verted into a sequence of machine dependent actions.

According to this scheme, further semantics specify the
following items:

How attributes are converted into state descriptions.

How two states are mixed.

How state descriptions are converted into drawing
machine state descriptions.

How attributes transform picture elements.

How picture elements will be converted into drawing
machine instructions.

The attributes of child nodes have priority over those
of parent nodes; i.e., they are applied first, and moreover,
they specify whether the parent attributes are to be appli~d
at all. The latter is controlled by the tags "ABS" and
"REL" respectively, which may be prefixed to a list of at
tributes. This mechanism realizes the concept of specifying
a common state with local exceptions (ABS) or adjustments
(REL). ABS indicates that the new attribute replaces those
of the parent. REL indicates composition of attributes.

The setup so far can be used for a large family of spe
cial purpose languages, of which the graphical languages
form only a small part.

There are many applications for this attribute concept,
for example: find the graph that is equivalent to a given
graph but optimal with respect to compactness (number cf at
tribute nodes) or execution speed (number of state transi
tions). Each subpicture can be executed in its own private
state regardless of the state of the caller and hence always
cause the same effect.

T.Hagen et.al. - 5 -

The flexibility is also proven by the wide variety· of
attributes that fit into this scheme. In fact it is espe
cially designed to allow extensions by adding new attribu~e
classes in order to realise a particular application.

J. The interpretation of attributes and pictures.

In this paragraph, we will specify the remaining seman
tic items.

The syntax rule for non-composite attributes is:

<attribute class>:
<transformation> !
<coordinate mode> !
<style> !
<pen> !
<detection>
<control> ;

Attributes are divided into "attribute classes". In the
process of mixing attributes only attributes from the same
class are involved. The result of mixing attribute primi
tives from a single class is called an "attribute class
value" (or class value for short). Each primitive attribute
itself is a particular instance of a class value. The con
verse, however, is not true; that is, not every class value
can be expressed by means of one attribute primitive of that
class.

A state description is a list of class values which
contains at most one class value for each attribute class.

The attribute graph that has to become a state descrip
tion is elaborated as follows. First, all referenc~s
(anames) to attribute packs are replaced by the correspond
ing attribute pack. The only type~of nesting that remains
is parenthesis nesting. rhe combining operation starts bot
tom upwards. Each attribute list that contains no sublists
between brackets is converted into a state description:

The primitive attributes are sorted class-wise without
disturbing the suborder in each class.

Next the attributes of one class are combined (conca
tenated) into one class value.

According to the syntax, each primitive attribute can
have at most one ABS/REL prefix. These prefixes are applied
as follows:

A* REL a
A* ABS a

* B =
* B =

A * a * B
a * B

T.Hagen et.al. - 6 -

Here "A" and "B'' denote a sequence of attribute primitives
of the same class. "*" denotes the mixing operator. The
resulting value is further treated as a class. value. The
combination process is repeated, taking class values instead
of primitive attribute values. Parenthesis are removed by
distributing the prefix (if any) over the individual class
values.

By repeatedly applying the combination rule for state
descriptions, each time going up one level, a single state
description is finally obtained.·

Combining a state description belonging to a
WITH ••• DRAW construct with the current state description is
a special case of the mixing process defined above.·

The application of a state description to a picture
element takes place in two major steps. First, the picture
element performs a state selection. Next, the state finally
obtained is effectuated.

The general form of a picture element is:

"type" <attribute matches> "type values"

This is the primitive form of the general construction

WITH A DRAW P ,

preceded by some type specification. The attribute matches
control the state selection. A single attribute match is a
boolean value. Each attribute class has a corresponding at
tribute match. A state selector contains one attribute match
value for each class. These values select a partial state
description from the current state. The partial state 'is
completed by adding default values for each missing class.
The default values may depend on the type of the picture
element. This mechanism is the ultimate consequence of pro
viding a common state with individual exceptions.

The five attribute matches and their corresponding at
tribute classes are:

match

TO/BY
~F/-TF
vs;~vs
DTI-DT
ST/-ST
<empty>

class

<coordinate mode>
<transformation>
<pen>
<detection>
<style>
<control>

comment

Absolute/incremental mode.

Penfunctions (colour etc.)
Selection by pointin~.

Special control functions.

The effect of individual class values on picture ele-

'!'.Hagen et.al. '7
I

ments can be described in terms of control information· for
the abstract drawing machine and a transformation of an ILP
program, e.g.:

WITH a DRAW pO <=> {p1; •••

Where pO, ••• , pn are picture elements.

pn }

The effect of picture elements themselves on
abstract mchine is defined in a way similar to that for
tribute classes. The meaning of some picture elements
defined in terms of other (more) primitive elements,
picture elements are never composite values.

~- Picture elements.

Picture elements are syntactically described by:

<picture element>:
<coordinate type>
<curve> I <text> l
<library> ! NIL ;

We will now discuss the various picture elements.

~-1 Coordinate~-

the
at-
is

but

The type-tags for which the type-values must be coordi
nates are:

<type>: POINT l LINE l CONTOUR

They occur in the following syntax rules:

<coordinate type>:
<type> <attribute matches>

'{'<coordinates>'}' l
<type> <coordinate>

<coordinate>:
PP l PO I
<attribute matches> <dimensional value>

The primitive action embodied by a coordinate type can
be described as follows. ~he row of coordinates specifies a
series of positions. The coordinates are relative to the
current origin in the TO-state and relative to the pen posi
tion in the BY-state. A type tag may add a first and last
position as follows. POINT adds nothing. LINE adds the pen
position at the beginning. CONTOUR adds the first position
at the end. PP and PO may be used anywhere in the sequence.

T.Hagen et.al. - 8 -

They indicate the pen position at the begining of the pic
ture element (PP: pen position) or at the beginning of the
enclosing picture (PO: pen origin). Note that PP as first
coordinate of a ·coNTOUR results in a CONTOUR that starts and
ends in the initial pen position.

What is actually drawn while going from one position to
the next depends on the type tag and the attributes. The
pen functions that define the colour, linewidth, etc. are
applied only in the state VS. In a similar way the attri
bute match ST specifies whether the current style functions
or the default style function for that type will be appli~d.

Many pictures are most naturally described in a space
of a certain dimension. The ILP "subspace" mechanism makes
it possible to temporarily change the dimension of the space
in which a picture is being constructed. If a picture must
lie in a given plane, the plane can be chosen as subspace
and as a result, all redundant coordinates in the picture
specification must be omitted. Syntactically a subspace is
specified as follows:

<subspace>:
<empty> !
SUBSPACE <dim> <subspace value>

The dimension of the subspace is specified by "dim", while
the subspace itself is specified by "subspace value". This
unit consist of dim+1 vectors. The first vector specifies
the origin, the second the orientation of the x-axis of the
subspace. The remaining vectors specify the further orienta
tion of the subspace because of the demand that they are
contained in it and are mutually independent.

Objects with type-tag TEX~ enable the production of
texts as part of a picture. The syntax rules are:

<text>:
TEXT <attribute matches> '{'<strings>'}'
":'EXT <string> ;

<string>:
<attribute matches> <proper string> ;

The type-value of TEXT is a row of strings. Each element in
the row may have its own private escape characters.

Characters are grouped in alphabets of 256 tokens. We
assume that there are at least 64 printable char2cter □ in
the system. With the help of 2 ~scape characters is is pos
sible to specify all 256 tokens. Change of alphabet is pos
sible by means of attributes. In principle an unlimited set
of alphabets can be used in an ILP program.

T.Hagen et.al. - 9 -

Whether an attribute from a given class applies t~ a
TEX~ element or not depends on the definition of the attri
bute itself. Attributes which are applied exclusively to
TEXT elements are called "typographic functions" and are a
subclass of the style functions •

..!:_.3. CURVE.

A CURVE value consists of a row of curve descriptions.
Each curve description generates a row of coordinates. The
effect of a CURVE value can now be defined as the effect of
a LINE with the same attribute matches and with the generat
ed coordinates as type values.

The functions are divided in two types: parameter func
tions and nonparameter functions. For a parameter function
one must specify an interval and two or three functions of
one variable. The coordinates produced are of ~ype (x(t),
y(t) [, z(t)]), where t steps through the interval. The
stepsize can be calculated by the function itself, can
depend on a given device or be given as one of the argu
ments.

Nonparameter functions or system functions are collect
ed in a system function library. Each function has its own
name and parameter format. The functions only produce coor
dinates and have no side effects whatsoever on drawing dev
ice or environment. The parameters are handed over to the
system routine without any modification by current attri
butes •

..!:_ • ..!:\. LIBRARY.

"LIBRARY" is followed by a row of names of external
subµfctures. The effect of a LIBRARY call is that a se•
quence of primitives is produced. The way these primitives
are produced inside the LIBRARY func~ion is not specified in
the ILP.

Inclusion of a part of a picture program in a LIBRARY
gives it the predicate "symbol". For all possible opera
tions on picture programs, symbols are indivisible primitive

• t-un 1 .,s.

2· Basic attributes.

The order in which attribute classes are listed in the
syntax rule (section 3) is also the order in which they are
applied to picture elements.

We will now briefly discuss examples of attributes for
the classes transformation, style and detection. These exam
ples illustrate that a large variety of unrelated attributes
fits into the same scheme.

T.Hagen et.al.

~-1 Transformations.

The effect of transformations is that of coordinate
transformations well known in computer graphics.

<transformation>:
<position>
<matrix>
<window>
<viewport>

Position can shift the origin to the pen position and
is equivalent to a dynamically determined translation.

Matrix is the
(n+1,n+1)-matrix.
value with the help
and projection.

general transformation, written as a full
One may also construct suah a matrix
of sub-matrices like rotation, scaling

Window has two aspects. It performs clipping along the
border of the window. Mixing of windows means intersecting
them. In combination with viewport it defines a (matrix'
transformation to screen coordinates. Clipping is performed
first.

For the moment only rectangular windows are allowed.
The combination of two (matrix,window) pairs is in general
not possible (rotation). In the absence of rotation, combi
nation can be described as:

(M1,W1) * (M2,W2) = (M1*M2,W1*M2(W2)).
Here M(W) means the rectangle W1 transformed by M,
M1*M2 implies matrix multiplication.
W1*W2 implies intersection of windows.

If there is rotation one must retain both pairs. So in fE'n ~

eral a transformation class value consists of a sequence of
(matrix,window) pairs.

5_ • .?_ Style.

Style functions describe what kind of lines and charac
ters (and in a future extension of the language whaJ kind of
shades and grey scales) are to be produced by the drawing
machine. Considering the enormous variety of styles that
can be produced by drawing machines, the style ~ction
package has to be extendable.

~he three classes of style functions tha~ exist so far,
e.g. line styles, point styles and typographic stylss are
~utually unrelated. Line styles are applied to coordinate
val·ues wi.tf1 "type-tag" LINE, point st:,yles to tt,.,,?e with
11 +:,ype-tag" POINT and typog1°aphic styles to string.s. A. class

T.Hagen et.al. - 11 ..

value for styles contains a typographic style, a line ~tyle
and a point style. Combination means replaoernent of the
corresponding functions (REL) or replacement of all func
tions (ABS). In the latter case nonspecified styles enforce
default values.

We will discuss line styles only.

<line style>:
<period>:

<period> MAP <value> <reset> ;
PERIOD '('<period description>')'

The attribute can produce a large variety of dotted and
dashed lines. Period is a basic pattern which is repeatedly
produced going along the line.

<period

<dash>:
<gap>:
<reset>:

description>:
<dash> ! <dash> ',' <gap> ;
<dash> ',' <gap> ',' <dash>
DOT ! <value> ;
<value> ;
RESET ! CONTINUE

The period is defined on a straight line piece of 100 unit3
in length: Hence dash1 + gap1 + dash2 + gap2 = 100. Gap1
through gap2 may be omitted, implying that the first missing
one adds up to 100. If dash has value DOT, a point is pro
duced on the spot which has a length of O units with respect
to the period.

Examples:
PER(100) => solid line (e.g. the default style for LINE).
PER(25, 50) => dashed line with gaps equal to dashes.

It starts however, with a half dash.

Map defines the length of the p~riod in coordinate dis
tance units. Reset is a boolean value telling whether a
period has to be restarted or continued when a new coord~ •
nate value of the line is encountered.

_2.3. Detection.

The detection attribute provides the primitives for in
teractive work with pictures. Basically its effect is that
it isolates parts of the picture.

For each node in the graph (which is not an end node)
the detection attribute tells whether that node is detect
able or not.

!he detection attribute has the following syntax:

BIBUOTHEEK MATHEMATISCH CUJTr.UM
-AMSTERDAM-

T.Hagen et~al.

<detection>: DETECT <dname> <proper str~ng>
UNDETECT <dname> ;

- 12 -

A detector has its own name (dname). There is also a common
detector which has no name. Switching from one detector to
another is possible by external action. Whenever a node is
detected, the string (if any) that is attached to it can be
returned to the user for identification.

Combining detection attributes means passing on the
names of the detectors (REL) or ~eplacing them (ABS). ABS
UNDETECT switches off all detection attributes.

The attribute match DT switches on the detection
mechanism as a whole. A single primitive can be isolated by
selecting a detector not present in its parent node.

~he detection mechanism can differentiate between each
incarnation of a subpicture. It also can detect the subpic
ture itself, i.e. all incarnations.

Q. Conclusion.

We attempted to show that the ILP provides a general
but simple scheme in which a large variety of language con
structions can be fitted. It must be admitted that not
everything we wanted to include in the language could be
modelled this way.

The scaling (by transformations) of line styled picture
elements produces the same line-style pattern even though
the line itself changes. To remove this restri~tion in
teraction between attribute classes (style and transforma
tion) would be required.

The attribute mechanism allows nonpictorial information
to be associated with pictures.

Our main goal is now to gain exper·ience with the ILP as
quickly as possible by applying it in the way mentioned in
the introduction.

1. References.

[1] P.J.W. ten Hagen, P. Klint, H. Noot and T. Hagen,
Design of an Interactive Graphics System.
MC Report IW36 19;5,
Mathematical Centre Amsterdam.

[2] ~. Hagen, P.J.W. ten Hagen, P. Klint and H Noot,
The ILP, Intermediate Language for Pictures,
MC Report IW68 1 976,
Math8matical Centre Amsterdam.

