
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

P.M.B. VITANYI

I W 70/76

ACHIEVABLE HIGH SCORES OF £-MOVES AND RUNNING
'i!MES IN OPDA COMPUTATIONS

Prepub Ii cation

~
MC

DECEMBER

2e boerhaavestraat 49 amsterdam

PJun:ted a.:t. :the Ma.:t.herna.:ti.c.ai. Cen:tll.e, 49, 2e Boe1t.haa.vu.tlr.aa:t, Aml>.tell.dam.

The Ma.:t.herna.:ti.c.ai. CentJz.e, 6ou.nded .the 11-.th 06 FebJr.WVLy 1946, .u, a. non
pll.06,U:. ,lru,.tl:tu,tlon cu.ming a.:t. :the pll.omo:tlon 06 pUll.e ma.:t.hema..t,lct, a.nd .lt6
a.pp.Uc.a.:ti.oru,. 1.t .u, .6poru,oJr.ed by :the Ne.th<Vti.a.nd.6 GoveJt.nmen:t .thll.ough .the
Ne.th<Vti.a.nd.6 01tga.n,lza.:Uon 6oJr. .the Adva.nc.ernen:t 06 PUite Ruea.Jr.c.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 68A25, 68A20, 94A30

ACM-Computing Reviews-categories: 5.23, 5.25, 5.26, 4.1.

Achievable high scores of e:-moves and running times in DPDA computations *)

by

P.M.B. Vitanyi

ABSTRACT

Large scores in the number of consecutive e:-moves a DPDA can make

without entering a loop or decreasing its stack below the original stack

height are investigated. The achieved scores are very near to an upper

bound in the general case and are the upper bound for one-state DPDA's.

Upper and lower bounds are derived for the worst case running times of

accepting DPDA computations.

KEY WORDS & PHRASES: Deterministi~ pushdoum automata computations,

Maximal number of e:-moves, Largest running times,

Highest inefficiency.

This report will be submitted for publication elsewhere

I. INTRODUCTION

Deterministic pushdown automata (DPDA's) accept the so-called

deterministic context free languages and constitute an important device in

the theory of parsing and compiling [I]. Given a DPDA acceptor for some

language· (the device tells us whether an input word is in the language) we

can convert it to a recognizer (the device tells us whether or not the input

word is in the language) by eliminating loops, i.e., infinite sequences of
II

consecutive £-moves (nonreading machine steps). SCHUTZENBERGER [SJ showed

how one can do so. Later proofs analyzed the amount of work involved in

bringing a DPDA in loop-free form, which involved giving an upper bound on

the number of consecutive £-moves a DPDA can make without entering a loop

or decreasing its stack below its original height.

In [3, Lemma 12.1] it is shown that for a DPDA with n 1 states, n2 stack

symbols and l the maximal lenght of a string with which the topmost stack
.n 1n 2,e_

symbol can be replaced in a single move, n 1(n2+I) is such an upper bound.

In [I, Algorithm 2.16] the slightly better upper bound of

n 1(n;1n2l_n2)/(n2-I) (or n 1if n2 = I) is given. Using a different approach,
n1n2 in [4] the upper bound of (l -1)/(l-I) (or n 1n2 if l = I) is given. This

latter bound is achieved by using techniques already appearing in [6],

where it is proven that we can test for looping configurations in DPDA's in

time linear in the parameters. Hence the problem of determining the maximal

number of consecutive £-moves a DPDA can make without looping or decreasing

the stack below the original stack height merits interest primarily as a

combinatorial problem. In the present note we investigate how high a score a

DPDA can actually achieve. It is shown that for DPDA's which read input

n (n +I)(n -2) n -2 n -2
((l-1) 1l 1 2 -l 2)/((l-I)l 2 -I)

is an achievable lower bound on this maximal number of £-moves for

n 1 ~ I, n2 ~ 3 and l ~ 2. For n 1 = I (one-state DPDA's) this is also an

upper bound, and the above score is very near to an upper bound in the

general case. Finally, we give upper and lower bounds on the worst case

running times of DPDA computations in which all input is read.

2

2 .. RESULTS.

Definitions and terminology closely follow [I]. We assume familiarity

with the way of looking at DPDA computations of [4] and [6].

Let M be a DPDA with n 1,n2 and las in the introduction. Denote the maximal

number of consecutive E-moves a DPDA M with these parameters can make,

without entering a loop or decreasing its stack below the original stack

height, by f(n 1,n2 ,l) where we assume that there is at least one (state,

stack symbol) pair for which M reads input. When we do not impose the latter

requirement we denote the corresponding function by f'(n 1,n2 ,l) and observe

that DPDA's with parameters n 1,n2 ,l which score between f(n 1 ,n2 ,l) and

f'(n 1,n2 ,l) accept the language 0 or {E}.

where

n (n +l)(n -2) n -2 n -2
g(n 1,n2 ,l) = ((l-1) 1l .l 2 -l 2)/((l-l)l 2 -1)

for and

PROOF. Let the state set of M be~= {1,2, •.. ,n1} and let the set of stack

symbols be r = {1,2, •.• ,n2}. The following canonical scheme (see [4]) for

(1,1) with respect to M will achieve the claimed lower bound. The canonical

scheme is the context free grammar

where Pis defined by:

(i)

(ii)

(iii)

(iv)

(v)

e: (I , l) ➔ (I , 2) (1 , 2) ••• (l , 2) (1 , n2)

(i, n2- l) !, (i + l , 1)(i + 1 , 1) ••• (i + l , 1)(i + 1 , n2)

for I :,; i < nl,

(i;j) E (i,j+l)(i,j+l) ..• (i,j+l) ➔

for l :,; 1 :,; nl' l :,; j < n -1
2

and (i , j) 'f (l , l) ,

(i,n2) !. i-1 for < 1 :,; nl'

E (n 1 , n2 -1) ➔ n 1 ,

3

Only reading sequences can increase the height of the stack and then

by not more than n 1n2(l-1). Hence if M accepts a word a 1a2 ••• an the total

number of symbols pushed on the stack (by sequences) is less than n n 1n2(l-1)

and therefore the total running time is less than n(n 1n2(l-1)+1) f(n 1,n2 ,l),

i.e., the combined length of popping and reading sequences. D

It. is clear that there is a trade-off between the fact that anything

is stacked in a read sequence and wether a large sequence in the order of

f(n 1,n2,l) is reached.

Let T(n) be the longest running time of a computation by a DPDA M with

parameters _n 1,n2,l up to reading then th letter of an input a 1a2 .•. an.

THEOREM 5.

nln2
~ (n-l)(l -1)/(l-1).

PROOF. (2n-l)g(n1,n2,l) ~ T(n). The lower bound on T(n) is achieved by
a adding, in the proof of theorem I, the read move (l,n2) ➔ (1,2)(1,2) .••

(1,2)(1,1) for each input letter a.
n1n2 .

T(n) ~ (n-l)(l -1)/(l-1). In the proof of Lennna 4 we introduced

sequences of g-moves. If, starting from some starting (state, stack symbol)

pair the sequence of £-moves leads to a read move and the stack height has

been increased by x(l-1) then a popping or reading sequence has a length
n 1n~-x

of less than (l ~ -1)/(l-1) since there are at least x (state, stack

symbol) pairs which lead to a premature read move. Hence the total number of

£-moves up to reading. then-th letter of input is less than
n n -x

(n-l)((l-l)x+l)(l I 2 -1)/(l-1) which is largest for x = 0. 0

Another, easier, subject is how large a stack a DPDA can accumulate

up to reading then-th letter of input. It is easy to show that

can be reached, which seems to be the maximum. Notice, that the machine

cannot achieve both a large score in stack height and running time.

where the lengths of the righthand sides of rules (i)-(iii) isl.

The unique leftmost derivation of the unique terminal word

i 1i 2 ••• ik(I,n2) produced by G represents the sequence of e-moves of the

corresponding DPDA M starting in state I with stack symbol I as its stack

contents and ending in state I with stack symbol n2 as its stack contents,

i.e., the only (state, stack symbol) pair which reads input. Every direct

production of the leftmost derivation corresponds to an e-move of Mand

vice-versa. For an intermediate sentential form

i 1,i2 ••• ,im are the return states (states resulting from) of all popmoves

executed up to the present stage (and in historical order from left to

4

right); i 1 is the present state of the finite control and j 1j 2 ••• j n2 m+ m+ m+ s
is the present stack contents. i , 2 ~ p ~ s-m, represents the state of m+p
the finite control when it accesses for the first time stack symbol j • m+p
(i)-(iii) correspond to pushmoves and (iv)-(v) to popmoves. The constraints

on such a context-free granunar representing a nonlooping e-computation

are therefore:

(a) There are no circular nonterminals.

(b) There is a unique production for all nonterminals.

(c) If (i,j)
E:
➔ i' EP (a popmove) then (i,j) can only occur in a righthand

side followed by (i",j') for some j' E r if i" = • I
l. •

(a) and (b) garanty determinacy and absence of loops, while (c) garanties

that the nonterminal right of a nonterminal which is rewritten according to

(iv) or (v) will indeed represent by its first coordinate the return state

of the executed pop. We display the derivation tree of the unique derivation

in Gin fig. I where it is clear ~hat identically labelled nodes are the

roots of identical subtrees in the derivation tree. The internal nodes in

the tree correspond toe-moves of Mand counting their number yields

g(n 1,n2,l). O

COROLLARY 2. If we do not insist on M having a (state~ stack symbol) pair

for a read move we achieve a score of consecutive e-moves of

g' (n 1 ,n2 ,l)

in the obvious way.

COROLLARY 3. Far one-state DPDA's it is easily verified that g(J,n2,l)

(and g'(I,n2,l)) are also upper bounds~ and indeed g'(J,n2 ,l) is equal to

the bound in [4] far n 1 =I.Therefore~ f(I,n2 ,l) = g(J,n2 ,l) for

n2 2 3 and l ~ 2.

For lower values of the parameters n 1,n2 ,,e_ we can similarly to theorem

derive f(n 1 ,n2 ,l) 2 g(n 1 ,n2,l) where for n2 < 3 or l < 2 g(n 1 ,n2 ,l) is

given by:

(i) g(I,2,2) = I,

(ii) g(2,2,l) = 2l for l 2 2,

(iii)

(iv)

(v)

(vi)

g(n 1,I,l) = n 1-J,

g(n 1,n2,I) = n 1n 2-I,

g(n 1,2,2) = 4n 1-4 for n 1 2 2,
n 1 n -1

g(n 1,2,l) = 4((l-I) -1)/(l-2) -2(l-I) 1 -2

for ,e_ 2 3 and n 1 2 2;

as we leave for the reader to verify, from fig. 2.

That g(n1,n2,l) is very near an uper bound on f 1.s argued as follows.

Since M needs at least one read move and n 1 popmoves to access all elements

of~ x r (necessary for a balanced derivation tree), the number of push

moves is less than n 1(n2-I) and ,e_n1(n2-l) is surely an upper bound on the

number of s-moves. More detailed reasoning gets f closer tog, and it seems

very likely that f = g (and f' = g').

We now take a look at the running time of DPDA computations. The

following fact presumably belongs to the folklore in the field and is

implicit in [2].

LEMMA 4. DPDA's accept in linear .time.

PROOF. We can distinguish sequences of consecutive s-moves, which from

start to finish do not decrement the stack height below its starting height

except possibly at the last move, in:

(i) popping sequences, i.e., the last move decrements the stack height

to 1 below its starting height.

(ii)

(iii)

reading sequences, i.e., those which end with a read move.

looping sequences.

5

n -1
2

Fig. 1.

I
l

l
l

(I' 3)

' ' I
I

I

I
I

(I ,n2-1)

/~~
(2,1) (2,1)

/_\ :
(2,2) (2,2)

' ' I
I

I
I

(n1-1,n2-1)

/_\~
(~1 ,_1') (nl ~ I) (nl t2) +- pop

I

I

(n 'n -1)-
1 ' 2

I
nt" - . - - - - - - n1

t-------- ----t
pop

n -1
1

6

(1,3)
I

7

(ii) (I,:)~ d

~ • \ (2 , 2) ~ rea I (2, 1) (1,2) (2,)

/-·\
(2, 1) c2,1) I

I - - 2
2

(iv) (1, 1)

/ '\))+-(1,2) (2, read

I\
(2,2) (2,2)

/\
(3 1) (3, 2)

/ I I

,' 2
I

. (v)

pead

Fig. 2•

REFERENCES.

1. AHO A.V. and J.D. ULLMAN, The Theory of Parsing, Translation and

Compiling, vols 1 & 2. Prentice Hall (1972)

2. GINSBURG s. and S.A. GREIBACH, Deterministic contextfree languages;

Inf. and Control 2_ (1966) 620-648.

3. HOFCROFT J.E. and J.D. ULLMAN, Formal Languages and their Relation to

Automata, Addison-Wesley (1969).

8

4. LEEUWEN J. van and C. SMITH, An improved bound for looping configurations

in deterministic PDA's, Inf. Proc. Letters l (1974) 22-24.
II

5. SCHUTZENBERGER M.P., On contextfree languages and pushdown, automata,

Inf. and Control~ (1963) 246-264.

6. VALIANT L.G., Decision procedures for families of deterministic pushdown

automata, Ph.D. Thesis, Dept. Comp. Sci., Univ. of Warwick,

England (1973).

