
AFDELING INFORMAT CA

stichting

mathematisch

centrum

(DEPARTME~;T OF COMPUTER SC I ENCE l

7

!VALENCE OF OPERATIONAL AND DENOTAT ONAL SEMANTICS
!=CQR A f:"RAGME~H OF PA.SCAL

l teat on

~
MC

2e boerhaavestraat 49 amsterdam

P!f..inte.d a.t the. Ma.thema.tic.at Cvitlte., 49, 2 e. BoVthaavu.tJtaa,t., Am6te1tdam.

The. Ma...thema.tieal. Centlu? .. , 6owided ;the 11-:th 06 Fe.b1tu.a1ty 1946, i6 an.on
pMo.U lnotaution a,,i,m,i..ng a.t the. p!l.omoUon Ofi pwr.e. ma:thema.UCA and U6
app,Uca.u.on.h. 1.t lo ~ponooJted by the Ne.thell.1.a.ndo GoveJtnme.n.t. &ou.gh :the.
NethMi.and& Ot1.gan.lza.tlon. ~oft the Adva.nc.eme.nt 06 Pwr.e. R~e.a1tc.h (Z.W.0),

AMS(MOS) subject classification scheme (1970): 68A05

ACM - Computing Reviews-categories: 5.24.

ence of and denotatior:a semantics

for a

by

K.R. t

ABSTRACT

A fragment of PASCAL is considered in which nested systems of

procedure declarations are allowed. Procedures can call parameters by

value or by variable. Tiiree semantics for the fragment are considered -

two denotational ones and one operational and proved all three to be

equivalent.

KEY WORDS & PHRASES: semantics,

reeursive

systems of procedztl'e declarations.

*) This r0port will be submitted for publication elsewhere.

l • INTRODUCTION

Much work has been done on comparisons between various methods of

describing the semantics of programming languages. Without aiming at comple

teness we mention the papers of LAUER [6], HOARE & LAUER [4], MILNE &
STRACHEY [7], MILNER [8] and STOY [9].

In this paper we focus on two methods of description - denotational

and oper.ational semantics. The aim is to show that they are equivalent

for a fragment of PASCAL. The considered language (taken from

APT & DE BAKKER[!]) contains simple and subscripted variables, some simple

types of expressions, assignment, sequential composition, conditionals,

declarations of simple and array variables, systems of (recursive) proce

dure declarations and procedure calls. Procedures can call parameters by

value or by variable.

The paper is organized as follows. In sections 2, 3, 4 and 5 we define

the language and give definitions of two (different) denotational semantics

of it. This part of the paper is taken almost literally from APT & DE BAKKER

[!]. The two proposed denotational semantics differ only in the treatment

of procedure calls. In the first approach the meaning of a procedure call is

determined at the moment the call is encountered in the program text. In the

second approach the meaning of each procedure call is determined already at

the moment the procedure is declared. In order to ensure that in both

approaches scope problems are dealt with in a correct way we make extensive

use of substitution. Parameter mechanisms are treated by means of the tech

nique of "syntactic application" by which a procedure body together with

the actuals of the call are mapped to a new piece of program text. In both

approaches the meaning of a procedure call is determined by a suitable combi

nation of the least fixed point technique and the technique of syntactic

appli-:::ation.

Having defined both semantics we show that they are equivalent. The

proof of their equivalence is presented in section 6. It uses the equiva

lence between simultaneous and iterated l.f. points. An important notion

which turns out to be useful is that of the depth of a statement S which

corresponds to the level of nesting of procedure declarations within S.

In section 7 we define an operational semantics for our language. It

is defined in the style of COOK [3] (Cook while giving his definition

2

credits it tel LAUER [6] and HOARE & LAUER [4]) although declarations and

procedure calls are treated in a different way. A careful reader will ob

serve that our operational semantics bears a strong resemblance to the first

denotational semantics. Our intention was to define denotational and opera

tional semantics in such a way that the proof of their equivalence could

reduce to the essence of the problem while avoiding tedious, but straight

forward, considerations.

The proof of the equivalence (in an appropriate sense) of both seman

tics is presented in section 8.

In order to show that operational semantics is included in the deno

tational one we use computational induction applying the results proved in

section 6. To prove the converse inclusion we are forced to consider

nested sequences of systems of procedure declarations. By looking at the

definition of the meaning of procedure calls we see that the nesting is

reflected in the use of iterated least fixed points. When considering the

approximations of the appropriate l.f. points we come to somewhat complicated

iterated approximations. We prove the desired inclusion by induction on the

so called information sequences which we associate with the iterated

approximation and a statement in question.

It is to be hoped that the proofs of this paper will shed some light

on the difficulties arising when considering nested systems of mutually

recursive procedures.

While writing this paper the work of STOY [g] came to our attention.

St,.1y proves equivalence of denotational and interpretive semantics of a

language incomparable with ours. Since in his language procedures are

allowed as parameters he inevitably lands in the realm of reflexive domains.

Stoy's paper provides an introduction to the techniques developed by Milne

and used in MILNE and STRACHEY t7l.

ACKNOWLEDGEMENT. I express my gratitude to J .W. de Bakker who introduced

me to the field and whose wi 11 ingness to help and patience enabled me to

ent~'r the subject. The work on the joint paper APT & DE BAKKER [I] and

further discussions with him provided the basis to this work.

2. DEFINITION OF THE LANGUAGE

We start with the following classes of symbols:

SV = {x,y,z, .•• } simple variables

AV = {a,b, ••• } array variables

PV = {P,Q, ••• } - procedure variables

C = {n,m, ••• } integer constants.

For later use we assume these sets to be well-ordered.

We now define the classes IV (integer variables), IE (integer expres

sions), and BE (boolean expressions) as follows:

IV (with el. v,w, •••) v· ·= .. x!a[t]

IE (with el. s,t, •••) t· ·= vlnlt 1+t 2 ! ••.

BE (with el. p,q, .••) p::= truelfalse!t1=t2 !,p! .••

Finally we introduce the class of statements S using auxiliary

classes R1, R2, R3, E and PB defined as follows:

S • ·=
RI.·=

2
R : :=

R3: :=

E· ·=

R1 Ivar x;R1

2 2
R !array a;R

R3 IE;R3

v:=t!Rf;R;lif p

P<=B I El ,E2 I

then R~ else R~ fi!P(t,v)lbegin Send

(where it is required that in each declaration

P1<=B 1, •.. ,P <=B P. 1 P. for I $ i,j $ n, i # j)
n n 1. J

B··= <val x;val y!S> (where x t y)

REMARKS.

(S E S)

(RI e: RI)

(R2 E R2)

(R3 e: R3)

(E E E)

(B E PB)

(i) The construct P <= <val x;var y!S> corresponds to the PASCAL procedure

declaration procedure P(x:integer;var y:integer);S.

(ii) Separate treatment of the b~gin Send case, being trivial, is always

omitted in the sequel.

(iiD The above defined language is essentially a subset of PASCAL (apart

from the begin S _end construct which ensures that the outcome of syn

tactic application (see section 4) is a correct statement).

3

4

(iv) For technical reasons we allow the empty system of procedure declara

tions.

(v) All consideration of this paper can be trivially extended to the case

of, possibly empty, lists of variable declarations, array declarations,

or formal parameters (this fact is implicitly assumed in the defini

tion of syntactic application in section 4).

3. STATES AND ENVIRONMENTS

Let I= {µ,v, ••• } be the set of integers and A= {a,8, ••• } an infinite

well-ordered set of addresses. Let

E = A + I

VM = SV u (AVxI)

and let Env be the set of all£: VM - A such that
part

i) E is I - I

ii) {x E SV: £(x) is defined} is finite

iii} {a E AV: for someµ E((a,µ)) is defined} is finite

iv) for all µ,v and a £((a,µ)) is defined if E((a,v)) is defined

v) A\range(E) is infinite.

The elements of E (a ,a', •••) are called states and the elements of Env are

called enviMnments.

For any£ E Env, y E SV s.t. y i dorn(E) and a EA s.t. a i range(£), we

write f u <y,a> for the extension of£ yielding a when applied toy. Similar

ly we write £ u <<a,\i>,a. > 1 for the extension of £ yielding a when
V VE V

applied to <a,v> (v e I).

F'or any a E E, µ E I and a E A a{µ/a} 1s the state s.t. o{µ/o.}(8) = µ

if S = a and o{µ/a}(S) = o(S) otherwise.

We introduce the mappings

L: IV • (Env x I:-• A) (left-hand value of an integer variable)

R: If ·-> (Env x I:+ 1) (Pight-hand value of an integer expression)

T: BE _,. {Em, x ::: ➔ IT,F}) (va!11.e of a boolean expression)

defined as follows:

L(x)(c 1 0) = c(x), L(a[s])(E,c) = c(a,R(s)(c,c))

R(v)(c,a) = c(L(v)(c,c)),

R(n)(s,a) = µ (whereµ is the integer denoted by n)

R(t 1+t 2)(s,c) • R(t 1)(2,a) + R(t 2)(E,c), ••• ,

T(t rue) (c , l) = T , T (fa l s e) (£ , G) = F ,

f T if R(tl)(r,::1) = R(t,)(c:,o)
T(t 1=t 2) (l. ,o) =)

l F • l" R(t2){c,o) f R(c,) (E,c) 1~ ..

4. SYNTACTIC SUBSTITUTION AND SYNTACTIC APPLICATION

In order to insure that during the semantical considerations scope

problems are treated in a correct way we make an extensive use of substi

tution.

5

An occurrence of a single variable x in a statement S is b.?un.1. when
l

ever it is within a substatement of S of the form var x;R or <valx;vary!S>

or <val z;~xiS>.

An occurrence of x in Sis fPee if it is not bound.

We define a substitution of an integer variable v for a simple

variable x in a statement S, written as S[v/x], as follows:

(w:=t)[v/x] -
, ,) RJ) [/ J (Kl; 2 v x -·

P(t,11,;)[v/x] -

(~!2:Y;R 1)[v/xJ -

w[v/x]:=tlv/x]

R~[v/x];R;[v/x]

P(t[v/x] ,w[v/x])
l

~y;R if X - y

vary;R 1[v/x] if x;. y and y not free in v,

vary' ;R1 [y' /y][v/x], if x t y and y free in v, where y'

is the first simple variable s. t.

I ,I_ ' • I y F x and y not free 1n R or v.

6

<:val z; var y:S>[v/xl .,. --val ;::;~3-!:: yis,- if X -· z or X - y

•val z;yaE_ y iSLv/Z]> if X 1 z, X t y· and z and y

not frelc! 111 v

,: similar tn (,d otherwise.

The other cases are left to the reader.

Mut,,tis routandis we def:ine S[b/a], S[Q/PJ and S[Q/P] (where Q and P

are sequences of procedure variables), By convention each occurrence of Pi

(l <
" 3" '!'.: D ·r~ .. n ~ .,,.~,1~ .. i ,:: n) 1 n E or E;R , wnere ,. = <r i•1)i -·i=I' 1s Ot/ci.1ia.

In order to insure that the parameter mechanisms are dealt with in a

correct way while defining a meaning of procedure calls we make use of the

technique of "syntactic application".

For each procedure body B we define its syntactic application B[t,v]

to the actuals t and v (corresponding appropriately to the formal value

and formal variable parameter) as follows:

(<val x;~ y!S>)[t,z] var u;u:=t;begin S[u/x][x/y]end,

where it is required that u is the first variable t x,y and not free 1n

S, tor z (analogously for u1,u2). Observe that

(. \ lJ this definition implies that the actual value parameter t is indeed

evaluated before execution of S;

(ii) the precaution with the fresh u is necessary since a definition like

var x;x:=t; ... might give a clash between the local x and possible

occurrences of x in the actual t (cf. ALGOL 60 report, 4.7.3.2 or

[5] p.!8);

(iii) the two possibilities for the actual variable parameter v an!

a simple variable. Call-by-variable then coincides with

the ALGOL 60 call-by-name.

- u = a[s], a subscripted variable. Thens 1s evaluated (and stored

1n uft) before execution of S.
I.

5. DE~OTATW~:AL SEMA\'TICS

EH define

n En' iff Vt,v(n(t,v) E n'(t,v)).

n
E naturally extends to a partial ordering on H (n;:: 0).

If 4>: Hn + Hn then µ4> denotes the least element n of Hn such that

4>(n) = n. µI exists if I is monotone. Let 0 = PV + H. For each 6 E 0,

7

- n n = (nl'_ ••• ,nn) EH and P = (P 1, ••• ,Pn) where PJ' ••• ,Pn are some different

procedure variables, let

e{n/P} (P)
= Jni if P = Pi

Le(P) otherwise.

We now define M: Ex S ➔ (0 ➔ (En.v x Z: - r)) as follows:
part

M(Elv:=t)(8)(E,cr) = cr{R(t)(E,cr)/L(v)(E,cr)}

3 3 3 3
M(EIRI;R2)(8)(£,cr) = M(EIR2)(e)(E,M(EIR1)(8)(£,0))

3
3 3 = JM(EIR1)(6)(E,cr) if T(p)(E,cr) = T

M(Elifp thenR 1 elseR2 fi)(6)(E,cr)
LM(EIR~)(6)(E,cr) if T(p)(E,cr) = F

I l M(Elvar x;R)(8)(E,cr) =M(EIR [y/x])(8)(£U<y,CL>,cr),

(*) where y is the first variable E SV not in dom(E), and CL the first

address not in range(£)

M(Elarray a;R2)(8)(£,cr) = M(EIR2[b/a])(8)(EU<<b,v>,CL > 1 ,cr)
V VE

where bis the first array variable s.t. no <b,v> is in dom(E),

and where the CLv are chosen in some (unspecified but) unique way

from A\range(E)

3 M (E I P 1 <=B 1 , ••• , P n <=B n ; R) (e) (e: , a) =
- - - - 3 - -M(E,Q 1•B 1[Q/P], ••• ,Qn•Bn[Q/P]IR [Q/P])(8)(E,cr)

where Q = (Q 1, ••• ,Qn), P = (P 1, ••• ,Pn) and Q1, ••• ,Qn are the

first variables E PV such that for each j = l, ••• ,n Q. does not
J

occur in E,P 1<==B 1, ••• ,Pn<=Bn or R3

M(EIP(t,v))(8)(e:,cr) = 8{µ1E,B/P}(P)(t,v)(e:,cr)
n - E 8 n n

where E = <Pi<=Bi>i=l' P = (P 1, ••• ,Pn) and 4>' : H + H is

defined as q,E,8(n) = (q,,,8(n), ••• ,4'~,B(n)) where for i= I, ••• ,n

mE,B . 1 1 mE,B .
~ 1s c ear y monotone, soµ~ exists.

8

Observe that if P 1 P. for i • i, ... ,n then simply
l

We new defim! a function,'\: S .- (i:1 ., (Envx::: p~-i="t /:)) whic:h describes

a meaning of a statement S in a differf!nt ,,,:1y.

M0 (v:=t)(B)(r,o) = a{R(t)(E,a)/l(v)(c,o)}

M0 (R 1 ; R;) < G) (e: , d = ~i0 < R ~) < e) (E , M0 (R:) c ':i) (, , o))

fMO(R:)(B)(s,c) if T(p)(E,G) = T

~ 3 lu fR \ (8) (,- ,.,.,, r,,0'"2 1 c.,~·

/:i0 (var x;R 1)(tl)(s,o) = M0 (R1[y/xJ)(6)(u:<y 1 0:> 1 a)

where y and a are like in(*)

where <b, \1> and a are 1 ike in (**)
V

q (J;' • R) \ (r) { C ~) = ~J (R 3) { A f . , UI E I 8 t -p 1) { _)

if T(p)(s,c) F

I'• 0 ... ' • l t: ' V • G , ' l O • V t ;... I I) \ t. • 0 '

n - () d E, e Hn Hn . where E = <P.<i=B.>, l and P = P1 , ••• ,P an 'ii : ➔ 1.s
1 l 1= n

defined as 4,E, 8 (n) = ('f'E1, 6(n), ••. ,o/E,e(n)) where for i= l, ••• ,n
n

4•1• 1\;) = :\t 1 .\v'Mo(Bi[t',v'])(S{n/P}). \j/E,e is clearly monotone.

Mo(P(t,v))(B)(E,0) = B(P)(t,v)(s,cr).

Observe that the only difference between Mand M0 is in the treatment

of procedure declarations and procedure calls. M determines the meaning of

a call only at the moment when it is encountered in the program text,

whereas M0 determines the meaning of each call already at the moment of

procedure declaration.

In the definitions of Mand M0 it is always assumed that E is defined

on all simple and array variables which are free in E or s.

6. EQUIVALENCE OF M A.i.'i'D M0

Our first task 1s to prove that M and M0 are equivalent in the sense

of the following theorem:

THEOREM l. For all EE E, s ES and e E 0

i) M0 cs) c e) = Mc I s) c e)

ii) M(EIS)(0) = M0 (E;begin s end)(e).

Before proving the theorem we prove a few lemmata. We first introduce the

following useful notion:

DEFINITION I. We define d(S) (depth of a statement S) as follows:

i) d(var x;R 1) = d(R 1)

)_·i·) d(2) d(2) array a;R = R

iii) d(E;R3) = d(E)+d(R3)+l

iv) d(v:=t) = 0
3 3 3 3 v) d(R 1;R2) = max(d(R1),d(R2))

vi) d(if p then R~ else R~ fi)

vii) d(begin Send) = d(S)

viii) d(P(t,v)) = 0

ix) d (EI , E 2) = d (E J) +d (E 2)

x) d(P<=B) d(B)+I

xi) d() = 0 (depth of the empty system of procedure declarations is O)

xii) d(-val x;var y[S>) = d(S).

d(S) corresponds to the level of nesting of procedure declarations within

the statement S.

Ry l(S) we denote the length of a statement S.

DEFINITION 2. Suppose that A1, ... ,An are some well-ordered sets. Then ~l
is the following well-ordering on A1x .•• xAn:

3i(J$iSn A Vj(ISj<i + a.=a'.) A (a.<a!)).
J J)_)_

~f is called lexicographical ordeiing. Observe that the definition of the

ffiC'flning ~l(EIS)(0) was given by lhc <cinductjun with respect Lo

(d (I•:) +d (S) , l (S)) •

n+k n n+k k
LEMMJ\ I. Suppose that'¥: H ➔ H and~= H ➔ H (n,k;:;: O) are monotone

func·tJ"r,nn. L, 0 /.: fm' all n E H0

9

l , ••••
n+

))).

rve that above len1ma lS theorem 3. 2 f rorr: r 2 p.24

a sl i tl v different formulation.

LEMMA 2. E

(E,Q
-
Q , , J'SQ -'()

' ••. ,Q n
Q' ·1 S['])(O)

, s (s l , ••• ,Q) - n

Q.
J

Q!
J

PROOF. ~e leave it to the reader. Proof proceeds by "'I l-induc tion w. r. t.

(d ,E')+d ,t(S)) and 1s straightforward, though details are ted~ous.

1n

LEM}1A 3.
n+k

= ,P.<=B.>. 1 (n,k ?'. 0) be systems
J J J=n+

E. ,

i (E,E' iS) (El) '1S)(ti{

ii l ,\ (E:S)() = M(E,E' iS) ()

i -= n+ l , ••• , n+k P.
j

_t..,n-' j = n+ l, ...• n+k P. does nor occur'
J

-p =

s.

(P1•···,Pn)

for>

What we need fer our considerations is the property i). However the

prn,)f of i) uses the property ii) and, what 1s worse, the proof of ii)

uses i). We prove i) and ii) simultaneously by <!-induction with respect

tu (d(E,E')+dlS),C(S)). The apparent circularity in the proof is avoided

th;rnks to the cbserwition that i) can be proved due to inductive assumption

,ih,,ut i) :rnd ii , whereas ii) follows from i), which at this moment is

a re provL'd, n:-id the inductive assumption about ii).

PRtHW. Ld ·· ;,nd S },e arbitrarily fixed. Assume that i) and ii) are true

for :1 l f: ,E' ,-.; , and !. satis ing the assumptions and such that
l l

(d (E l , E j) +d (S I) , f (S I)) , ,f_ (d (E , E ') +d (S) , ,t (S)) •

We prove at first i).

We have to consider various cases depending on the form of S. All cases

follow straightforwardly from the inductive assumption with the exception

of two.

CASE I. S is E";R3 where E" = <Q.<=B!>1:1 E E (m ~ O) and R3 E R3 •
i i i=I

Let Q = (Ql' ••• ,Qn). Then M(E,E'IE";R3)(8)

(by definiton)

M (E , E ' , Q j <=B ; [Q ' / Q J , ••• , Q~ <=B ~ [Q ' / Q J I R 3 [Q ' / Q J) c e)

where Q' = (Qj, ••• ,Q~) and Qj, .•• ,Q~ are the first

s.t. for i = l, ... ,m Q! does not occur in E,E',E"
i

(by inductive assumption)

variables E PV
3

or R

M(E',Qi<=B 1[Q'/Q], ••. ,Q~<=B~[Q'/Q]IR3[Q'/QJ)(8{µ<!>E,e/P}), since

d (E , E ' , Q j <=B j [Q ' / Q J , • • • , Q~ <=B ~ [Q ' / Q J) + d (R 3 [Q ' / Q J)

= d(E,E',E") +d(R3) = d(E,E') +d(E") +d(R3) < d(E,E') +d(S),

so for E 1 = E, Ei = E', Qj<=Bj[Q'/Q], ••• ,Q~<=B~[Q'/Q]

and S = R3 [Q' /Q] i) holds
1

= (by lemma 2)

M (E ' , Q '1<=B 1 [Q" /Q J , ••. , Q;<=B ~[Q" / Q J I R3 [Q" / Q J) c e {µ<PE• 8 /P})

where Q" = (Q';, ••• ,Q;) and Q11, ... ,Q;are the first variables E PV

. " d . E' E" R3 s.t. for i = l, ... ,m Q. oes not occur in , or
i

= (by definition)

Mc E ' I E" ; R 3) (e { µ<PE• 8 /P}) •

l l

CASE II. S is P(t,v) for some P E PV, t E IE and v E IV. Then by definition

M (E , E ' I P (t, v)) (e) = e { µ <!> E 'E ' ' 8 / (P 1 , .•. , P n+ k) } (P) (t, v) and

M(E' IP(t,v))(0{µ¢E,e/P}) =

E,8 E' ,8{µ¢E,e/P}
0{µ¢ /(Pl' •.. ,Pn)}{µ<!> /(Pn+J•···,Pn+k)}(P)(t,v).

Thus it is enough to prove that

(I)

We have for all n E Hn and i = l, ... ,n

12

d(E 1 l•a(B.!"t'.v'1) ""d(E')+d(B: 1 < d(E,E')+d(S),
l . . L

ii) holds ..

d(E 1)+d(Bi[t 1 ,v 1]) < d(E,E')+d(S), so for E 1 = E',

E'. em'ptv, S. ·"'B.[t',v'.J, 0 1 = 6;1/P} i) holds.
l ~ l 1 u

Define+: Hn+k ➔ H0 and : Hn+k ~ Hk as follows:

- Hn+k where q "-

S,, 1;•,l have just proved that for all r; " Hn

,E,6(-)
'I 11

Llhsctvt, that for J

i,n r , , 1) ('I·)/l'P)') 1J:1 +•Lt ,v -', t:~r1 1, ••• ,n k \ 1 , ••• ,P k .r n J n+, n+ ·

iB .[t' ,v']) (H(n 1, ••• ,n)/(P 1 •••• ,P) f{ (n 1, ••. ,n k)
n+J · n n n+ n+

/(P 1•···,P k)}) n+ n+.

13

- n In particular for every n EH

(3)

- n By (2) and (3) we get that for all n EH

Since IJI and Qare clearly monotone, by lemma 2 we get

(4)

But by definition for all n1 , ••• ,nn+k EH

(() ..,()) ,._E,E' ,e()
IJI n1•···,nn+k •" nl, ... ,nn+k ="' n1,···•nn+k'

so

(5)

Now by (4) , (5) and (3) we get (I) •

We now prove ii).

Again all cases are straightforward with the exception of the same two ones.

l·s E",·R3 " Q ' m d R3 R3 L -Q (Q Q) CASE I • S where E = < • <=B • > • I an -:: • et = I , · • • , m •
J J J=

i',l(F!E";R3)(0)

: (by definition)

,\l(E,Qi'<=B; [Q' IQ], ••• ,Q~~B~[Q' IQ] !R3 [Q' /Q]) (0)

where Q' = (Qi,··•,Q~) and Qj, ... ,Q~ are the first variables E PV
s.t. for i = 1, ••• ,rn Q! does not occur in EE" or R3 • l ,

= (by lemma :.)

Af (E, Q'1'~B j [Q" IQ], ••• , Q;<=B~[Q" IQ] I R3[Q" IQ]) (e)

where

s.t. :or
i

u holds.

definition)

II 1 '11••.
, 1, '

su=npt 1

are the first variables e

) , since

does not occur 1n

Also

so for

E' and S =
l

CASE II. S 1s P(t,v fr some Pr PV, t IE and v e IV. Then by definition

i

(EIP(t, /(P •... ,P) (P)(t,v).
e n

for E,E' and P t,v), so

\i (E , E I i p (t: , V) (fi)

(E' :P(t,v))

'/(P,, ... ,?)f
i n

sn:1:pti.on P / P . for j
n+J

P 1 , •.. ,P .)}(P)(t,v).
n+ n+K

l , ... ,k, so clearly

This finishes the proof of lemma 3.

COROLLARY. Suppose that E

v E IV and i = 1, .•. ,n

= <P.~B.>~ EE. Then f,or all 8 E 0, t E IE,
]_ l i=l

M(EIP.(t,v))(8) = M(EIB.[t,v])(8).
l l

PROOF. By definition

M(E IP. (t,v)) (8)
l.

E 8 = (µ<f?').(t,v)
l

= M(IB.[t,v])(8{i.i'PE,S/(P 1 , ..• ,P)})
i n

(by lemma 3i))

M CE I B . [t, v J) c e) •
].

Now we are in a position to prove theorem 1.

PROOF OF TIIEOREM l •

15

i) We prove it by <t-induction w.r.t. (d(E)+d(S),i(S)). All cases are

straightforward with the exception of the case when Sis E;R3 for some

E = <P.~B.>~ EE and R3 E R3• Then
i i i=I

M0 (E ;R3) (8) = MoCR3)(e{µ~E,e/P}) where p = (P1,·•·,Pn)

by ind. assumption = MoCR3)Ce{µ<f?E,e/P})

II = MC IR3)(8{µ4>E, 0 /P})

by lemma 3 i) = M(EJR3)(~)

by lemma 2

where Q = (Q 1, •.. ,Q) and Q1, •.. ,Q are the first
n n 3

variables E PV which do not occur in E or R

by definition M(IE;R3)(8).

E acd let P - (P 1 , ••• ,P~). ~e have
• iJ

•'\ ~ '\ \
j 1 J)

by definition

1. OPERAThlNAL SE~tANTICS

Now we introduce an operational semantics of our
w language. Let E

denote the set of all finite or infinite sequences
n

of states and let

denote concatenation of two sequences. ~e define a function

Comp: S x ~ x En~ x f ➔ as follows (Out(S,o,E,E) denotes the last

~lernent of Cornp(S,c,c,E) if that sequence is finite, and is undefined

otherwise):

,, . I • c ' RJ ... 1 •·. n3 - . lor.1p\1'-ptnen ,e seK,,tl,
---j---L-

·,
<a~·comp(B[t,v],o,r,E)

if T(p)(E,0) = T

if T(p)(E,a) F

where P<=B is rm element 111 the sequence E

wherey and i are like in(*) from section 5
~ r, 1

Cc,mp(~irr:iy c;;R-,,,,, ,E) = ·c·· Cornp(R-l.b/a],c,c,1<:,~b,v c:t > I E)
' \l \IE '

where ,b,u>and,1 are like in(**) fromsection5
V

17

Q1, ••• ,Qn are the first variables E PV such that

for each j = l, ... ,n Q. do not occur in
3J

E,P 1-:=B 1, ••• ,Pn<:=Bn or R.

Intuitively Comp(S,o,s,E) represents the sequence of successive states

of the computation determined by S from the initial state a in the environ

ment E and with procedure declarations E.

It is always assumed that E is defined on all simple and array variables

which occur freely in E or Sand that there are no procedure variables which

occur freely in E;begin Send. The last assumption is clearly necessary for

procedure calls.

8. EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS

Now we prove that operational and denotational semantics which we

defined are equivalent. Observe that in the definition of M(EIS)(0)(s,o)

it is not required that there are no procedure variables occurring freely

in E;begin Send. Thus M(EIS)(B)(s,o) can be defined whereas Comp(S,o,s,E)

not, so an additional assumption is necessary. This what we prove is the

following theorem:

THEOREM 2. Suppose that E €. E, S E S and that ther>e ar>e no pr>ocedu.re

var>iables 1vhich oceu.r fr>eely in E;begin Send. Then for all EE Evw, a EI

ond O c 0

M(EIS)(B)(s,o) = Out(S,o,s,E).

More precisely: either M(EIS)(0)(s,o) and Out(S,o,s,E) ar>e both defined

and equal or are both undefined.

PROOF. Suppose that for some EE Env and a EI Out(S,o,s,E) is defined.

We prove that then Out(S,o,s,E) ~ M(E\S) (B)(s,o).

Suppose by induction that it is true for all 8,S',o',s' and E' satis

fying the assumptions and such that the length of Comp(S',a',s',E') is

shorter than the length of Comp(S,o,s,E). We have to consider various cases

depending on the form of S. In all of them the claim follows straightfor

wardly from the inductive assumption. Only the case of procedure calls is

not

Suppose that S i P(t,

t

. ' . 1nauct1ve assumption n ror:1

1s defined and equal to

t, V , "'' ,c,c}.

t,v] ()(£,CT = ,P(t,v) (8) E,c),

so the claim follows.

The proof that the converse ication holds, to which the rest of

the paper is devoted, is much more difficult. We shall need the fol] owing

lemma.

LE;>,U1A 4. S E S

E i E E all

E ' t'.n>e de c Z a:i.0e d E the

(S, ,s,E)

P We leave it Lo the reader. Proof proceeds by induction with respect

to ttk' 1 of Comp(S,a, ,E).

3uppose that

us,•d th"' fact that the function

is continuous, i.e., that

E (n ?: 0). till now we have

is monotone. What we need now is that

forallnk (k=O,l, •••)

s. t.

We 1~ave th~ proof of this fact to the reader.

Now define E, 8 Hn (k ~ 0) follows: nk E as

{
((il, ••• ,(il)

if k = 0
E,8 n -times

nk ¢E,e < E,e) if k > o, nk-1

where (il 1.s the empty function. Then, by continuity,

U E,8
k=O nk

Now assume that l ~ 0. Let for i = 1, ••. ,1+1

system of procedure declarations and let SES.

19

i in.
E. = <P.<=B.>.1.l be a

1 J J J=

DEFINITION 3. The sequence E1- ••• •Et•El+l·S (where dots signify separators

and are used instead of commas in order to avoid ambiguities) is called

nested if

i) whenever a procedure variable p occurs freely 1 n E. then J > I and
J

p is declared in E 1, ... ,Ej-l
ii) all procedure variables which occur freely in s are declared 1n

E1•···,Et+I

iii) for t. - 0 d(Et+l) + d(S) •, d(E,e_) <

Intuitively a sequence E1• ••• ·El·El+l•S is nested if for j = 1, ••• ,l

E. I occurs in a procedure body of a procedure declared in E. and s is
J+

B~
J

a statement ln the scope of Ef+I (in a procedure body (1 :::; jo ~; nl)). Jo
If f = 0 then i ii) lS plainly vnlid.

DEFINITION 4. Let E1 · .•. ·El·E,e_+J ·S be a nested sequence, 8 E 0 and let

k 1 , •.. ,k,e_ be some non-negative integers. For i = 1, ... ,l-1 let

f E. 8+ , } 1+1' k·;-= 8➔ n 1 P k,l ki+l ' i+l
l

. .
- 1 1

where P. - (P 1 , ••• ,P)
1 ni

depends on E1 , ..• ,Ej. We

➔

and ki stands for k 1 , ••• ,ki. (Strictly speaking ek·
drop indices indicating this dependence since no J

confusion should arise.) If f = 0 then simply e~ is 8.
t.

'.:0

LEM}1A 5.

approxi~2tion of their

? 'J
variables different from r7, ... ,P;2 and

And

J

J
J

n. ente:r
l

r., .)
'lQ. •

meaning but now

values assigned to

the definition of the values

El• ••• •E.t°E.t+l •S 3 non-negative

M (E , l ! S) (6-k:- J (t: , o) ·;·: s
{_ + .{_

(:,; 1 , ••• ,,.· ,'', ••• ,·,,,d(E1 l+d1S'l,i(S))
' t. ·--- ___ : ' ... + j '

c-tir.ws

where if { = C th,c>n c = d(E, 1) +d(S) :rnd e;se c = d(E.1)-L
t+

fhe following explanation should clarify the above notion. Suppose

tbit ,ll/E ... IS) (,~ H1c,c) is define,:. Then tor any i = 1, ••• ,£ and
l + I "t

i = l., .•. ,n. during the exel·uti.on of S starting from the state o in the
. . l '· '·

erwironmPnt ,: and with procedure declarations E1, ... ,Et+l the stack of

,
0 urrenrly active pru..:edures will never contain more thank- copies of

1.

c:il ls of P~. \,e c3n view k. - s as bounds
J l

associatt:d appropriate levels

of nesting d(E.). We cannot sav anvthing•
' 1. J •

about the execution of other

procec'.urPs which could Dt.' called during the execution of S. 00 - s stand for

21

the bounds associated with each other level of nesting. On the whole there

can be at most d(E 1) (or d(Et+l) + d(S) if l= 0) levels of nesting, which

explains the choice of c. If

and

(a 1, ••• ,a ,a 1,a 2)
n n+ n+

are two information sequences, then by definition

and

< is clearly a well-ordering on the information sequences.

We prove the lemma by <-induction with respect to associated informa

tion sequences. Let a be the information sequence associated with

E1• .•• •E,e_·El+l•S and k 1, ••• ,kl and assume that the claim is true for all

d E ' E ' E ' s' · · k ' k ' e ' e neste sequences 1- ••• • l" l+I· , non-negative integers 1, •.• , l' E -,

E 1 E Env and a' EI such that b < a where bis the associated information

sequence.

We have to consider various cases depending on the form of S.

CASE I. Sis v:=t. Obvious.

CASE II. S is Ri;R;. By definition

Observe that

3
d(El+l) + d(R 1) :::: d(El+l) + d(S)

3
d(El+l) + d(R2) :::: d(El+l) + d(S),

3 3
so E1• .•• ·El·Et+I•R 1 and E1• ... •E,e.•El+l•R2 are nested sequences and clearly

for i = I, 2

22

•'; . -". _ ·.· -· ~ t ,..,,_ _ ~ , 1 3 , {) , t.': 3, \ <
V l' ... ,k i •.:~.-"-~-:=~·>a,E,f + ! }+,11. h~ .1,, l,.i,; .:i.

if f

t (R) \
l

c.-ti~nes
l

Thus by inductiw· assumption

CASE III. S is if p then

CA Sr I". " .1· s· • • ., I •ri · • , r, , ::, var x, h • i1en

.'i (E , ,
t+,

and c. - d(E 1)-(, because
1

Similar to case II.

'R 1[y/x])(B,
0
)(Eu<y,a>,a)

(

where y and a are as in l*) from section 5. Observe that d(R 1[y/x]) = d(S),

£(R 1[y/x]) < t(S)
I· j -1

•s0 F • ■ F •E • 0 lv1x1 1·Q a ~,estea' s 0 qug11r_A an~ s1nc·e ' ···· 1 ••• ~ t . f'+ l " ' C • - V < ' • . ~ ~ '' u

(k l , •••• \ , "'2 • .. :..: , x , d (E £ + 1) + d (R 1 [y / x J) , .e (R 1 [y / x J)) -< a

c.-1.ime;;
l

' ~ ,- • I I""\ t wnc·re 1 I t = ,,, t,1t-::ori t: 1 and else c 1 =d(E 1)-f.. So by

LrH~nc·tive assumption

.,
CASE V. S 1s ~ray ,1;R.:.. Similar to case IV.

CASE VI. S is E;R3 where E =
m

<Q.<=B.>.
J J J= I

Then

3
i\f (Et+! IE;R) (0kl) (s,o)

= M (Et+ I , Q j <=B I [Q ' / Q J , ••• • Q~ <=B m [Q ' / Q J I R 3 [Q ' / Q J) (ek 1) (s •a)

= (by lemma 2)

where Q = (Q 1, ••• ,Qm), Q' = (Qi,···,Q~) and

Q;, ••• ,Q~ are the first variables in PV which
3

do not occur in El+!' E or R

M (E1 + 1 , Q'j<=B 1 [Q 11 /QJ, ••. , Q;<=BiQ" /QJ I R3[Q" /QJ) (ek} (s ,a)

Observe that

where Q" = (Q';, .•• ,Qm) and Q\', ••• ,Q~ are the first

variables in PV which do not occur in E 1, ••• ,El+l'
3 E or R.

i) all procedure variables which occur freely in

Q'i'¢=iB 1 [Q"/Q], ••• ,Q~<=Bm[Q" /Q] occur freely in E;

ii) if a procedure variable occurs freely in R3[Q"/Q] then it is either

Q'.' for some i:::: m or it occurs freely in E;R3 ;
1

iii) if d = d(El+l'Q\'<=B 1[Q"/Q]; .•. ;Q;<=Bm[Q"/Q]1+d(R3[Q"/Q]) then

d ~ d(El+l) + d(E) + d(R3) < d(El+l) + d(E;R).

Thtis, c;ince E 1• •.• ·E,c·E£+l•E;R3 is a nested sequence,

E I • • • • • Ee • E t + l • Q 'i'=R 1 f Q" / Q] • • • • , o;<=B m [Q" / Q] • R 3 [Q" / Q] 1. s a ne s t e d

scqu~nce, as well.

Clt?arly, by iii)

3 - -(k 1, ... ,k1 ,ro, •.. ,oo,d,.l(R [Q"/Q]))<. a
'--.-----------' '

c 1-times

23

wlwre if f = 0 then c 1 = d and else c 1 = d(E 1)-.t, so by inductive assumption

ii! (E f + I , Q 'i'<=B I [Q" / Q J , ••• 'Q~<=B m [Q" / Q J I R 3 [Q" / Q J) (ek l) (s 'a)

- (by definition)

S~£ VII.Sis P(t,d ior some P • FV, t t If and vi:: IV. Since

Subcase I.

/ E i + l'

- \ Ki+!

:: \
"i)_<t,•J)(

' j

1s 3 n~sted sequence

(where if

0 and for some i and J such

0 then sr_ 1S 8)
l

, 1 , l 1 . . • (" i + I r ,) , , ., i + I r 7)) , ,, 1 , ••• , K. , , • + 1 - 1 , ,, , ••• , •··, ct " . i t , v : . , '" l t) • 1 t , v .1 < a
l l . .- J J •

c 1-times

0 l cl d(E 1)-(i+i). Thus by inductive assumption

i +l
C11i r (i\. ! t, v ! , ,. , t , E 1 , ••• , E .. 1) j I l-,-

i+l
= Out(P. (t,v),a,£,E 1, ... ,E. 1)

J 1+

= (by lemma 4 (which assumptions are satisfied since

E 1• •• :•El+l•S is a nested sequence))
1+!

Out(Pj (t,v),o,s,El' ... ,Ef+l).

Subcase 2. Pis declared in El+!" Thus for some i such that I ~ i ~ nf+l
l+ I . h d () . I? • P = Pi • This means tat Ei+l > 0, so if -l- > 0 then, since

25

E 1• ••• ·E.e.•El+l•S is a nested sequence, there are l natural numbers smaller

than d(E 1), which implies that d(E 1) ~ l+l. By definition

f+l
M(El+l lPi (t,v)) (0k,e_) (s,o)

(00 E,e+1 ' 8k1 \ = \k~O nk). (t,v)(s,o)
1

(
00 E,e+i'ek,t\

for some k ;;::: O (because k~O nk) . (t, v) (s ,o) 1.s defined)
1

= .., f + I k,f_ -l-+ 1 k .e_ () () (
E ,0➔ (E 11 ,0➔ \\

4• \nk)). t,v s,o
1

l+I
M(!B. ft,v](Bk+ k)(s,o).

1 £•

l+I
Observe that d(B. [t,v]) < 1.
is a nested sequence. By definition

£+I R+l ,.,
(k 1, ..• ,k 11 ,k,o.1 , ••• , 00 ,d(B. [t,v],f(B [t,v]))...._ a

-l- ~ 1 1

c 1-times
f+J[. J) 1 where if l = 0 then c 1 = d(Bi t,v and e se c 1 =

hecaus<' k < ,,.

inductive

"'Out(
+ l .

. (t, V
l

on

, ' l •

rhis finishes the proof of emrna 5.

Now the proof of theorem 2 1s iate. Namely, suppose that for some

r (E and JS) l,) is defined. Then by assumptions of theorem

2 E•S 1s a nested sequence. Taking t' = 0 and applying lemma 5 we get that

Dut(S,o,f:,E)

what was to be proved.

Observe that the resu ts of this paper hold also for the appropriate

fragIOC~nt of ALGOL 60. If we re that the variables have a dynamic scope

instead of a static one then after the appropriate changes in all three

semantics (for example putting

when•

I (y)
(

\
if y = X

if y 1 X

and 1s the first address not in range(E)) the same results hold.

!nt:1ct, in both cases tht' same proofs work.

pr•c1e'f' the01•y of PASCAL

(to appear).

[2 llAKKER, J.hf. DE,

, 1n: Foundations of Computer Science (J.W. de Bakker, ed.),

pp. l-53, Mathematical Centre Tracts 63 (1975).

27

[3] COOK, s.A., Axiomatic and interpretive semantics for a:n ALGOL fragment,

Technical Report no. 79, University of Toronto (1975).

[4] HOARE, C .A.R. & P .E. LAUER, Consistent and corrrplementa:r>y formal

theories of the semantics of prograrrming languages, Acta

Informatica 3, pp. 135-153 (1974).

[5] JENSEN, K. & N. WIRTH, PASCAL, User manual and report, Lecture Notes

in Computer Science 18, Springer (1974).

[6 J LAUER, P .E., Consistent formal theories of the semantics of programming

languages, Report TR 25121, IBM Laboratory, Vienna (1971).

[7] MILNE, R. & c. STRACHEY, A theory of programming language semantics,

Chapman and Hall, London and Wiley, New York (1976).

[8] MILNER, R., Program semantics and mechanized proof~ in: Foundations of

Computer Science II, Part 2 (K.R. Apt, J.W. de Bakker, eds.),

pp. 3-44, Mathematical Centre Tracts 82 (1976).

[9] STOY, J.E., The congruence of two programming language definitions,

Oxford University Computing Laboratory (1976).

