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ABSTRACT 

A fragment of PASCAL is considered in which nested systems of 

procedure declarations are allowed. Procedures can call parameters by 

value or by variable. Tiiree semantics for the fragment are considered -

two denotational ones and one operational and proved all three to be 

equivalent. 
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l • INTRODUCTION 

Much work has been done on comparisons between various methods of 

describing the semantics of programming languages. Without aiming at comple

teness we mention the papers of LAUER [6], HOARE & LAUER [4], MILNE & 
STRACHEY [7], MILNER [8] and STOY [9]. 

In this paper we focus on two methods of description - denotational 

and oper.ational semantics. The aim is to show that they are equivalent 

for a fragment of PASCAL. The considered language (taken from 

APT & DE BAKKER[!]) contains simple and subscripted variables, some simple 

types of expressions, assignment, sequential composition, conditionals, 

declarations of simple and array variables, systems of (recursive) proce

dure declarations and procedure calls. Procedures can call parameters by 

value or by variable. 

The paper is organized as follows. In sections 2, 3, 4 and 5 we define 

the language and give definitions of two (different) denotational semantics 

of it. This part of the paper is taken almost literally from APT & DE BAKKER 

[!]. The two proposed denotational semantics differ only in the treatment 

of procedure calls. In the first approach the meaning of a procedure call is 

determined at the moment the call is encountered in the program text. In the 

second approach the meaning of each procedure call is determined already at 

the moment the procedure is declared. In order to ensure that in both 

approaches scope problems are dealt with in a correct way we make extensive 

use of substitution. Parameter mechanisms are treated by means of the tech

nique of "syntactic application" by which a procedure body together with 

the actuals of the call are mapped to a new piece of program text. In both 

approaches the meaning of a procedure call is determined by a suitable combi

nation of the least fixed point technique and the technique of syntactic 

appli-:::ation. 

Having defined both semantics we show that they are equivalent. The 

proof of their equivalence is presented in section 6. It uses the equiva

lence between simultaneous and iterated l.f. points. An important notion 

which turns out to be useful is that of the depth of a statement S which 

corresponds to the level of nesting of procedure declarations within S. 

In section 7 we define an operational semantics for our language. It 

is defined in the style of COOK [3] (Cook while giving his definition 
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credits it tel LAUER [6] and HOARE & LAUER [4]) although declarations and 

procedure calls are treated in a different way. A careful reader will ob

serve that our operational semantics bears a strong resemblance to the first 

denotational semantics. Our intention was to define denotational and opera

tional semantics in such a way that the proof of their equivalence could 

reduce to the essence of the problem while avoiding tedious, but straight

forward, considerations. 

The proof of the equivalence (in an appropriate sense) of both seman

tics is presented in section 8. 

In order to show that operational semantics is included in the deno

tational one we use computational induction applying the results proved in 

section 6. To prove the converse inclusion we are forced to consider 

nested sequences of systems of procedure declarations. By looking at the 

definition of the meaning of procedure calls we see that the nesting is 

reflected in the use of iterated least fixed points. When considering the 

approximations of the appropriate l.f. points we come to somewhat complicated 

iterated approximations. We prove the desired inclusion by induction on the 

so called information sequences which we associate with the iterated 

approximation and a statement in question. 

It is to be hoped that the proofs of this paper will shed some light 

on the difficulties arising when considering nested systems of mutually 

recursive procedures. 

While writing this paper the work of STOY [g] came to our attention. 

St,.1y proves equivalence of denotational and interpretive semantics of a 

language incomparable with ours. Since in his language procedures are 

allowed as parameters he inevitably lands in the realm of reflexive domains. 

Stoy's paper provides an introduction to the techniques developed by Milne 

and used in MILNE and STRACHEY t7l. 

ACKNOWLEDGEMENT. I express my gratitude to J .W. de Bakker who introduced 

me to the field and whose wi 11 ingness to help and patience enabled me to 

ent~'r the subject. The work on the joint paper APT & DE BAKKER [I] and 

further discussions with him provided the basis to this work. 



2. DEFINITION OF THE LANGUAGE 

We start with the following classes of symbols: 

SV = {x,y,z, .•• } simple variables 

AV = {a,b, ••• } array variables 

PV = {P,Q, ••• } - procedure variables 

C = {n,m, ••• } integer constants. 

For later use we assume these sets to be well-ordered. 

We now define the classes IV (integer variables), IE (integer expres

sions), and BE (boolean expressions) as follows: 

IV (with el. v,w, ••• ) v· ·= .. x!a[t] 

IE (with el. s,t, ••• ) t· ·= vlnlt 1+t 2 ! ••. 

BE (with el. p,q, .•• ) p::= truelfalse!t1=t2 !,p! .•• 

Finally we introduce the class of statements S using auxiliary 

classes R1, R2, R3, E and PB defined as follows: 

S • ·= 
RI.·= 

2 
R : := 

R3: := 

E· ·= 

R1 Ivar x;R1 

2 2 
R !array a;R 

R3 IE;R3 

v:=t!Rf;R;lif p 

P<=B I El ,E2 I 

then R~ else R~ fi!P(t,v)lbegin Send 

(where it is required that in each declaration 

P1<=B 1, •.. ,P <=B P. 1 P. for I $ i,j $ n, i # j) 
n n 1. J 

B··= <val x;val y!S> (where x t y) 

REMARKS. 

(S E S) 

(RI e: RI) 

(R2 E R2) 

(R3 e: R3) 

(E E E) 

(B E PB) 

(i) The construct P <= <val x;var y!S> corresponds to the PASCAL procedure 

declaration procedure P(x:integer;var y:integer);S. 

(ii) Separate treatment of the b~gin Send case, being trivial, is always 

omitted in the sequel. 

(iiD The above defined language is essentially a subset of PASCAL (apart 

from the begin S _end construct which ensures that the outcome of syn

tactic application (see section 4) is a correct statement). 

3 
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(iv) For technical reasons we allow the empty system of procedure declara

tions. 

(v) All consideration of this paper can be trivially extended to the case 

of, possibly empty, lists of variable declarations, array declarations, 

or formal parameters (this fact is implicitly assumed in the defini

tion of syntactic application in section 4). 

3. STATES AND ENVIRONMENTS 

Let I= {µ,v, ••• } be the set of integers and A= {a,8, ••• } an infinite 

well-ordered set of addresses. Let 

E = A + I 

VM = SV u (AVxI) 

and let Env be the set of all£: VM - A such that 
part 

i) E is I - I 

ii) {x E SV: £(x) is defined} is finite 

iii} {a E AV: for someµ E((a,µ)) is defined} is finite 

iv) for all µ,v and a £((a,µ)) is defined if E((a,v)) is defined 

v) A\range(E) is infinite. 

The elements of E (a ,a', ••• ) are called states and the elements of Env are 

called enviMnments. 

For any£ E Env, y E SV s.t. y i dorn(E) and a EA s.t. a i range(£), we 

write f u <y,a> for the extension of£ yielding a when applied toy. Similar

ly we write £ u <<a,\i>,a. > 1 for the extension of £ yielding a when 
V VE V 

applied to <a,v> (v e I). 

F'or any a E E, µ E I and a E A a{µ/a} 1s the state s.t. o{µ/o.}(8) = µ 

if S = a and o{µ/a}(S) = o(S) otherwise. 

We introduce the mappings 

L: IV • (Env x I:-• A) ( left-hand value of an integer variable) 

R: If ·-> (Env x I:+ 1) (Pight-hand value of an integer expression) 

T: BE _,. {Em, x ::: ➔ IT,F}) (va!11.e of a boolean expression) 

defined as follows: 



L(x)(c 1 0) = c(x), L(a[s])(E,c) = c(a,R(s)(c,c)) 

R(v)(c,a) = c(L(v)(c,c)), 

R(n)(s,a) = µ (whereµ is the integer denoted by n) 

R(t 1+t 2)(s,c) • R(t 1)(2,a) + R(t 2)(E,c), ••• , 

T( t rue ) ( c , l ) = T , T ( fa l s e ) ( £ , G ) = F , 

f T if R(tl)(r,::1) = R(t,)(c:,o) 
T( t 1=t 2) (l. ,o) = ) 

l F • l" R(t2){c,o) f R(c,) (E,c) 1~ .. 

4. SYNTACTIC SUBSTITUTION AND SYNTACTIC APPLICATION 

In order to insure that during the semantical considerations scope 

problems are treated in a correct way we make an extensive use of substi

tution. 

5 

An occurrence of a single variable x in a statement S is b.?un.1. when
l 

ever it is within a substatement of S of the form var x;R or <valx;vary!S> 

or <val z;~xiS>. 

An occurrence of x in Sis fPee if it is not bound. 

We define a substitution of an integer variable v for a simple 

variable x in a statement S, written as S[v/x], as follows: 

(w:=t)[v/x] -
, ,) RJ) [ / J (Kl; 2 v x -· 

P(t,11,;)[v/x] -

(~!2:Y;R 1)[v/xJ -

w[v/x]:=tlv/x] 

R~[v/x];R;[v/x] 

P( t[v/x] ,w[v/x]) 
l 

~y;R if X - y 

vary;R 1[v/x] if x;. y and y not free in v, 

vary' ;R1 [y' /y][v/x], if x t y and y free in v, where y' 

is the first simple variable s. t. 

I ,I_ ' • I y F x and y not free 1n R or v. 
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<:val z; var y:S>[v/xl .,. --val ;::;~3-!:: yis,- if X -· z or X - y 

•val z;yaE_ y iSLv/Z]> if X 1 z, X t y· and z and y 

not frelc! 111 v 

,: similar tn (,d otherwise. 

The other cases are left to the reader. 

Mut,,tis routandis we def:ine S[b/a], S[Q/PJ and S[Q/P] (where Q and P 

are sequences of procedure variables), By convention each occurrence of Pi 

(l < 
" 3" '!'.: D ·r~ .. n ~ .,,.~,1~ .. i ,:: n) 1 n E or E;R , wnere ,. = <r i•1)i -·i=I' 1s Ot/ci.1ia. 

In order to insure that the parameter mechanisms are dealt with in a 

correct way while defining a meaning of procedure calls we make use of the 

technique of "syntactic application". 

For each procedure body B we define its syntactic application B[t,v] 

to the actuals t and v (corresponding appropriately to the formal value 

and formal variable parameter) as follows: 

(<val x;~ y!S>)[t,z] var u;u:=t;begin S[u/x][x/y]end, 

where it is required that u is the first variable t x,y and not free 1n 

S, tor z (analogously for u1,u2). Observe that 

( . \ lJ this definition implies that the actual value parameter t is indeed 

evaluated before execution of S; 

(ii) the precaution with the fresh u is necessary since a definition like 

var x;x:=t; ... might give a clash between the local x and possible 

occurrences of x in the actual t (cf. ALGOL 60 report, 4.7.3.2 or 

[5] p.!8); 

( iii) the two possibilities for the actual variable parameter v an! 

a simple variable. Call-by-variable then coincides with 

the ALGOL 60 call-by-name. 

- u = a[s], a subscripted variable. Thens 1s evaluated (and stored 

1n uft) before execution of S. 
I. 

5. DE~OTATW~:AL SEMA\'TICS 

EH define 



n En' iff Vt,v( n(t,v) E n'(t,v)). 

n 
E naturally extends to a partial ordering on H (n;:: 0). 

If 4>: Hn + Hn then µ4> denotes the least element n of Hn such that 

4>(n) = n. µI exists if I is monotone. Let 0 = PV + H. For each 6 E 0, 

7 

- n n = (nl'_ ••• ,nn) EH and P = (P 1, ••• ,Pn) where PJ' ••• ,Pn are some different 

procedure variables, let 

e{n/P} (P) 
= Jni if P = Pi 

Le(P) otherwise. 

We now define M: Ex S ➔ (0 ➔ (En.v x Z: - r)) as follows: 
part 

M(Elv:=t)(8)(E,cr) = cr{R(t)(E,cr)/L(v)(E,cr)} 

3 3 3 3 
M(EIRI;R2)(8)(£,cr) = M(EIR2)(e)(E,M(EIR1)(8)(£,0)) 

3 
3 3 = JM(EIR1)(6)(E,cr) if T(p)(E,cr) = T 

M(Elifp thenR 1 elseR2 fi)(6)(E,cr) 
LM(EIR~)(6)(E,cr) if T(p)(E,cr) = F 

I l M(Elvar x;R )(8)(E,cr) =M(EIR [y/x])(8)(£U<y,CL>,cr), 

(*) where y is the first variable E SV not in dom(E), and CL the first 

address not in range(£) 

M(Elarray a;R2)(8)(£,cr) = M(EIR2[b/a])(8)(EU<<b,v>,CL > 1 ,cr) 
V VE 

where bis the first array variable s.t. no <b,v> is in dom(E), 

and where the CLv are chosen in some (unspecified but) unique way 

from A\range(E) 

3 M (E I P 1 <=B 1 , ••• , P n <=B n ; R ) ( e ) ( e: , a) = 
- - - - 3 - -M(E,Q 1•B 1[Q/P], ••• ,Qn•Bn[Q/P]IR [Q/P])(8)(E,cr) 

where Q = (Q 1, ••• ,Qn), P = (P 1, ••• ,Pn) and Q1, ••• ,Qn are the 

first variables E PV such that for each j = l, ••• ,n Q. does not 
J 

occur in E,P 1<==B 1, ••• ,Pn<=Bn or R3 

M(EIP(t,v))(8)(e:,cr) = 8{µ1E,B/P}(P)(t,v)(e:,cr) 
n - E 8 n n 

where E = <Pi<=Bi>i=l' P = (P 1, ••• ,Pn) and 4>' : H + H is 

defined as q,E,8(n) = (q,,,8(n), ••• ,4'~,B(n)) where for i= I, ••• ,n 

mE,B . 1 1 mE,B . 
~ 1s c ear y monotone, soµ~ exists. 
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Observe that if P 1 P. for i • i, ... ,n then simply 
l 

We new defim! a function,'\: S .- (i:1 ., (Envx::: p~-i="t /:)) whic:h describes 

a meaning of a statement S in a differf!nt ,,,:1y. 

M0 (v:=t)(B)(r,o) = a{R(t)(E,a)/l(v)(c,o)} 

M0 ( R 1 ; R;) < G) ( e: , d = ~i0 < R ~) < e) ( E , M0 ( R:) c ':i ) (, , o ) ) 

fMO(R:)(B)(s,c) if T(p)(E,G) = T 

~ 3 lu fR \ (8) (,- ,.,.,, r,,0'"2 1 c.,~· 

/:i0 (var x;R 1)(tl)(s,o) = M0 (R1[y/xJ)(6)(u:<y 1 0:> 1 a) 

where y and a are like in(*) 

where <b, \1> and a are 1 ike in ( **) 
V 

q ( J;' • R) \ ( r ) { C ~ ) = ~J ( R 3) { A f . , UI E I 8 t -p 1 ) { _ ) 

if T(p)(s,c) F 

I'• 0 ... ' • l t: ' V • G , ' l O • V t ;... I I ) \ t. • 0 ' 

n - ( ) d E, e Hn Hn . where E = <P.<i=B.>, l and P = P1 , ••• ,P an 'ii : ➔ 1.s 
1 l 1= n 

defined as 4,E, 8 (n) = ('f'E1, 6(n), ••. ,o/E,e(n)) where for i= l, ••• ,n 
n 

4•1• 1\;) = :\t 1 .\v'Mo(Bi[t',v'])(S{n/P}). \j/E,e is clearly monotone. 

Mo(P(t,v))(B)(E,0) = B(P)(t,v)(s,cr). 

Observe that the only difference between Mand M0 is in the treatment 

of procedure declarations and procedure calls. M determines the meaning of 

a call only at the moment when it is encountered in the program text, 

whereas M0 determines the meaning of each call already at the moment of 

procedure declaration. 

In the definitions of Mand M0 it is always assumed that E is defined 

on all simple and array variables which are free in E or s. 

6. EQUIVALENCE OF M A.i.'i'D M0 

Our first task 1s to prove that M and M0 are equivalent in the sense 

of the following theorem: 



THEOREM l. For all EE E, s ES and e E 0 

i) M0 cs) c e) = Mc I s) c e) 

ii) M(EIS)(0) = M0 (E;begin s end)(e). 

Before proving the theorem we prove a few lemmata. We first introduce the 

following useful notion: 

DEFINITION I. We define d(S) (depth of a statement S) as follows: 

i) d(var x;R 1) = d(R 1) 

)_·i·) d( 2 ) d( 2 ) array a;R = R 

iii) d(E;R3 ) = d(E)+d(R3)+l 

iv) d(v:=t) = 0 
3 3 3 3 v) d(R 1;R2) = max(d(R1),d(R2)) 

vi) d(if p then R~ else R~ fi) 

vii) d(begin Send) = d(S) 

viii) d(P(t,v)) = 0 

ix) d (EI , E 2) = d (E J) +d (E 2 ) 

x) d(P<=B) d(B)+I 

xi) d() = 0 (depth of the empty system of procedure declarations is O) 

xii) d(-val x;var y[S>) = d(S). 

d(S) corresponds to the level of nesting of procedure declarations within 

the statement S. 

Ry l(S) we denote the length of a statement S. 

DEFINITION 2. Suppose that A1, ... ,An are some well-ordered sets. Then ~l 
is the following well-ordering on A1x .•• xAn: 

3i(J$iSn A Vj(ISj<i + a.=a'.) A (a.<a!)). 
J J )_ )_ 

~f is called lexicographical ordeiing. Observe that the definition of the 

ffiC'flning ~l(EIS)(0) was given by lhc <cinductjun with respect Lo 

( d (I•:) +d ( S) , l ( S) ) • 

n+k n n+k k 
LEMMJ\ I. Suppose that'¥: H ➔ H and~= H ➔ H (n,k;:;: O) are monotone 

func·tJ"r,nn. L, 0 /.: fm' all n E H0 

9 



l , •••• 
n+ 

) ) ). 

rve that above len1ma lS theorem 3. 2 f rorr: r 2 p.24 

a sl i tl v different formulation. 

LEMMA 2. E 

(E,Q 
-
Q , ..... , J'SQ -'() 

' ••. ,Q n 
Q' ·1 S[ ' ])(O) 

, s ( s l , ••• ,Q) - n 

Q. 
J 

Q! 
J 

PROOF. ~e leave it to the reader. Proof proceeds by "'I l-induc tion w. r. t. 

(d ,E')+d ,t(S)) and 1s straightforward, though details are ted~ous. 

1n 

LEM}1A 3. 
n+k 

= ,P.<=B.>. 1 (n,k ?'. 0) be systems 
J J J=n+ 

E. , 

i (E,E' iS) (El) '1S)(ti{ 

ii l ,\ (E:S)( ) = M(E,E' iS) ( ) 

i -= n+ l , ••• , n+k P. 
j 

_t..,n-' j = n+ l, ...• n+k P. does nor occur' 
J 

-p = 

s. 

(P1•···,Pn) 

for> 

What we need fer our considerations is the property i). However the 

prn,)f of i) uses the property ii) and, what 1s worse, the proof of ii) 

uses i). We prove i) and ii) simultaneously by <!-induction with respect 

tu (d(E,E')+dlS),C(S)). The apparent circularity in the proof is avoided 

th;rnks to the cbserwition that i) can be proved due to inductive assumption 

,ih,,ut i) :rnd ii , whereas ii) follows from i), which at this moment is 

a re provL'd, n:-id the inductive assumption about ii). 

PRtHW. Ld ·· ;,nd S },e arbitrarily fixed. Assume that i) and ii) are true 

for :1 l f: ,E' ,-.; , and !. satis ing the assumptions and such that 
l l 



( d (E l , E j ) +d ( S I ) , f ( S I ) ) , ,f_ ( d ( E , E ' ) +d ( S) , ,t ( S) ) • 

We prove at first i). 

We have to consider various cases depending on the form of S. All cases 

follow straightforwardly from the inductive assumption with the exception 

of two. 

CASE I. S is E";R3 where E" = <Q.<=B!>1:1 E E (m ~ O) and R3 E R3 • 
i i i=I 

Let Q = (Ql' ••• ,Qn). Then M(E,E'IE";R3)(8) 

(by definiton) 

M ( E , E ' , Q j <=B ; [ Q ' / Q J , ••• , Q~ <=B ~ [ Q ' / Q J I R 3 [ Q ' / Q J ) c e) 

where Q' = (Qj, ••• ,Q~) and Qj, .•• ,Q~ are the first 

s.t. for i = l, ... ,m Q! does not occur in E,E',E" 
i 

(by inductive assumption) 

variables E PV 
3 

or R 

M(E',Qi<=B 1[Q'/Q], ••. ,Q~<=B~[Q'/Q]IR3[Q'/QJ)(8{µ<!>E,e/P}), since 

d ( E , E ' , Q j <=B j [ Q ' / Q J , • • • , Q~ <=B ~ [ Q ' / Q J ) + d ( R 3 [ Q ' / Q J ) 

= d(E,E',E") +d(R3 ) = d(E,E') +d(E") +d(R3) < d(E,E') +d(S), 

so for E 1 = E, Ei = E', Qj<=Bj[Q'/Q], ••• ,Q~<=B~[Q'/Q] 

and S = R3 [Q' /Q] i) holds 
1 

= (by lemma 2) 

M (E ' , Q '1<=B 1 [ Q" /Q J , ••. , Q;<=B ~[ Q" / Q J I R3 [ Q" / Q J) c e {µ<PE• 8 /P}) 

where Q" = (Q';, ••• ,Q;) and Q11, ... ,Q;are the first variables E PV 

. " d . E' E" R3 s.t. for i = l, ... ,m Q. oes not occur in , or 
i 

= (by definition) 

Mc E ' I E" ; R 3 ) ( e { µ<PE• 8 /P}) • 

l l 

CASE II. S is P(t,v) for some P E PV, t E IE and v E IV. Then by definition 

M (E , E ' I P ( t, v) ) ( e) = e { µ <!> E 'E ' ' 8 / ( P 1 , .•. , P n+ k) } (P) ( t, v) and 

M(E' IP(t,v))(0{µ¢E,e/P}) = 

E,8 E' ,8{µ¢E,e/P} 
0{µ¢ /(Pl' •.. ,Pn)}{µ<!> /(Pn+J•···,Pn+k)}(P)(t,v). 

Thus it is enough to prove that 

( I ) 

We have for all n E Hn and i = l, ... ,n 
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d(E 1 l•a(B.!"t'.v'1) ""d(E')+d(B: 1 < d(E,E')+d(S), 
l . . L 

ii) holds .. 

d(E 1 )+d(Bi[t 1 ,v 1 ]) < d(E,E')+d(S), so for E 1 = E', 

E'. em'ptv, S. ·"'B.[t',v'.J, 0 1 = 6;1/P} i) holds. 
l ~ l 1 u 

Define+: Hn+k ➔ H0 and : Hn+k ~ Hk as follows: 

- Hn+k where q "-

S,, 1;•,l have just proved that for all r; " Hn 

,E,6(-) 
'I 11 

Llhsctvt, that for J 

i,n r , , 1) ('I· )/l'P )') 1J:1 +•Lt ,v -', t:~r1 1, ••• ,n k \ 1 , ••• ,P k .r n J n+, n+ · 

iB .[t' ,v']) (H(n 1, ••• ,n )/(P 1 •••• ,P ) f{ (n 1, ••. ,n k) 
n+J · n n n+ n+ 

/(P 1•···,P k)}) n+ n+. 
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- n In particular for every n EH 

( 3) 

- n By (2) and (3) we get that for all n EH 

Since IJI and Qare clearly monotone, by lemma 2 we get 

(4) 

But by definition for all n1 , ••• ,nn+k EH 

( ( ) ..,( )) ,._E,E' ,e( ) 
IJI n1•···,nn+k •" nl, ... ,nn+k ="' n1,···•nn+k' 

so 

(5) 

Now by ( 4) , ( 5) and (3 ) we get ( I ) • 

We now prove ii). 

Again all cases are straightforward with the exception of the same two ones. 

l·s E",·R3 " Q ' m d R3 R3 L -Q (Q Q) CASE I • S where E = < • <=B • > • I an -:: • et = I , · • • , m • 
J J J= 

i',l(F!E";R3 )(0) 

: (by definition) 

,\l(E,Qi'<=B; [Q' IQ], ••• ,Q~~B~[Q' IQ] !R3 [Q' /Q]) (0) 

where Q' = (Qi,··•,Q~) and Qj, ... ,Q~ are the first variables E PV 
s.t. for i = 1, ••• ,rn Q! does not occur in EE" or R3 • l , 

= (by lemma :.) 

Af (E, Q'1'~B j [ Q" IQ], ••• , Q;<=B~[ Q" IQ] I R3[ Q" IQ]) ( e) 



where 

s.t. :or 
i 

u holds. 

definition) 

II 1 '11••. 
, ..... 1 ...., ' 

su=npt 1 

are the first variables e 

) , since 

does not occur 1n 

Also 

so for 

E' and S = 
l 

CASE II. S 1s P(t,v fr some Pr PV, t IE and v e IV. Then by definition 

i 

(EIP(t, /(P •... ,P) (P)(t,v). 
e n 

for E,E' and P t,v), so 

\i ( E , E I i p ( t: , V ) ( fi ) 

(E' :P(t,v)) 

'/(P,, ... ,? )f 
i n 

sn:1:pti.on P / P . for j 
n+J 

P 1 , •.. ,P .)}(P)(t,v). 
n+ n+K 

l , ... ,k, so clearly 



This finishes the proof of lemma 3. 

COROLLARY. Suppose that E 

v E IV and i = 1, .•. ,n 

= <P.~B.>~ EE. Then f,or all 8 E 0, t E IE, 
]_ l i=l 

M(EIP.(t,v))(8) = M(EIB.[t,v])(8). 
l l 

PROOF. By definition 

M(E IP. (t,v)) (8) 
l. 

E 8 = (µ<f?' ).(t,v) 
l 

= M( IB.[t,v])(8{i.i'PE,S/(P 1 , ..• ,P )}) 
i n 

(by lemma 3i)) 

M CE I B . [ t, v J ) c e) • 
]. 

Now we are in a position to prove theorem 1. 

PROOF OF TIIEOREM l • 
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i) We prove it by <t-induction w.r.t. (d(E)+d(S),i(S)). All cases are 

straightforward with the exception of the case when Sis E;R3 for some 

E = <P.~B.>~ EE and R3 E R3• Then 
i i i=I 

M0 (E ;R3) (8) = MoCR3)(e{µ~E,e/P}) where p = (P1,·•·,Pn) 

by ind. assumption = MoCR3)Ce{µ<f?E,e/P}) 

II = MC IR3)(8{µ4>E, 0 /P}) 

by lemma 3 i) = M(EJR3)(~) 

by lemma 2 

where Q = (Q 1, •.. ,Q) and Q1, •.. ,Q are the first 
n n 3 

variables E PV which do not occur in E or R 

by definition M( IE;R3)(8). 



E acd let P - (P 1 , ••• ,P~). ~e have 
• iJ 

•'\ ~ '\ \ 
j 1 J ) 

by definition 

1. OPERAThlNAL SE~tANTICS 

Now we introduce an operational semantics of our 
w language. Let E 

denote the set of all finite or infinite sequences 
n 

of states and let 

denote concatenation of two sequences. ~e define a function 

Comp: S x ~ x En~ x f ➔ as follows (Out(S,o,E,E) denotes the last 

~lernent of Cornp(S,c,c,E) if that sequence is finite, and is undefined 

otherwise): 

,, . I • c ' RJ ... 1 •·. n3 - . lor.1p\1'-ptnen ,e seK,,tl, 
---j---L-

·, 
<a~·comp(B[t,v],o,r,E) 

if T(p)(E,0) = T 

if T(p)(E,a) F 

where P<=B is rm element 111 the sequence E 

wherey and i are like in(*) from section 5 
~ r, 1 

Cc,mp(~irr:iy c;;R-,,,,, ,E) = ·c·· Cornp(R-l.b/a],c,c,1<:,~b,v c:t > I E) 
' \l \IE ' 

where ,b,u>and,1 are like in(**) fromsection5 
V 
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Q1, ••• ,Qn are the first variables E PV such that 

for each j = l, ... ,n Q. do not occur in 
3J 

E,P 1-:=B 1, ••• ,Pn<:=Bn or R. 

Intuitively Comp(S,o,s,E) represents the sequence of successive states 

of the computation determined by S from the initial state a in the environ

ment E and with procedure declarations E. 

It is always assumed that E is defined on all simple and array variables 

which occur freely in E or Sand that there are no procedure variables which 

occur freely in E;begin Send. The last assumption is clearly necessary for 

procedure calls. 

8. EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 

Now we prove that operational and denotational semantics which we 

defined are equivalent. Observe that in the definition of M(EIS)(0)(s,o) 

it is not required that there are no procedure variables occurring freely 

in E;begin Send. Thus M(EIS)(B)(s,o) can be defined whereas Comp(S,o,s,E) 

not, so an additional assumption is necessary. This what we prove is the 

following theorem: 

THEOREM 2. Suppose that E €. E, S E S and that ther>e ar>e no pr>ocedu.re 

var>iables 1vhich oceu.r fr>eely in E;begin Send. Then for all EE Evw, a EI 

ond O c 0 

M(EIS)(B)(s,o) = Out(S,o,s,E). 

More precisely: either M(EIS)(0)(s,o) and Out(S,o,s,E) ar>e both defined 

and equal or are both undefined. 

PROOF. Suppose that for some EE Env and a EI Out(S,o,s,E) is defined. 

We prove that then Out(S,o,s,E) ~ M(E\S) (B)(s,o). 

Suppose by induction that it is true for all 8,S',o',s' and E' satis

fying the assumptions and such that the length of Comp(S',a',s',E') is 

shorter than the length of Comp(S,o,s,E). We have to consider various cases 

depending on the form of S. In all of them the claim follows straightfor

wardly from the inductive assumption. Only the case of procedure calls is 



not 

Suppose that S i P(t, 

t 

. ' . 1nauct1ve assumption n ror:1 

1s defined and equal to 

t, V , "'' ,c,c}. 

t,v] ( )(£,CT = ,P(t,v) (8) E,c), 

so the claim follows. 

The proof that the converse ication holds, to which the rest of 

the paper is devoted, is much more difficult. We shall need the fol] owing 

lemma. 

LE;>,U1A 4. S E S 

E i E E all 

E ' t'.n>e de c Z a:i.0e d E the 

(S, ,s,E) 

P We leave it Lo the reader. Proof proceeds by induction with respect 

to ttk' 1 of Comp(S,a, ,E). 

3uppose that 

us,•d th"' fact that the function 

is continuous, i.e., that 

E (n ?: 0). till now we have 

is monotone. What we need now is that 

forallnk (k=O,l, ••• ) 

s. t. 

We 1~ave th~ proof of this fact to the reader. 



Now define E, 8 Hn (k ~ 0) follows: nk E as 

{ 
((il, ••• ,(il) 

if k = 0 
E,8 n -times 

nk ¢E,e < E,e) if k > o, nk-1 

where (il 1.s the empty function. Then, by continuity, 

U E,8 
k=O nk 

Now assume that l ~ 0. Let for i = 1, ••. ,1+1 

system of procedure declarations and let SES. 
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i in. 
E. = <P.<=B.>.1.l be a 

1 J J J= 

DEFINITION 3. The sequence E1- ••• •Et•El+l·S (where dots signify separators 

and are used instead of commas in order to avoid ambiguities) is called 

nested if 

i) whenever a procedure variable p occurs freely 1 n E. then J > I and 
J 

p is declared in E 1, ... ,Ej-l 
ii) all procedure variables which occur freely in s are declared 1n 

E1•···,Et+I 

iii) for t. - 0 d(Et+l) + d(S) •, d(E,e_) < 

Intuitively a sequence E1• ••• ·El·El+l•S is nested if for j = 1, ••• ,l 

E. I occurs in a procedure body of a procedure declared in E. and s is 
J+ 

B~ 
J 

a statement ln the scope of Ef+I (in a procedure body ( 1 :::; jo ~; nl)). Jo 
If f = 0 then i ii) lS plainly vnlid. 

DEFINITION 4. Let E1 · .•. ·El·E,e_+J ·S be a nested sequence, 8 E 0 and let 

k 1 , •.. ,k,e_ be some non-negative integers. For i = 1, ... ,l-1 let 

f E. 8+ , } 1+1' k·;-= 8➔ n 1 P k,l ki+l ' i+l 
l 

. . 
- 1 1 

where P. - (P 1 , ••• ,P ) 
1 ni 

depends on E1 , ..• ,Ej. We 

➔ 

and ki stands for k 1 , ••• ,ki. (Strictly speaking ek· 
drop indices indicating this dependence since no J 

confusion should arise.) If f = 0 then simply e~ is 8. 
t. 



'.:0 

LEM}1A 5. 

approxi~2tion of their 

? 'J 
variables different from r7, ... ,P;2 and 

And 

J 

J 
J 

n. ente:r 
l 

r., . ) 
'lQ. • 

meaning but now 

values assigned to 

the definition of the values 

El• ••• •E.t°E.t+l •S 3 non-negative 

M ( E , l ! S) ( 6-k:- J ( t: , o) ·;·: s 
{_ + .{_ 

(:,; 1 , ••• ,,.· ,'', ••• ,·,,,d(E1 .... l+d1S'l,i(S)) 
' t. ·--- ___ : ' ... + j ' 

c-tir.ws 

where if { = C th,c>n c = d(E, 1) +d(S) :rnd e;se c = d(E.1)-L 
t+ 

fhe following explanation should clarify the above notion. Suppose 

tbit ,ll/E ... IS) ( ,~ H1c,c) is define,:. Then tor any i = 1, ••• ,£ and 
l + I "t 

i = l., .•. ,n. during the exel·uti.on of S starting from the state o in the 
. . l '· '· 

erwironmPnt ,: and with procedure declarations E1, ... ,Et+l the stack of 

,
0 urrenrly active pru..:edures will never contain more thank- copies of 

1. 

c:il ls of P~. \,e c3n view k. - s as bounds 
J l 

associatt:d appropriate levels 

of nesting d(E.). We cannot sav anvthing• 
' 1. J • 

about the execution of other 

procec'.urPs which could Dt.' called during the execution of S. 00 - s stand for 
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the bounds associated with each other level of nesting. On the whole there 

can be at most d(E 1) (or d(Et+l) + d(S) if l= 0) levels of nesting, which 

explains the choice of c. If 

and 

(a 1, ••• ,a ,a 1,a 2) 
n n+ n+ 

are two information sequences, then by definition 

and 

< is clearly a well-ordering on the information sequences. 

We prove the lemma by <-induction with respect to associated informa

tion sequences. Let a be the information sequence associated with 

E1• .•• •E,e_·El+l•S and k 1, ••• ,kl and assume that the claim is true for all 

d E ' E ' E ' s' · · k ' k ' e ' e neste sequences 1- ••• • l" l+I· , non-negative integers 1, •.• , l' E -, 

E 1 E Env and a' EI such that b < a where bis the associated information 

sequence. 

We have to consider various cases depending on the form of S. 

CASE I. Sis v:=t. Obvious. 

CASE II. S is Ri;R;. By definition 

Observe that 

3 
d(El+l) + d(R 1) :::: d(El+l) + d(S) 

3 
d(El+l) + d(R2) :::: d(El+l) + d(S), 

3 3 
so E1• .•• ·El·Et+I•R 1 and E1• ... •E,e.•El+l•R2 are nested sequences and clearly 

for i = I, 2 
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•'; . -". _ ·.· -· ~ t ,..,,_ _ ~ , 1 3 , {) , t.': 3, \ < 
V l' ... ,k i •.:~.-"-~-:=~·>a,E,f + ! }+,11. h~ .1,, l,.i,; .:i. 

if f 

t (R) \ 
l 

c.-ti~nes 
l 

Thus by inductiw· assumption 

CASE III. S is if p then 

CA Sr I". " .1· s· • • ., I •ri · • , r, , ::, var x, h • i1en 

.'i ( E , , 
t+, 

and c. - d(E 1)-(, because 
1 

Similar to case II. 

'R 1[y/x])(B,
0
)(Eu<y,a>,a) 

( 

where y and a are as in l*) from section 5. Observe that d(R 1[y/x]) = d(S), 

£(R 1[y/x]) < t(S) 
I· j -1 

•s0 F • ■ F •E • 0 lv1x1 1·Q a ~,estea' s 0 qug11r_A an~ s1nc·e ' ···· 1 ••• ~ t . f'+ l " ' C • - V < ' • . ~ ~ '' u 

( k l , •••• \ , "'2 • .. :..: , x , d ( E £ + 1 ) + d ( R 1 [ y / x J ) , .e (R 1 [ y / x J ) ) -< a 

c.-1.ime;; 
l 

' ~ ,- • I I""\ t wnc·re 1 I t = ,,, t,1t-::ori t: 1 and else c 1 =d(E 1)-f.. So by 

LrH~nc·tive assumption 

., 
CASE V. S 1s ~ray ,1;R.:.. Similar to case IV. 



CASE VI. S is E;R3 where E = 
m 

<Q.<=B.>. 
J J J= I 

Then 

3 
i\f (Et+! IE;R ) (0kl) (s,o) 

= M (Et+ I , Q j <=B I [ Q ' / Q J , ••• • Q~ <=B m [ Q ' / Q J I R 3 [ Q ' / Q J ) ( ek 1) ( s •a) 

= (by lemma 2) 

where Q = (Q 1, ••• ,Qm), Q' = (Qi,···,Q~) and 

Q;, ••• ,Q~ are the first variables in PV which 
3 

do not occur in El+!' E or R 

M (E1 + 1 , Q'j<=B 1 [Q 11 /QJ, ••. , Q;<=BiQ" /QJ I R3[Q" /QJ) ( ek} (s ,a) 

Observe that 

where Q" = (Q';, .•• ,Qm) and Q\', ••• ,Q~ are the first 

variables in PV which do not occur in E 1, ••• ,El+l' 
3 E or R. 

i) all procedure variables which occur freely in 

Q'i'¢=iB 1 [Q"/Q], ••• ,Q~<=Bm[Q" /Q] occur freely in E; 

ii) if a procedure variable occurs freely in R3[Q"/Q] then it is either 

Q'.' for some i:::: m or it occurs freely in E;R3 ; 
1 

iii) if d = d(El+l'Q\'<=B 1[Q"/Q]; .•. ;Q;<=Bm[Q"/Q]1+d(R3[Q"/Q]) then 

d ~ d(El+l) + d(E) + d(R3) < d(El+l) + d(E;R). 

Thtis, c;ince E 1• •.• ·E,c·E£+l•E;R3 is a nested sequence, 

E I • • • • • Ee • E t + l • Q 'i'=R 1 f Q" / Q ] • • • • , o;<=B m [ Q" / Q] • R 3 [ Q" / Q ] 1. s a ne s t e d 

scqu~nce, as well. 

Clt?arly, by iii) 

3 - -(k 1, ... ,k1 ,ro, •.. ,oo,d,.l(R [Q"/Q]))<. a 
'--.-----------' ' 

c 1-times 
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wlwre if f = 0 then c 1 = d and else c 1 = d(E 1 )-.t, so by inductive assumption 

ii! ( E f + I , Q 'i'<=B I [ Q" / Q J , ••• 'Q~<=B m [ Q" / Q J I R 3 [ Q" / Q J ) ( ek l) ( s 'a) 



- (by definition) 

S~£ VII.Sis P(t,d ior some P • FV, t t If and vi:: IV. Since 

Subcase I. 

/ E i + l' 

- \ Ki+! 

:: \ 
"i)_<t,•J)( 

' j 

1s 3 n~sted sequence 

(where if 

0 and for some i and J such 

0 then sr_ 1S 8) 
l 

, 1 , l 1 . . • ( " i + I r , ) , , ., i + I r 7 ) ) , ,, 1 , ••• , K. , , • + 1 - 1 , ,, , ••• , •··, ct " . i t , v : . , '" l t) • 1 t , v .1 < a 
l l . .- J J • 

c 1-times 

0 l cl d(E 1)-(i+i). Thus by inductive assumption 

i +l 
C11i r ( i\. ! t, v ! , ,. , t , E 1 , ••• , E .. 1 ) j I l-,-



i+l 
= Out(P. (t,v),a,£,E 1, ... ,E. 1) 

J 1+ 

= (by lemma 4 (which assumptions are satisfied since 

E 1• •• :•El+l•S is a nested sequence)) 
1+! 

Out(Pj (t,v),o,s,El' ... ,Ef+l). 

Subcase 2. Pis declared in El+!" Thus for some i such that I ~ i ~ nf+l 
l+ I . h d ( ) . I? • P = Pi • This means tat Ei+l > 0, so if -l- > 0 then, since 

25 

E 1• ••• ·E.e.•El+l•S is a nested sequence, there are l natural numbers smaller 

than d(E 1), which implies that d(E 1) ~ l+l. By definition 

f+l 
M(El+l lPi (t,v)) (0k,e_) (s,o) 

( 00 E,e+1 ' 8k1 \ = \k~O nk ). (t,v)(s,o) 
1 

( 
00 E,e+i'ek,t\ 

for some k ;;::: O (because k~O nk ) . ( t, v) (s ,o) 1.s defined) 
1 

= .., f + I k,f_ -l-+ 1 k .e_ ( ) ( ) ( 
E ,0➔ ( E 11 ,0➔ \\ 

4• \nk )). t,v s,o 
1 

l+I 
M( !B. ft,v](Bk+ k)(s,o). 

1 £• 

l+I 
Observe that d(B. [t,v]) < 1. 
is a nested sequence. By definition 

£+I R+l ,., 
(k 1, ..• ,k 11 ,k,o.1 , ••• , 00 ,d(B. [t,v],f(B [t,v]))...._ a 

-l- ~ 1 1 

c 1-times 
f+J[. J) 1 where if l = 0 then c 1 = d(Bi t,v and e se c 1 = 

hecaus<' k < ,,. 



inductive 

"'Out( 
+ l . 

. ( t, V 
l 

on 

, ' l • 

rhis finishes the proof of emrna 5. 

Now the proof of theorem 2 1s iate. Namely, suppose that for some 

r ( E and JS) l,) is defined. Then by assumptions of theorem 

2 E•S 1s a nested sequence. Taking t' = 0 and applying lemma 5 we get that 

Dut(S,o,f:,E) 

what was to be proved. 

Observe that the resu ts of this paper hold also for the appropriate 

fragIOC~nt of ALGOL 60. If we re that the variables have a dynamic scope 

instead of a static one then after the appropriate changes in all three 

semantics (for example putting 

when• 

I ( y) 
( 

\ 
if y = X 

if y 1 X 

and 1s the first address not in range(E)) the same results hold. 

!nt:1ct, in both cases tht' same proofs work. 

pr•c1e'f' the01•y of PASCAL 

(to appear). 
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