stichting
mathematisch
centrum MC

AFDELING INFORMATICA W 71/76 DECEMRER
(DEPARTMENT OF COMPUTER SCIENCE)

K.R. APT

OR A FRAGMENT OF PASCAL

Prepublication

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boethaavestraai, Amsterndam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pwre mathematics and Ats
applications. 1t is sponsored by zhe Netherfands Government through Zhe
Netherfands Onganization for the Advancement of Pure Research (Z.W.0) .

AMS (MOS) subject classification scheme (1970): 68A05

ACM -~ Computing Reviews—categories: 5.24.

Equivalence of operational and denotational semantics

for a fragment of PASCAL*)
by

K.R. Apt

ABSTRACT

A fragment of PASCAL is considered in which nested systems of
procedure declarations are allowed. Procedures can call parameters by
value or by variable. Three semantics for the fragment are considered -
two denotational ones and one operational and proved all three to be

equivalent.

KEY WORDS & PHRASES: denotational semantics, operational semanties,
call-by=value, call-by-variable, recursive

procedures, nested systems of procedure declarations.

*)

This report will be submitted for publication elsewhere.

1. INTRODUCTION

Much work has been done on comparisons between various methods of
describing the semantics of programming languages. Without aiming at comple—
teness we mention the papers of LAUER [6], HOARE & LAUER [4], MILNE &
STRACHEY [7], MILNER [8] and STOY [9].

In this paper we focus on two methods of description ~ denotational
and operational semantics. The aim is to show that they are equivalent
for a fragment of PASCAL. The considered language (taken from
APT & DE BAKKER [1]) contains simple and subscripted variables, some simple
types of expressions, assignment, sequential composition, conditionals,
declarations of simple and array variables, systems of (recursive) proce-—
dure declarations and procedure calls. Procedures can call parameters by
value or by variable.

The paper is organized as follows. In sections 2, 3, 4 and 5 we define
the language and give definitions of two (different) denotational semantics
of it. This part of the paper is taken almost literally from APT & DE BAKKER
[1]. The two proposed denotational semantics differ only in the treatment
of procedure calls. In the first approach the meaning of a procedure call is
determined at the moment the call is encountered in the program text. In the
second approach the meaning of each procedure call is determined already at
the moment the procedure is declared. In order to ensure that in both
approaches scope problems are dealt with in a correct way we make extensive
use of substitution. Parameter mechanisms are treated by means of the tech-
nique of "syntactic application' by which a procedure body together with
the actuals of the call are mapped to a new piece of program text. In both
approaches the meaning of a procedure call is determined by a suitable combi-
nation of the least fixed point technique and the technique of syntactic
application.

Having defined both semantics we show that they are equivalent. The
proof of their equivalence is presented in section 6. It uses the equiva—
lence between simultaneous and iterated 1.f. points. An important notion
which turns out to be useful is that of the depth of a statement S which
corresponds to the level of nesting of procedure declarations within S.

In section 7 we define an operational semantics for our language. It

is defined in the style of COOK [3] (Cook while giving his definition

credits it to LAUER [6] and HOARE & LAUER [4]) although declarations and
procedure calls are treated in a different way. A careful reader will ob-
serve that our operational semantics bears a strong resemblance to the first
denotational semantics. CQur intention was to define denotational and opera-
tional semantics in such a way that the proof of their equivalence could
reduce to the essence of the problem while avoiding tedious, but straight-
forward, considerations.

The proof of the equivalence (in an appropriate sense) of both seman-
tics 1s presented in section 8.

In order to show that operational semantics i1s included in the deno-
tational one we use computational induction applying the results proved in
section 6. To prove the converse inclusion we are forced to consider
nested sequences of systems of procedure declarations. By looking at the
definition of the meaning of procedure calls we see that the nesting is
reflected in the use of iterated least fixed points. When considering the
approximations of the appropriate 1.f. points we come to somewhat complicated
iterated approximations. We prove the desired inclusion bv induction on the
so called information sequences which we associate with the iterated
approximation and a statement In question.

It is to be hoped that the proofs of this paper will shed some light
on the difficulties arising when considering nested systems of mutually
recursive procedures.

While writing this paper the work of STOY [9] came to our attention.
Stoy proves equivalence of denotational and interpretive semantics of a
language incomparable with ours. Since in his language procedures are
allowed as parameters he inevitably lands in the realm of reflexive domains.
Stoy's paper provides an introduction to the techniques developed by Milne
and used in MILNE and STRACHEY 7771.

ACKNOWLEDGEMENT. T express my gratitude to J.W. de Bakker who introduced
me to the field and whose willingness to help and patience enabled me to
enter the subject. The work on the joint paper APT & DE BAKKER [1] and

further discussions with him provided the basis to this work.

2. DEFINITION OF THE LANGUAGE

We start with the following classes of symbols:

SV = {x,9,2,...1 - simple variables
AV = {a,b,...} - array variables

PV = {P,Q,...} - procedure variables
C = {a,m,...} - integer constants.

For later use we assume these sets to be well-ordered.

We now define the classes IV (integer variables), IE (integer expres-

sions), and BE (boclean expressions) as follows:

IV (with el. v,w,...) vi:=x|alt]

It

IE (with el. s,t,...) t::= vinlt, +t

l 2[.--
truelfalseltl=t211p|...

it

BE (with el. p,q,...) p::

Finally we introduce the class of statements S using auxiliary

classes Rl, Rz, RB, E and PB defined as follows:

1

S::= Rllvar x3;R (s €8S
R1::= RZIEEEEZ a;R2 (R1 € R])
RZ::= R3[E;R3 (R2 € Rz)
R3::= v:=t|R?;Rzli£ p then R? else Rg fi|P(t,v)|begin § Eéé (R3 € RB)

E::= PﬁBIEl,EZI (E € E)

(where it is required that in each declaration
Plcal""’Pnan Pi # Pj for 1 < i,j <n, i # 3)
B::= <val x;val y|S> (where x # y) (B ¢ PB)

REMARXS .

(i) The construct P <« <val x;var y|S> corresponds to the PASCAL procedure
declaration procedure P(x:integer;zéz y:integer);S.

(1i) Separate treatment of the begin S end case, being trivial, is always
omitted in the sequel.

(1i) The above defined language is essentially a subset of PASCAL (apart
from the begin S end construct which ensures that the outcome of syn-

tactic application (see section 4) is a correct statement).

{iv) For technical reasons we allow the empty system of procedure declara-
tions.

(v) All consideration of this paper can be trivially extended to the case
of, possibly empty, lists of variable declarations, array declarations,
or formal parameters (this fact is implicitly assumed in the defini-

tion of syntactic application in section 4).

3. STATES AND ENVIRONMENTS

Let I = {y,v,...} be the set of integers and A = {a,B8,...} an infinite

well=-ordered set of addresses. Let

I=A-1

Van = SU u (AVx])

and let Env be the set of all e: Var 53?? A such that

i) e is 1-1

ii) {x € SV: e(x) is defined} is finite

iii) {a € AV: for some u e((a,u)) is defined} is finite

iv) for all u,v and a e((a,u)) is defined if e((a,v)) is defined

v) A\range(e) is infinite.

The elements of I(o,0',...) are called states and the elements of Env are
called enviromments.
For any ¢ ¢ Env, y ¢ SV s.t. y ¢ dom(e) and o € A s.t. o ¢ range(e), we
write ¢ U <y,a> for the extension of ¢ yielding o when applied to y. Similar-
ly we write ¢ u <<a,u>,av>v51 for the extension of ¢ yielding o when
applied to <a,v> (v ¢ I).
For any 0 € I, u e T and o ¢ A of{u/a} is the state s.t. o{u/al(B) = u
if 8 = a and o{u/al(8) = o(B) otherwise.

We introduce the mappings

IV ~ (Enux 1> A) (left=hand value of an integer variable)
[t » (Enuxs-1) (right=hand value of an integer expression)

: BE > (Envx 2~ {T,F}) (value of a boolean expression)

defined as follows:

L(x)(e,0) = e(x), L(alsD)(e,0) = e(a,R(s)(c,0))
R(v)(e,0) = a(L(v)(g,0)),

R(n) (g,0) u (where u is the integer denoted by n)
R(t)+t2)(e,o) = R(tl)(e,c) + R(tz)(s,c),...,

T(true)(e,o) =T, T(Eflse)(c,o) = F,

I T if R(t))(e,0) = R(t,) (,0)
T(tl=t2)(£,0) = 1
F if R(tz)(s,a) # R(tz)(s,c)

T(P) (o) = T(P)(e,0)yen.

4. SYNTACTIC SUBSTITUTION AND SYNTACTIC APPLICATION

In order to insure that during the semantical considerations scope
problems are treated in a correct way we make an extensive use of substi-
tution.

An occurrence of a single variable x in a statement S is bound when-
ever it is within a substatement of S of the form var x;R] or <valx;varyl|S>
or <val zjvar x|S>.

An occurrence of x in S is free if it is not bound.

We define a substitution of an integer variable v for a simple

variable x in a statement S, written as S[v/x], as follows:

(wi=t)[v/x] = wlv/x]:=tlv/x]
(R?;Rg){le] = R?[V/X];R3[V/X]
Ple,w)lv/x] = P(tlv/x],wlv/x])
(Xizy;Rl)[v/x] = Xﬁ{y;R] , 1f X =y
Xi{y;R][v/x] , 1f x # y and y not free in v,
(=) Xigy';R][y'/y][v/x] , 1f x # y and y free in v, where y'

is the first simple variable s.t.

Z x and y' not free in R] or v.

i

<val z; var yl!S»[v/x] = <val zjvar y|$> if x % zorx Ty
<val zjvar y|S[v/z]> if x # z, x # y and z and y

not free in v

(R3S

similar to (*) otherwise.
The other cases are left to the reader.

Mutatis mutandis we define S[b/al, S[Q/P] and 5[6/5] (where 6 and P
are sequences of procedure variables). By convention each occurrence of Pi
n

j=p> 18 bound.

(1 <1 <n)inE or E;RB, where E = <Pi=§i>
In order to insure that the parameter mechanisms are dealt with in a
correct way while defining a meaning of procedure calls we make use of the
technique of "syntactic application".
For each procedure body B we define its syntactic application B[t,v]
to the actuals t and v (corresponding appropriately to the formal value

and formal variable parameter) as follows:

(<val xjvar y|S>)[t,z] = var uju:i=t;begin STu/x1[x/ylend,

b

(<val x;var y[8> [t,als]] = var ul,uq;u1:=t;u2:=s;begin S[u]/x][a[uz]/y}end,

where it is required that u is the first variable ¥ x,y and not free in

S, t or z (analogously for ul’u2)' Observe that

(1) this definition implies that the actual value parameter t is indeed
evaluated before execution of S;

(1i) the precaution with the fresh u is necessary since a definition like
var x;x:=t;... might give a clash between the local x and possible
occurrences of x in the actual t (cf. ALGOL 60 report, 4.7.3.2 or
{51 p.18):

(iii) the two possibilities for the actual variable parameter v are
- vz, a simple variable. Call-by-variable then coincides with

the ALGOL 60 call-by-name.
- u * als], a subscripted variable. Then s is evaluated (and stored

in uz) before execution of §,

5. DENOTATIONAL SEMANTICS

et H = TEx [V~ (Enux g 55?;). For n,n' ¢ H define

ncn' iff Vt,v(n(t,v) < n'(t,v)).

< naturally extends to a partial ordering on H® (n=0).
If &: H > H® then pd denotes the least element ﬁ of H™ such that
®(n) = n. ud exists if ¢ is monotonme. Let © = PV -~ H. For each 8 ¢ O,

n = (n],...,nn) e H" and P = (Pl”"’Pn) where P s++.,P are some different

1
procedure variables, let

_ n. if P = P,
o{n/B}(®) = { t *

8 (P) otherwise.
We now define M: ExS~ (0> (Envux g EE;? £)) as follows:

M(E|v:i=t) (8) (e,06) = o{R(t) (e,0)/L(v)(e,0)}

MEEIRTRD) (8) (£,0) = MCEIRD) (8) (e, MEIRD) (8) (¢,0))

3 5 MEIRD (0) (2,0) if T(p)(e,0) = T
M(EIif p then R} elseRz_f_J':)(e)(e,o) = '

WEIR3) (0) (500 i T) (e,0) = F
M(Elvar x3R') (8) (e,0) = M(E IR [y/x1) (8) (eusy,a>,0),
(%) where y is the first variable ¢ SV not in dom(e), and o the first

address not in range(e)

M(E|array a;Rz)(e)(e,c) = M(EIRz[b/a])(e)(€U<<b,v>,av>v6130)
where b is the first array variable s.t. no <b,v> is in dom(e),
(*x)

and where the o, are chosen in some (unspecified but) unique way

from A\range (g)

M(EIPléﬁl,...,Pd=Bn;R3)(6)(e,o) =
ME,Q=8,[Q/F],...,Q B _[Q/F1IR’IQ/RD) () (e,0)
where Q = (Ql""’Qn)’ P = (Pl,...,Pn) and Q]”"’Qn are the
first variables ¢ PV such that for each j = 1,...,n Qj does not

3

occur in E,P «B ..sP «=B. or R
n n

1 1°°
MCEIP(t,v)) (8) (e,0) = o{ue=*®/B}(®) (£,v) (e,0)
i>?=1’ P = (Pl""’Pn) and @E’e: H™ > H™ is

defined as ¢E,9(n) = (@%:e(ﬁ),...,®§,e(ﬁ)) where for i=1,...,n

1]

where E = <Pi¢£

¢§’9<n> = At Av'MC 1B, [t",v' D) (B {n/BD)

E,0

. E,B .
o} is clearly monotone, so ud > exists.

Observe that if P % Pi for i = 1,...,n then simply
MEIP(t,v))(8) (e,0) = 8(P)(t,v)(e,0).

We now define a function MO: S+ (8> (Envxz Eg;; 7)) which describes
a meaning of a statement S in a different way.
My (vi=t) (8) (e,0) = a{R(t) (e,0)/L(v) (g,0)}
-3 .3 B 3 , 3., -
Mo (B3R (8) (e,0) = My (R,) (8) (e, M) (R (8) (£,0))

s My (R (8) (£,0) if T()(e,0) = T
MO(Ep then R1 else R2 fi)(8)(e,0) = {

I
rrj

My (R3) (&) (£,0) if T(p)(e,0) =

My (var %58 (8) (e,0) = My (R [y/x1) (8) (ev<y,a>,0)

where y and o are like in (%)

Mo(array a;Rz)(G)(s,o) = MO(Rz[b/a])(9)(€U<<b,v>,av>v€130)

where <b,v> and o are like in (%)

MO(E;RB)(G)(e,O)

where E

My () (8 ue® 8 /B1) (e, 0)
I and P = (Pl""’Pn) and WE’ s H® 5 H® is

defined as ¥E»9(7) = (w?’e(ﬁ),...,wi’e(ﬁ)) where for i=1,...,n
YE8(R) = aenavMy (B[,v' D) (8{R/BD) L v

8

<P.eB.>D
1 1 1=

is clearly monotone.

MO(P(t,v))(B)(e,o) = 8(P)(t,v)(e,0).

Observe that the only difference between M and MO is in the treatment
of procedure declarations and procedure calls. M determines the meaning of
a call only at the moment when it is encountered in the program text,
whereas MO determines the meaning of each call already at the moment of
procedure declaration.

In the definitions of M and MO it is always assumed that ¢ is defined

on all simple and array variables which are free inE or S.
6. EQUIVALENCE OF M AND MO

Our first task is to prove that M and MO are equivalent in the sense

of the following theorem:

THEOREM 1. For all E € E, S ¢ S and 6 € 0
i) MO(S)(G) = M(C 1S)(®)
ii) M(E|S)(8) = MO(E;begin S end)(8).

Before proving the theorem we prove a few lemmata. We first introduce the

following useful notion:

DEFINITION 1. We define d(S) (depth of a statement S) as follows:
i) d(var x;R) = a@®hH

ii) d(array a;Rz) = d(Rz)

111) d(E3R%) = d(E)+d(RY)+1

iv) d(v:=t) 0

v dRRY) = max(d(R)),d(R))

vi) d(if p then R? else Rg fi) = max(d(R?),d(Rg))
vii) d(begin S end) = d(S)

viii) d(P(t,v)) =0

ix) d(El’EZ) = d(E1)+d(E2)

x) d(P<=B) = d(B)+1

xi) d() = 0 (depth of the empty system of procedure declarations is 0)
xii) d(-val xjvar y|S>) = d(S).

d(S) corresponds to the level of nesting of procedure declarations within

the statement S.

By £(S) we denote the length of a statement S.

DEFINITION 2. Suppose that A]""’An are some well-ordered sets. Then {K

is the following well-ordering on A]X...XAn:

A v .
(al,..-,an) <£'(a],...,an) iff
. o .
Fi(l<i<n A Vi(Isj<i » aj aj) A (ai<ai))'

<€ is called lexicographical ordering. Observe that the definition of the
meaning M(E[S)(8) was given by the <y~induction with respect to

(d(1)+d(8),£(S)).

LEMMA 1. Suppose that ¥: HOPR S R gnd o: VR S H& (n,k 2 0) are monotone

. - n
functione. Let for all n e H

10

)1

d{n) = ?(n,atinn+l,...,nn+kb(ﬂ.n

eoesl
n+l? *n+k
Then

YL = (b ylin " iy d .
(v, (w:,p(aun+l,...,qn+kh(dx,nn+1,...,nn+k)))

Observe that the above lemma is theorem 3.2 from [21 (p.24) rchough in

a slightly different formulation.

rocedure declara—

. A n
LEMMA 2. Let E and E' = <Pi=£i>i_ be

trona. Inen

= M(E,Q;cBl[6/’13],...,Qr’leBn[Q'/'Is}iS[Q'/Ej)(@)

for every 8 ¢ 0, S ¢ S and sequences Q =(Q1,...,Qn) and Q' = (Q;,...,Q;)
such that for j = l,...,0 Qj and Qi do not occur free inm E, E' or S.
PROOF. We leave it to the reader. Proof proceeds by ﬁ£~induction.w.r.t.
(d(E,E')+d(S),£(S)) and is straightforward, though details are tedious.

LEMMA 3. Let E = <P,eB.>0_
= i™°i7i=1

of procedure declarations such that for j

. +

and E' = <P.«$.>9_k
] j=n+l
n+l,...,n+k Pj does not occur

(n,k 2 0) be given systems

LI

i1 E. Then for all S ¢ S ani 8 € ©
i) M(ELE'IS)(8) = M(E'|S) (8{ueE29/P1) where P = (PyeeesP)
ii) M(EIS)(6) = M(E,E'"IS)(8) under the asswmption that for

i = n+l,...,ntk P. doeec wnot occur in S.
} b ? J

What we need for our considerations 1is the property i). However the
proof of 1) uses the property ii) and, what is worse, the proof of ii)
uses 1). We prove i) and ii) simultaneously by <£~induction with respect
to (d(E,E")+d(S),{(S)). The apparent circularity in the proof is avoided
thanks to the observation that 1) can be proved due to inductive assumption
about 1) and ii), whereas ii) follows from 1), which at this moment is

already proved, and the inductive assumption about ii).

PROOF. Let @ and S be arbitrarily fixed. Assume that 1) and ii) are true

for all El,E;,S] and ¢ satisfying the assumptions and such that

(d(EI,Ei)+d(S]),E(Sl))<£ (d(E,E")+d(S) ,£(S)).

We prove at first i),
We have to consider various cases depending on the form of S. All cases
follow straightforwardly from the inductive assumption with the exception

of two.

CASE I. S is E";R3 where E" = <Qi¢£i>?=l e £ (m 2 0) and R3 € R3.

Let Q = '(Q],...,Qn). Then M(E,E'"|E";R3)(6)

= (by definiton)
M(E,E,Q)eB![Q'/Q0,...,Q1e81 Q' /QTIRIQ' /3D ()

where Q' = (Q;,...,Qé) and Q;,...,Q% are the first variables ¢ PV

. . 3
s.t. for i = 1,...,m Qi does not occur in E,E',E" or R

= (by inductive assumption)
M(E',Q]«B1[Q' /AT, ...,Q"=B![Q" /Q]IR[Q" /Q])(e{u® *%/B)), since
d(E,E',Qj«B}[Q"'/Q], --,Q'=$ Q' /Q])*-d(R [Q'/QM)

= d(E,E',E") +d(R3) L A(E.E'Y + d(EM) + d(RD) < d(E,E') +d(S),

so for El E, E; =E', Q «B! [Q /Q1,. ..,chBm[Q /Q1

and S -R [Q'/Q] i) holds
= (by 1emma 2)
M(E',QU=BI[Q"/QT, ..., QB! [Q"/Q] IR’[Q"/Q]) (e {ne™ > /B))
where Q" = (QY,...,Q") and Q],...,Q; are the first variables ¢ PV
s.t. for i =1,...,m Qg does not occur in E',E" or R3
= (by definition)
1 ".p3 E,0 3
M(E'|E";R7T) (6{ud">"/P}).

CASE II. S is P(t,v) for some P ¢ PV, t € IE and v € IV. Then by definition

M(E,E"|P(t,v)) () = e{u¢E’E"e/(P],)}(P)(t,v) and

n+k
MCE' P (t,v)) (o{net2®/P)) =

E,8 5
E',9{uo¢ > /P}

e{uéE’e/(Pl,...,Pn)}{UQ /(Pn+,,.-.,) H(P) (t,v).

n+k

Thus it is enough to prove that

E,8 =
' E E',8{ud¢ *" /P
o ¢E,E 8 _ (Lo ,e,1J<I> ,0{u /P}

We have for all ne H and i = I,...,n

= (by inductive assumption)

3

.t"v'M(E'jBi?t',v'])(9{n/P}), since

d(E')+d(Bi{t',v'])

d(E’)+d(Bi) < d(E,E")+d(S),

so for E, empty, E; =E', § = Bi[t',v'], 8, = 8{n/P}
11) holds.
= (by inductive assumption)
, - = " 8{n/P .
et 1Bi{t',v'])(e{n/P)fu$E 01n/ }/(Pn+l,...,Pn+k)}),slnce
d(E')+d(Bi[t',v']) < d(E,E")+d(S), so for E] =E'",
E; empty, Sl =Bift',v'], 8, = 8{n/P} i) holds.
1 Iy
= (by definition of @?’E ’b)
A CRTCIE LS
i
Define ¢: Hn+k ~ H" and Q: Hn+k - Hk as follows:
- E,E',8 - E,E',8,-
¥(n) = (¢]’ i (n),...,én’ ()
where n ¢ Hn+k
LT E,E',8 - E,E',8 -
Of(n) = (a°9 ’ P] ?
~~('I) (Yn+! (n)’-.""n""k (n))-

So we have ju
(2) 3F

Obscrve that

C
JELET,S
n+j

=)

R

vetav M B j{t',v'J)(ekﬂls---,n

)
R

st proved that for all n ¢ H

§ = - E',8{n/P}
(n) = ¥(n,ue" {n/}

).

for j = l,...,k and for all nl,---,ﬂn+k e f

WP e,

n+k

n+j

/(P

n+l? ot

E',et{n seeuyn)/ (P P)}
,! £ y ooy
i n] n (nn+l""’nn+k)’

Pn+k

e MO B L le ' D Gy,) /(P P) H
1 n 1 n

Pn+k

D

n+177 Tnak

b

)

so for all Myseses g € H

. .
- oE ,9{(n],...,nn)/(P!,...,Pn)}

SIC TN (

).

n PR
n+l? ek

In particular for every n ¢ H"

v P
U‘I’E se{anJ.

(3) u(knn+],...,nn+kﬁ(ndh+],...,n)) =

n+k

By (2) and (3) we get that for all n ¢ H®

E,0,=y _ y/= -
¢ (n) = W(n,u(knn+l,...,nn+k3(n,nn+l,...,nn+k))).

Since ¥ and © are clearly monotone, by lemma 2 we get

8

E,® E
(4) U(‘yaﬂ) = (Uq> ’ ’u(}‘nn+l""’nn+k9(h® i ’nn+19""nn+k)))o

But by definition for all NyseeesN g € H

E,E'

6
= b b
(¥(npsenesn)50 50 aayn 1)) = 0 (Mpseeesn)

SO

1
5) u(y,Q) = potsE 8,

Now by (4), (5) and (3) we get (1).

We now prove ii).

Again all cases are straightforward with the exception of the same two ones.

CASE 1. S is E";R3 where E" = <Q.¢£ﬂ>? and R3 e R3. Let Q= (Q,,...,Q).
s i 3= ‘ m

M(V!E";R3>(9)

= {(by definition)

M(E,Q/«=B}[Q'/Q1,..,q =B [Q" /QVIRPIQ" /3D) (8)

where Q' = (Q',...,Qé) and Q;,...,Qé are the first variables ¢ PV
3

.

s.t. for i = 1,...,m Q{ does not occur in E,E" or R

= (by lemma 2)

H(E, Q=B [Q"/QT, ..., Q =B [3"/Q1IR°LQ"/QD) (8)

where Q" = (Q",...,Q;) and QT,...,Q; are the first variibles e PV
s.t. for i = l,...,m Qg does not occur in E,E',E" or R
= (by inductive assumption)
M(ELE', QU8 TR/, ..., QB [T IRIT/AD (8), since
by ﬁu}chiictofiﬂx_,,qg —Pj—tj = n;l:..;,n+k) does not occur in
E,Q)=B1[Q"/Q1,...,Q =B [Q"/Q] or R7[Q"/QI. Also
d(E,E", Q=81 [Q"/Q,...,Q =B [Q"/Q]) + 4(R’IQ"/AD)
= d(E,E',E™) + d(R) < d(E,E') +d(S), so for
E, = E,QT«ﬁ;{a"/QJ,...,Q;=B;[5"/6], E} =E' and S, = R°13"/3)
ii) holds,
= (by definition)
H(E,E'[ERD) (8) .

CASE II. S is P(t,v) for some P ¢ PV, t ¢ IE and v ¢ IV. Then by definition

. 8
M(EIP(t,v)) (8) = 6{uo"> J(P e e VIR (E,).
1) a8 olvouay proved for E,E' and P(t,v), so

M(E,E"IP(t,v))(8)

H

M(E'zp(c,v))(e{u¢E’e/(Pl,...,Pn)})

]

A N
G{ub /(Pl,...,Pn))

Ev’eiu$; “/(Pl,...,Pn)}//
1h ,
fu (P ypseerP) TPI(E,V).

By assumption P ¢ Pn for j = 1,...,k, so clearly

+]

. E,8
e{ud /(Pl,...,Pn)}(P)(t,v)

E. &
= a8{ud"” /(P ,...,P)}
1 n
/

{ud

E',e{p¢5’8/<Pl,...,Pn>}
A

n+])"')Pn+k)}(P)(t’v),

which concludes the proof.

15
This finishes the proof of lemma 3.

COROLLARY. Suppose that E = <Pi=£i>?= e E. Then for all 6 € 0, t ¢ IE,

1=]
velland 1 = 1,...,n

]

M(EIPi(t,v))(e) M(EIBi[t,v])(e).

PROOF. By definition

]

MEIR; (£,)) (8) = o™ ®) (£,v)

]

("™ (£, v)

o220 (o™ %) (e,)

MC 1B;Ce,vD) (0{ue™ /(P .., 2 D)

(by lemma 3i))
M(EIBi[t,v])(e).
Now we are in a position to prove theorem 1.

PROOF OF THEOREM 1.

i) We prove it by <£-induction w.r.t. (d(E)+d(S),£(S)). All cases are

straightforward with the exception of the case when S is E;R3 for some
3

E = <P.«<B.>7 . ¢ E and R~ « R3. Then
1 1 1=1

MO(E;RB)(G) MO(R3)(e{qu’e/§}) where B = (P,...,P)

by ind. assumption

MO(RB)(e{uéE’elﬁ})

v MO IRD etue® A

by lemma 3 i) M(EIRB)(G)

by lemma 2 M(Q=B,[Q/],...,Q_=B_[Q/PIIR°[A/BD) ()

where Q = (Ql""’Qn) and Ql""’Qn are the first

variables ¢ PV which do not occur in E or R3

M(E;RY) (6).

by definition

16

ii) Assume that E = <Pi«ﬁi>?: ¢ E and let P = (Pl""’Pn)' We have

1

M{ETSY(8)

i

(by lemma 3 1))
MO) (sl

(by i)) 1s)y(eluy 27 /PY)

#
—~

— "= M0(5)<e{qu’6/§}>

by definition MO(E;begin S end)(9).

7. OPERATIONAL SEMANTICS

. . . . w
Now we introduce an operational semantics of our language. Let &
.. s e n
denote the set of all finite or infinite sequences of states and let

denote concatenation of two sequences. We define a function

Comp: S « & = Lnv x £ » t¥ as follows (Out(S,0,¢,E) denotes the iast
element of Comp(S,u,c,E) if that sequence is finite, and is undefined

otherwise):

Comp(v:i=t,o,c,E) = <o{R(t)(e,0)/L(v)(e,0)}>

Comp(Rf;Rg,a,s,E) = Comp(Rf,o,e,E)nComp(Rg,Out(R?,o,e,E),E,E)

. {<0\nComp(R?,o,s,E) if T(p)(e,0) =T

Comp(igp theni(?else R;fgje,s,E) = . 3
<o> 'Comp(R},0,e,E) if T(p)(e,0) = F

Comp(P(t,v),0,c,E) = <0>”Comp(8[t,v],o,s,£)
where P=B is an element in the sequence E
: l « 2
Comp(var x3R ,0,¢,E) = <5“\Comp(Rl(y/x},ﬂ,su<y,a>,E)
wherey and o are like in (*) fromsection 5
N 2 R 2 s
Comp (array aj;R7,0,¢,E) = <o> Comp(R Lb/a],c,su<<b,v>,uv>v I’E)
darray ¢
where <b,v>andflvare like in (**) from section 5
Comp(?lcﬁl,...,Pd=Bn;R3,0,E,E)
N, 3.% 5 = = - =
= «o>» Comp(R IQ/P1,&,&,E,QlcﬁlEQlPJ,...,QHGBU[Q PD

/
where Q = (Q5..45Q), P = (P),...,P) and

17

Ql""’Qn are the first variables e PV such that
for each j = 1,...,n Qj do not occur in
E,P 3

B se..,P #B_or R,

Intuitively Comp(S,o0,e,E) represents the sequence of successive states
of the computation determined by S from the initial state ¢ in the environ-
ment € and with procedure declarations E.

It is always assumed that e is defined on all simple and array variables
which occur freely in E or S and that there are no procedure variables which
occur freely in E;begin S end. The last assumption is clearly necessary for

procedure calls.

8. EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS

Now we prove that operational and denotational semantics which we
defined are equivalent. Observe that in the definition of M(E|S)(0) (e,0)
it is not required that there are no procedure variables occurring freely
in E;begin S end. Thus M(E[S)(8)(e,0) can be defined whereas Comp(S,0,¢,E)
not, so an additional assumption is necessary. This what we prove is the

following theorem:

THEOREM 2. Suppose that E € £, S ¢ S and that there are no procedure
variables which occur freely in Ejbegin S end. Then for all € € Env, o0 € I

and © ¢ 0
M(EIS) (8) (e,0) = Out(S,0,e,E).

More precisely: either M(E|S) (8)(e,0) and Out(S,o,e,E) are both defined

and equal or are both undefined.

PROOF. Suppose that for some € € Env and 0 € I Out(S,0,e,E) is defined.
We prove that then Out(S,o0,e,E) = M(EIS) (6) (g,0).

Suppose by induction that it is true for all 6,S',0",e' and E' satis-
fying the assumptions and such that the length of Comp(S',0',e',E') is
shorter than the length of Comp(S,0,e,E). We have to consider various cases
depending on the form of S. In all of them the claim follows straightfor-

wardly from the inductive assumption. Only the case of procedure calls is

18

not obvious.

Suppose that § is P(t,v). Then

i

Qut(P(t,v),0,c,E) = Out(Blt,v],s,e,E)

where PeB {s taken from E. By inductive assumption
MEiBLt,v])(8)(e,0)

is defined and equal to
Qut(Blt,v],0,¢,E).

By corollary |
ME[BLt,v])(8)(e,0) = M(E[P(t,v)) (8)(e,0),

so the claim follows.
The proof that the converse implication holds, to which the rest of
the paper is devoted, is much more difficult. We shall need the following

lemma.

LEMMA 4. Suppose that for some E € E, ¢ ¢ Env, 0 ¢ 2 and S ¢ 8
Comp(3,0,¢,E) 28 a finite sequence. Then for every E' ¢ E such that all
rrocedure variables ocourring freely in E' arve declared in E the

sequences Comp(S,o0,e,E) and Comp(S,c,e,E,E") are identieal.

PROOF. We leave it to the reader. Proof proceeds by induction with respect

to the length of Comp(S,0,c,E).

n

i=}
. g .

used the fact that the function ¢ °° is monotone. What we need now is that

Suppose that § ¢« O and E = <P.¢%i> ¢ E (n20). Up till now we have

sl
o I

P is continuous, i.e., that

(k

i
o
=

N’

NE,B o - - o0 E’e —
M \kgO ”k) kgO) (nk) for all

In
=y

s.t.

N

"0

We lvave the proof of this fact to the reader.

. E
Now define nk’a e H* (x > 0) as follows:

@,...,®

n —times if k=0
nE’e = E,6,6 E,©0
k A Cni if k > 0,

where § is the empty function. Then, by continuity,

M¢E’e - .U

- . n.
Now assume that £ > 0. Let for i = 1,...,4+] E. = <P3¢B;>ji1 be a

system of procedure declarations and let S e S.

DEFINITION 3. The sequence E]-...-EE~E£+1-S (where dots signify separators
and are used instead of commas in order to avoid ambiguities) is called
nested if

i) whenever a procedure variable P occurs freely in Ej then j > | and

P is declared in El""’E'

3-!
ii) all procedure variables which occur freely in S are declared in
ElseensEpy
iii) for £ ~ Q d(E€+])-+d(S) < d(EE) < L. T d(E]).

Intuitively a sequence Ej*e-etEpeEp "8 is nested if for j = 1,...,¢
Ej+l occurs in a procedure body of a procedure declared in E. and § is
a statement in the scope of E (in a procedure body B@ (1 € 3 € ny)).
£+1 3 0 £
If £ = 0 then iii) is plainly valid.
DEFINITION 4. Let E]."‘.EK'E£+I'S be a nested sequence, 8 € @ and let

kl""’kﬂ be some non-negative integers. For i = 1,...,£~-1 let

i
n.
depends on El""’Ej' We drop indices indicating this dependence since no

where 51 = (PT,...,P) and ﬁi stands for kl""’ki' (Strictly speaking 6

k5

confusion should arise.) If £ = 0 then simply egz is 6.

20

A word of explanation should help. ﬁk , l.e.,

B8y
r’éj’;.,z’~ ?
Uy f/?i

J

. .] 1 i . . -
assigns to procedure variables P!,...,Png the ai-th approximation of their
meaning computed with respect to 9. &~ , i.e.,

E, B / ¢ E.,0, /
1 27k A~
oo o {2 R

L 1 / 2
. . s 2 2
agrees with &, on all procedure variables different from Pl""’P“7 and
2 2 -
assigns to P?,...,Pn the k -th approximation of their meaning but now
’ 2 2

computed with respecE to %> . And so on. Summarizing, values assigned to
. o I

Pl-s where 1 < i < iO < {, 1 <€]« n, enter the definition of the values
] i

assigned to Pjo-s (where | ¢ j = niO)'

LEMMA 5. Assume that for some nested seguence E1°...-EE-E2+1'S, nov=negative
' tode : 3 o e . oA a5 o b
integers k!,...,kg, 8 e 0, ¢ ¢ Envando ¢ & M(E€+lis)(ek£)(e,c) L8
defined. Then

M(€E+lé5)(ﬁgc)(a,m) = Out(S,n,s,E],...,E£+]).
PROOF. With every nested sequence E]-...'EE-E£+]-S and non-negative integers
Raeesky e associate an 7w ormation sequence

(Kl,...,ké,n,...,m,d(E€+1)+d(S;,L(S))

— [—

c~times

where 1f £ = 0 then ¢ = d(E€+‘) +d(S) and else ¢ = d(EI)-E.

The following explanation should clarify the above notion. Suppose
that H(E(+l18)(9£()(8,0) is defined. Then for any i = 1,...,{ and
j= l,...,ni during the execution of § starting from the state ¢ in the
environment ¢ and with procedure declarations E],...,E£+] the stack of
currently gvtive procedures will never contaln more than ki copies of
calls of P}. We can view k. =s as bounds associated with appropriate levels

of nesting d(Ei). We cannot say anything about the execution of other

procedures which could be called during the execution of S. ®-s stand for

21

the bounds associated with each other level of nesting. On the whole there

can be at most d(El) (or d(E£+])4-d(S) if £=0) levels of nesting, which

explains the choice of c. If

)

Q,5e0.,a ,a a
(1? >"n’“n+1’"n+2

and

(bl,...,bk,bk+],bk+2)

are two information sequences, then by definition

(al,...,a iff n £k

n2@n+103042) < (Ppseeasby sby)
and

(a],...,an,an+],a

) <£ (b],...,b b

n+2 0Pk 12 Ppr2)

< is clearly a well-ordering on the information sequences.
We prove the lemma by <-induction with respect to associated informa-
tion sequences. Let a be the information sequence associated with

. «F = o k k ..
E] e Eg E£+1 S and ooy and assume that the claim is true for all

nested sequences E ', non-negative integers k! ki, 8" € 0,

]""’ K’
e Env and o' € I such that b < a where b is the associated information

'. o '. v L]
BEEE EK E£+1 S

E'

sequence.
We have to consider various cases depending on the form of S.

CASE I. S is v:=t. Obvious.

CASE II. S is R?;R;. By definition

3..3 _
M(E£+1|R1;R2)(eg£)(e,o) =
3 3
M(E£+1|R2)(9K£)(E’M(E£+1lRm)(eiz>(e,c)).

Observe that

3
d(Ep,) +d(R)) = d(E,) +d(S)
3 .
dmﬁﬂ)+dm? sdmﬂﬂ)+d@%

3 3
so E1°...'E£-E£+1-Rl and E1 .« EZ E£+l R2 are nested sequences and clearly
for 1 = 1,2

[
[a%

3,
(K preeeakpn®ye ey msd(Ep, 4R, E(RD) £ @

A 4

c.~times
i

where if € = 0 then ¢. = diE(+

1

E@+d{ﬁf) and else c; = d(El)—i, because

WIS N » - .
LRY) < L(8) for 1 = 1,2,
Thus by inductive assumption

3 |3
A H - £ , | A c.0
H(Eg, 118 (5) (2ol Bg, R (5) (240))

i

M(E ,

3
g1 R ()

-
e
=]

))

N 3
) (2,00t (R),0,6,E 4 annsEp,

t,h!,...,E€+l),£,51,...,E£+])

K,
Out(Ri,Out(R?,w,

i

3.3 e
Out(R};Rz,c,s,hi,.. 041

3
CASE III. S is if p then R; else R

o Lo

fi. Similar to case II.

CASE 1V. S is wvar x;R]. Then

,\f(E€+

lvar x;R]‘Hf**)(e,0) = M(E ‘iRliy/x])(%) (eu<y,a>,0)
1= k, K,

)]
£
where y and « are as in (%) from section 5. Observe that d(Rl[y/x]) = d(8),

80 El-...-EF-E€+}-Rl[ylx] is a nested sequence and since K(R][y/x])~<ﬂ(8)

) 1. : I
(k',...,k{.,m,...,\f,d(EiHHd(R [y/xD, R [y/xD) < a

c;*times

where if £ =0 then ¢ = d(E8+,)+d(R [y/x1]) and else c = d(El)—E. So by
inductive assumption
1 o
M(Et+l;R Ly /ey (oe Y(euey an,0)

o

L

Out(Rliyix],ﬂ,ﬁw<y,&*,F

'l""’E

€+1)

it

N
Qut(var x;R ,0,2,E ..., E,

] ¥

. . 2 ..
CASE V. S 1s array aj;R™. Similar to case IV.

CASE VI. S is E;R3 where E = <Qj¢Bj>? Then

=1°

. 3 -
M(E€+1|E’R)(ekﬁ)(E’O)

M(E£+l,Qicﬂlté'/ﬁl,..-,Q;=Bm[5'/5]IRBEG'/QJ)(eﬁz)(e,c)

where Q = (Q;,...,Q), Q' = (Q],...,Q)) and
;,...,Q& are the first variables in PV which

. 3
do not occur in E£+I’ E or R

(by lemma 2)
M(EZ+1,QY=B][5"/5],---,Q;meEQ”/QJ|R3[5"/5])(6§£)(8,0)

where Q" = (Q" ...,6) and QT,...,Q" are the first
variables in PU which do not occur in E

£+1’
E or R3.

Observe that

i) all procedure variables which occur freely in

QY¢%][6"/6],...,Q;=Bm[6"/6] occur freely in E;

ii) 1if a procedure variable occurs freely in R3[6”/6] then it is either
Qg for some i < m or it occurs freely in E'R3-
iii) if d d(E£+],Q” =B [Q"/Q],...,Q”¢% [Q"/Q])+—d(R [Q"/Q]) then
3
d:d@QH)+d@)+dm) <d@£1)+MER)

3 Q Ld 3
Thus, since EI — E’ £+]- ;R™ is a nested sequence,

El*.A.-EZ-E£+1,QYcﬂlfa"/a],...,Q;cﬁmfa"/aj'RBEQ"/aj is a nested

sequence, as well.

Clearly, by 1iii)

(k] LR '9k£’ms .- '>m,d"€(R3[a"/6])) < a

c]—times

where if £ = 0 then ¢, = d and else c. =

23

| | d(EI)—Z, so by inductive assumption

M(E€+],QTcﬁl[a"/QJ,...,Q;=Bm[6"/5]|R3[6”/53)(Gzz)(E,G)

= out (R>[3"/31,0,¢, Es--esEp, 5Q)eB, [Q"/q1, ...,égcﬁmté"/él) =

1]
e

= (by definition)

3

Out (E3R ,s,g,E],...,E).

£+
CASE VII. S is P(t,v) for some P ¢ PV, t ¢ IE and v ¢ IV. Since

E!-...-EE-E£+1-P(t,v) 1s a nested sequence P 1is declared in El""’E€+1'

Subcase 1. P is declared in E "’EE' Thus £ » 0 and for some i and j such

1°°

that 0 < 1 < -1, 1 < j < n, P o= P}*’. Then by definition

ME, P2 e, v (82 Y (e,0) = 80 @M (e, v) (ey0)
t+1°7 3 k, k,]
£ 14
=6 K (P%+l)(t,v)(5,c) (where if 1 = 0 then QK is 8)
0%er i
i+ ks

=4, (t,v)(:,0)
(1+] /j

E. s87 / E. 1587
b 1k n 1+ 1 (t,v)(s,0)
k., -l 3

141
E. O+
+1° k.
o : kx) (t,v)(c,0) is defined
i+]

F e B
I

it

hecause ki+l > 0, since (n

i+1’9£i/ Ei+!’bﬁi

=}, kn, _ (t,v)(e,0)
J ki+] 1 }

U T

E1+‘,’3Kl/

= \‘+‘. y/r1b ;
= ‘bj lt,\]»\ ki{nk' S i+1}>("”)

1+1

= M(1B, Tt,vl) (v c,0) .
(BJ Fe,v(K. k. _|)(t,.)
17 1+]

1

Lt .
Observe that d(Bj le,v]) = d(Ei+ 1 .

), so clearly E ...*E. .- -B;+l[t,v] is

a nested sequence. By definition

—l,m,.__,u,d(83+l[t,v?),((B3+lft,v]))‘(a,

¢ —times

|
where (since ¢ © 0) ¢ = d(El)- (i+1). Thus by inductive assumption

L) i 1 + I 1
1 1Bt ct,vJ)(GK K _l)(i,ﬂ)
] 1771+1

1+1
= Ont(Bi It,v},r,:,El,...,F

1]

Subcase 2. P is declared in EZ

P =

1

E -...-EE-E£+1~S is a nested sequence,

Out(P§+](t,W,O,E,El,...,E.)

i+1

(by lemma 4 (which assumptions are satisfied since

E1~... £+1 -S is a nested sequence))
i+1
OUt(Pj (t,V),O,€,E],..., »€+1).

+1
Pi+]. This means that d(E£+l) > 0, so if £ > 0 then, since

than d(El)’ which implies that d(E]) > £+1. By definition

1

, 07

M(Eg+ll e, v))(6+) (e,0) = (a3 k£>i(t,v)(€,0)
E s
(Tt k€>lct,v)<e,o>
(kETl’ k£> (t,v) (g,0)
% E£+1’ kg . .
for some k = 0 (because <k O My Z/ (t,v) (e,0) is defined)
1

E, ,6> ,E, 6>
- (o VTR (v evo)

i

)),

E+1s kz(Eprre kﬁ)(t,v)(e,o)

L

E B>
L+1 £+177k IR
= M([Bi [t,v])(@gﬂ{nk %/%£+lf}(€’0)

. Thus for some i such that | £ 1 < Ny

= M(C |B K ft VIKQE)(e,c)-
E;
£+1
Observe that d(Bf+l[t,v]) < d(E£+1), so clearly E,-...-E£+l~ -Bi [t,v]

is a nested sequence. By definition

2+1 Z+1 ,
(kl""’kﬂ’k’m""’m’d(Bi [t,,v],f,(B:.L e, vl < a
c]—times

£+1

where if £ = 0 then ¢, = d(Bi [t,v]) and else c, = d(E])-(£+]),

l

because k < .

25

there are £ natural numbers smaller

26

By inductive assumption

L AE] .
MC B, Te,vD)(er) (e,0)
1 I\v,k
{
= Out(B(.'+1

r 9 ~ ~
i Lt,v,i,C.‘,L,E],...,EE_H)

{+1 .
Out(Pi (t,V},ﬂ,H,El,...,E€+l).

This finishes the proof of lemma 5.

Now the proof of theorem 2 is immediate. Namely, suppose that for some
¢ ¢ Envand o ¢ & M(EIS)(8)(e,0) is defined. Then by assumptions of theorem

2 E+S is a nested sequence. Taking ¢ = 0 and applying lemma 5 we get that

M(E1S)(8) (e,0) = Out(S,0,¢,E)

what was to be proved.

Observe that the results of this paper hold also for the appropriate
fragment of ALGOL 60. If we require that the variables have a dynamic scope
instead of a static one then after the appropriate changes in all three

semantics (for example putting

M(var x;Rl)(P)(E,ﬂ) = M(Rl)(ﬁ)(e',o),
where
a ify = x
sy) = {
(y) if v #x

and « 1s the first address not in range(e)) the same results hold.

Infact, in both cases the same proofs work.

REFERENCES

[T APT, K.R. & J.W. DE BAKKER, Semwtice and proof theory of PASCAL

vrocedires (to appear).

[2] BAKKER, J.W. DE, “‘xod polut approoch in semantics: theory and applica-

“‘ovs, in: Foundations of Computer Science (J.W. de Bakker, ed.)

>

in
pp. 3-53, Mathematical Centre Tracts 63 (1975).

27

[3] COOK, S.A., Axiomatic and interprétive semantices for an ALGOL fragment,
Technical Report no. 79, University of Toronto (1975).

[4] HOARE, C.A.R. & P.E. LAUER, Comsistent and complementary formal
theories of the semantics of programming languages, Acta
Informatica 3, pp. 135-153 (1974).

[5] JENSEN, K. & N. WIRTH, PASCAL, User manual and report, Lecture Notes

in Computer Science 18, Springer (1974).

[6] LAUER, P.E., Consistent formal theories of the semantics of programming
languages, Report TR 25121, IBM Laboratory, Viemna (1971).

[7] MILNE, R. & C. STRACHEY, A4 theory of programming language Semantics,
Chapman and Hall, London and Wiley, New York (1976).

[8] MILNER, R., Program semantics and mechanized proof, in: Foundations of
Computer Science II, Part 2 (K.R. Apt, J.W. de Bakker, eds.),
pp. 3-44, Mathematical Centre Tracts 82 (1976).

[9] STOY, J.E., The congruence of two programming language definitions,
Oxford University Computing Laboratory (1976).

