
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

P.M.B. VITANYI & W.J. SAVITCH

IW 72/76

ON INVERSE DETERMINISTIC PUSHDOWN TRANSDUCTIONS

Prepublication

~
MC

DECEMBER ·

2e boerhaavestraat 49 amsterdam

B!BUOTHEEK MATHEMATISCH CENTRUM
-AMSTERDAiv1-

PJt.1.nted a.:t .the Ma.:thema.:ti.c.a.l Centlr.e, 49, 2e BoeJLha.a.ve&.tlr.aa.t, Am6.telr..dam.

The Ma.:thema.:ti.c.a.l Centlr.e, 6ou.nded .the 11-.th 06 FebJLuaJty 1946, .u a non­
p1to6U .ln.6:U.t!Lti.on a,i.m.i.ng a.:t .the pll.omo:Uon 06 pWte ma.:thema.:ti.C-6 and ..i.:t6
appUc.a.:ti.on.6. 1.t ,u, l!pon6oJLed by .the Ne:theJLf.a.nd6 GoveJLnment .th.ll.ou.gh :the
Ne:thw.a.nd6 OJtgan.lza.:ti.on 6oJL .the Advanc.ement 06 PWte Re&eaJLc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 68A20 68A25 68A30 94A30

ACM-Computing Reviews-categories: 5.23, 5.25, 5.26, 5.27

• ·1 • • • hd d . *) On inverse ceterm1n1st1c pus own trans uct1ons

by

P.M.B. Vitanyi & W.J. Savitch**)

ABSTRACT

Classes of source languages which can be mapped by a deterministic push­

down (DPDA-) transduction into a given object language (while their comple­

ment is mapped into the complement of the object language) are studied. Such

classes of source languages are inverse DPDA transductions of the given ob­

ject language. Similarly for classes of object languages.

The inverse DPDA transductions of the Dyck sets are studied in greater de­

tail: they can be recognized by a DLBA operating in time O(n2) but do not

comprise all context free languages; their emptiness problem is unsolvable

and their closure under homomorphism constitutes the r.e. sets. For each ob­

ject language L we can exhibit a storage hardest language for the class of

inverse DPDA transductions of L; similarly for the class of regular and con­

text free object languages. Lastly, we classify the classes of inverse DPDA

transduction.s of the regular, deterministic context free, context free and

deterministic context sensitive languages.

KEY WORDS & PHRASES: formal languages

deterministic pushdown transductionc

time- and storage complexity

hardest languages

This report will be submitted for publication elsewhere.

On leave from Computer Science Division, Dept. APIS, University of

California, San Diego. This research was supported, in part, by NSF

Grant MCS-74-02338AO I.

I. INTRODUCTION

Deterministic pushdown transducers (DPDT's) are deterministic pushdown

automata (DPDA's) which have been provided with an output tape. Such a de­

vice defines a mapping (DPDA transduction) from a language called the source

language into another language called the object language (while the comple­

ment of the source language is mapped into the complement of the object

language). DPDT's are often used as a formal model for certain important sub­

procedures used by compilers and even serve as idealized models for certain

simple types of compilers. For example, they appear to be a good model for

programs that perform syntax directed translations. (For a formal definition

of DPDT's and additional discussion on the relevance of DPDT's to parsing

and compiling see AHO & ULLMAN [I].) To comply with our claim that DPDT's

correspond to syntax directed translations we supply DPDT's with endmarkers.

We will be concerned with inverses of DPDT mappings in the following sense.

Given an (object) language L we investigate properties of the class S(L) of
-1

all languages of the form T (L), where T ranges over all DPDT mappings.

(Notice, that T may define a partial mapping.) Hence, S(L) is the class of all

source languages that can be mapped into the particular object language L

by means of some DPDT. If Lis a class of object languages, then S(L) de­

notes the class of source languages which can be mapped into some language

in L by some DPDT. Since the finite control of the DPDT can be used to per­

form a dete~ministic generalized sequential machine mapping of the output
- - - - -1 - -we have S(L) = S(L) where L = {L I LE dgsm (L)}. I.e. LE L iff there

is a dgsm mapping f and a LE L such that f(L) c Land
A

f (complement: (L)) c complement (L).

The pap ◄c!r is divided into two major sections. In the first section we

study properties of the class S(V) where Vis the class of Dyck languages

(i.e., languages consisting of all well formed bracket expressions over a

given alphabet of left and right brackets).

Since S(V) = S(dgsm- 1(V)), S(V) = S(V) where V 1.s the class of Dyck like

languages: LE v* if L = {ulvlu2v2 ... unvn I ulu2 •.. Un ED and

v 1v2 .•. vn '" E } where Dis a Dyck language over an alphabet ti disjoint

.,

2

from L Also, S(V) = S(VnREG) where REG denotes the regular sets. Many simple

computer languages are of the form V n REG; that is, a program is syntacti­

cally correct provided it has a well formed block structure and satisfies

some additional regular constraints. (Furthermore, KASAI [9] shows that the

closure of V n REG under homomorphisms which delete exactly the brackets

and leave the remaining symbols unchanged is the class of context free lan~

guages). Note also that since Vs dgsm- 1(D2), where n2 is the Dyck set on

two generators, S(V) = S(D2).

To study S(V) we use a device called a deterministic cancellation pushdown

automaton (DCPDA) introduced by SAVITCH [12]. It consists of a DPDT where

the output stack is used only to check that the output string is in the de­

sired object language. The languages acceptP.d by DCPDA's are exactly S(V).

In order to make the model more realistic we have changed the formal defini­

tion of a DCPDA slightly from the one given in [12]. We show that the DCPDA

languages are accepted by DLBA's operating in time O(n2), include the DPDA

languages but are incomparable with the context free languages. Furthermore,

we investigate closure properties and recursive unsolvability of various

problems for the class of DCPDA languages. As a by-product we obtain some

algebraic characterizations of the r.e. sets. In the second major section

of this paper we show that, for any object language L, we can exhibit a

storage hardest language for the class S(L) of all possible source languages.

Similarly, for the classes of regular object languages (REG) and context

free object languages (CFL) we exhibit storage hardest languages for the

classes S(REG) and S(CFL), respectively. Finally, we classify S(REG), S(DPDA),

S(CFL) and S(DLBA). In the Appendix we prove a (anti) "pumping" Lemma for

Dyck languages which is also of independent interest.

2. DETERMINISTIC CANCELLATION PUSHDOWN AUTOMATA

Cancellation pushdown automata were introduced in [12] and shown to ac­

cept the r.e. sets. These devices consist of a nondeterministic PDA with a

second pushdown store, called the auxiliary pushdown store. The machine may

write in the auxiliary stack but can not read in it.
The device operates just like a PDA, except that at each step it is allowed

to place a symbol on top of the auxiliary pushdown store. Thus, an alter­

nate way of describing it is to say that it consists of a PDA with an

3

auxiliary write-only output stack. The finite control can neither read nor

erase in the auxiliary stack. However, a set of'pairs of auxiliary stack

symbols are specified as cancelling. Whenever such a pair occurs on the

auxiliary stack, the two symbols spontaneously disappear. The device accepts

just like an ordinary PDA by empty store; both stores must be empty for

acceptance. In [12], the deterministic variety of these machines were shown

to accept only recursive languages. In this section we show amongst other

things that the deterministic versions of these machines (DCPDA's) accept

only deterministic LBA languages, but not all context free languages.

DEFINITION. A deterministic cancellation pushdown automaton (DCPDA) Mis

specified by the following items: a finite set K of states; two finite sets

of symbols, I and r, called the input and stack alphabet, respectively; a

specified start state q0 in K; a specified start stack symbol z0 in r; a

transition function o which is a partial function from K x (Iu{e}) x r

into K x r* x (ru{e}); and a partial function E from r x r into {e}.

Eis subject to the following restriction. There are disjoint subsets tleft'

t . h in rand a one-one mapping h from t 1 ft onto 8 . ht such that for all rig t e rig
A E tleft' E(h(A),A) = e, and E(B,A) is undefined if BI h(A). Eis called

the cancellation relation for M. We insist that the transition function o

satisfy the following restriction: for each state q and pushdown symbol X,

if o(q,£,X) is defined, then o(q,a,X) is undefined for all input symbols

a E Lo

The intuitive meaning of o is similar to that of a DPDA. If

o(q,a,X) = (p,y,Y), then whenever Mis in state q scanning input a with X

on top of the ordinary stack, it will, in one move, replace X by y, put Y

on top of the auxiliary stack, go into state p and finally advance the in­

put head past a. Intuitively E(B,A) =£means that any time A and Bare ad­

jacent in the auxiliary stack with Bon top of A, BA is replaced bye. In

actual computations this replacement always happens on top of the auxiliary

stack.

DEFINITION. Let M be a DCPDA and carry over the notation from the previous

definition. An instantaneous description (ID) of Mis a triple (w 1qw2,s,a)

where q is a state, w1 and w2 are strings of input symbols (KnI=0), and

4

both Sand a are strings of stack symbols. The interpretation is that Mis

in state q with input w1w2 , that the input head is scanning the first sym­

bol of w2 and that Sand a are the contents of the auxiliary and ordinary

stacks, respectively; the leftmost symbols of Sand a are considered to be

the "top" symbols. The yield relation, 1-, between ID's is defined by:

(i) (w1qw2 ,BAS,a.) I- (w1qw2,S,a.) provided, E(B,A) = e:

(ii) (w1qa~S,Xi:l) l--<w1apw2,YS,ya) provided o(q,a,X) = (p,y,Y) and Sis not

of the form BAS' where E(B,A) is defined.

I-* denotes the reflective, transitive closure of I- . In order to make the

model more realistic we will assume that our DCPDA's have a distinguished

endmarker $. So when talking about an input string w, we assume that$ does

not occur in wand that the input tape actually contains w$.

DCPDA's accept in essentially the same way that DPDA's do but we add

the additional condition that in order for an input w to be accepted, the

computation on w must terminate with the auxiliary stack empty. I.e., let

M be a DCPDA and retain the notation of the previous definition.Mis said

to accept the input w by empty store if

* I- (w$p,e:,e:)

for some state p. When talking about acceptance by final state we assume

that a set F of final states have been specified; we also assume that all

final states are halting states.Mis said to accept the input w by final

state if (q0w$,e:,z0) 1-* (w$p,e:,a.) for some final state p and some string

a of stack symbols. Notice that M halts whenever its ordinary stack is

empty or when it enters a final state. It is easy to see that acceptance

by final state and empty store are equivalent in the sense that given any

DCPDA that accepts by one of these conventions, we can find another DCPDA

that accepts exactly the same input strings using the other acceptance con­

vention. A language is said to be a DCPDA language if it is the set of all

strings accepted by some DCPDA.

5

Our definition of DCPDA's differs slightly from that in [12] in that

(a) The cancellation relation E defines the Dyck set over ~left' ~right

where i-n [12] it could define also lengthpreserving homomorphic

images of Dyck sets, and

(b) in [12 J the DCPDA I s were not provided with an endmarker

The first restriction makes the DCPDA languages equal to S(V) while

the added power from (b) makes the DPDA transductions relatively more real­

istic. From the presented definition it should be clear that the DCPDA

languages equal S(V).

Note that by adding an endmaker to the input we got into the difficult, but

not unrealistic situation, that our devices are not truly on-line. But

neither are they truly off-line since the input is read from left to right

and if a part of the stack is accessed, all above it is irretrievably lost.

Hence, we cannot use lower bounds for on-line computations such as in

GALLAIRE [2], but neither can we use the upper bounds from off-line Turing

machines.

In the sequel it will appear that DCPDA's are rather powerfull; in

terms of the Chomsky hierarchy the situation is that DPDA c DCPDA c DLBA

but DCPDA and CFL are incomparable. CFL, DPDA, DCPDA and DLBA denote the

class of context free languages, deterministic context free languages,

DCPDA languages and deterministic context sensitive languages, respectively.

In order to get a feel for the power of DCPDA's and to have some examples

to use in later theorems, we now give a few examples of DCPDA languages.

EXAMPLE 2.1. 1 1 = {anbncn I n ~ 1} is accepted by a DCPDA Mas follows.

M checks for membership in a*b*c*withits finite control. Alla's are

pushed in the ordinary stack. When the machine starts reading b's it pushes

ab on the auxiliary stack and deletes an a from the ordinary stack for

every bread. For every cit pushes ab on the auxiliary stack. The cancel­

lation relation is defined by E(b,b) ~€,With some minor embellishments

M accepts 1 1 by empty store.

R I * EXAMPLE 2.2. 1 2 = {w ¢ w w E Z }, where ¢ i Z, can be accepted without

using the auxiliary stack at all; 12 is a DPDA language.

6

EXAMPLE 2.3 .. 1 3 = {w ¢ w I w Er* and¢ i E}. M pushes won the ordinary

stack until it reads the marker¢. Subsequently,M transfers the contents

of the ordinary stack to the auxiliary stack until the ID (w¢pw$,wR,z0)

occurs. Then the remainder of the input is read and for every input symbol

a M pushes a on the auxiliary stack. Upon reading$, Menters a final state

and halts. With the cancellation relation defined by E(a,a) = E for all

a EI the machine accepts 1 3 by final state.

We leave it to the ingenuity of the reader to ascertain that

EXAMPLE 2.4.

{ (w¢)n I * ¢ i I I } ' LS = W E I
'

and n ~

16 = {(ai-Ib/ I i ~ I } and

{(w¢)n I * ¢ i and n lwl} 17 = w E E I =
'

are also accepted by DCPDA' s.

We now proceed to show that DCPDA's accept in linear time. Call the

associated DPDA M of a DCPDA M the DPDA obtained from M by deleting ass
the auxiliary stack mechanism. From the definition it is clear that M

halts on an input word w iff (and in at most k times as many moves for

some constant k) M halts on w. Hence all DCPDA's accept in linear time ass
iff all DPDA' s accept in linear time.

LEMMA 2.5. DPDA's accept in linear time. This is true both for acceptance

by empty store and final state.

PROOF. Let M be any DPDA accepting by empty store. Starting from a state

p with Z on top of its push down stack of heigth h, M can do one of the

following sequences of moves.

(i) M makes a sequence of E-moves of which the last one makes the heigth

of the stack fall for the first time below h.

(ii) M makes a sequence of E-moves ended by a read move at which time

the stack heigth is h + x for some x ~ 0 and it never has fallen

below h in the meantime.

7

(iii) Like (ii) but the last (read) move makes the stack height h - I for

the first time during the execution of the sequence.

(iv) M enters a loop, i.e., it keeps on making £-moves forever without

the height of the stack ever falling below h.

We associate with M another DPDA M' which simulates the behavior of M such

that for each (state, stack symbol) pair of M it simulates the subsequent

sequence of moves of type (i)-(iii) in a single move. (state, stack symbol)

pairs which start a sequence of type (iv) are left undefined in M' because

if they occur M can never accept. Clearly, M' accepts exactly the same in­

put strings that M does. Now M' never increases the height of its stack

except possibly when it reads a (non-empty) input symbol. By well-known

arguments (see for example HOPCROFT & ULLMAN [8]), for each M there is a

constant c such that the length of the move sequences (i)-(iii) is bounded

above by c. Therefore, for each M, there is a constant l which bounds x

in (ii) from above, and which is the length of the longest string M' can

push on its stack in a single move. In reading an input of lenth n (inclu­

ding the end maker if there is one) M' pushes at most nl symbols on its

stack. Hence M' makes at most n reading and nl + 1 popping £-moves during

its computation (the extra one is for the original stack symbol) and hence

accepts within n + nl + I moves.

Hence M accepts within c(n+nl+l) moves, i.e., in linear time.

The argument for the case where M accepts by final state is essentially

the same, even if we would not insist that accepting states are halting

states. The above proof is more or less implicit in GINSBURG & GREIBACH

[3]. □

Hence we have:

THEOREM 2.6. DCPDA's always accept in linear time.

The following corollaries are immediate.

COROLLARY 2.7. DCPDA languages are accepted in Zinea.r time by off-line

deterministic Turing machines with two scratch tapes.

8

COROLLARY 2.8. The class of DCPDA languages are included in the class of

deterministic LBA Zanguages.

COROLLARY 2.9. DCPDA languages are accepted by one tape -t;wo-way deterministic

Turing machines within time O(n2) and storage O(n).

The next Theorem says that the time bound in Corollary 2.9 is the be.st

possible.

THEOREM 2.10. There are DCPDA languages which cannot be accepted by one tape

deterministic Turing machines in time T(n) if sup T(n)/n2 = O.

PROOF. The language L2 of Example 2.2 is a DCPDA language but can not be

accepted in T(n) which grows slower than O(n2), HOPCROFT & ULLMAN [8,

Theorem 10.7]. D

It seems intuitively clear that languages like L = {wwRlw EE*} where an

accepting DCPDA would have to "guess" where the middle of the string is

cannot be accepted by a DCPDA. We do not, however, have a proof thereof£

and therefore disignated the long and cumbersome proof of the next Theorem

to the Appendix.

THEOREM 2.11. There are context free languages which are not DCPDA languages.

is an example.

By definition all deterministic context free languages are DCPDA languages.

The inclusion relations between the family of DCPDA languages and the other

relevant language families is shown in fig. 1. l)

Next we look at some language theoretical properties.

THEOREM 2.12. The class of DCPDA languages is closed under intersection

with a regular set, inverse deterministic gsm mappings, marked union,

marked concatenation, marked Kleene * and marked deterministic CFL substi­

tution. It is not closed under length preserving homomorphisms and union.

9

PROOF. The closure results follow by routine techniques and we omit their

proofs. It remains to be shown that DCPDA languages are not closed under

length preserving homomorphism and union. The constituent elements of the

language 18 are all DPDA languages. Hence 18, which is like 18 but with all

constituent sublanguages over pairwise disjoint alphabets, is a DPDA lang­

uage. But according to Theorem 2.11 its length preserving homomorphism 18
is not a DCPDA language. Since 18 is a union of DCPDA languages, these

languages are not closed under union either. D

We next consider some results which characterize the r.e. sets in

terms of DCPDA's.

THEOREM 2.13. The closure of the class .of DCPDA languages under homomorphism

is the class of r.e. sets.

PROOF. In [12] it was shown that every r.e. set is accepted by some non­

deterministic CPDA;) So it will suffice to show that: if Lis accepted by

some nondeterministic CPDA, then we can find a DCPDA language LD and a homo­

morphism h such that L = h(LD). With this in mind, let M be a nondeterminis­

tic CPDA and let L be the language accepted by M. Without loss of generality,

we may assume that in any nondeterministic situation M has at most two choices

of next moves labelled as the O and I choice. We also assume that O and

do not occur in the input alphabet of M. Let 1n be the set of all words

of the form u0a 1u 1a2 .•• anun where the ai are symbols from the input alpha­

bet of M, the u. are in {0,1}* and the u. determine a valid accepting compu-
1 1

tation of Mon input a a2 ••• a in the following sense: there is an accepting
l n

computation of Mon input a 1a2 ••. an that makes length (u0) nondeterministic

moves before reading a 1, makes length (u1) nondeterministic moves from the

time it reads a 1 till just before it reads a2 , makes length (u2) nondeter­

mi?istic moves from the time it'reads a2 till just before it reads a3 and

so forth; furthermore u0u 1 ••• un is the list of nondeterministic choices

(either O or l choice) made by Min this computation. Clearly M can be

modified into a DCPDA to accept LD; the O's and l's determine the choice

of moves and so eliminate the nondeterminism.

If we define h by h(O) = h(l) =sand h(a) = a for a not equal to O or l

then L = h(LD) and the proof is completed. D

10

By combining the techniques used to prove the previous theorem and
3)

those used to prove Theorem 5 in SAVITCH [12] we can get the following

characterization of the r.e. sets. The proof of Theorem 2.14 is left to the

reader; the proof of Theorem 2.15. is limited to a brief sketch.

Let D denote a Dyck language over /J. and let [be an alphabet disjoint from

!J.. Then the Dyck-like language D (with [understood) is shuffle (D,[*).

THEOREM 2.14. (i) Ever>y r.e. set over> [is e:x:pr>essibZe in the foT'm h(DnL)

wher>e Lis a deteT'ministic context fr>ee Za:nguage, D a Dyck-like language

and h a homomoPphism defined by h (a) = e: for> a e: /J. a:nd h (a) = a for> a e: L

!J. is the alphabet for> D.

Since each context free language can be expressed as h(DnR) for some regular

set Rand D and has above, KASAI [9], and by furthermore noting that it

suffices to consider the Dyck set on two generators n2 over {0,1,0,1} and
-- -- * -- * a homomorphism h: {[u {a,b,a,b,0,1,0,l}J ➔ ([u {0,1,0,1})

h(c) = c for c EL, h(c) = E for c .€ {O,t,0,1} and h(a) = O,

h(b) = 1, h(b) = 1 we can state the following

defined by

h(a) = O,

THEOREM 2.14. (ii) For> each r.e. set Lover> [ther>e is a r>eguZar> set Rover

Lu {a,b,a,b,0,1,0,1} such that

- - * wher>e D2 is the Dyck-Zike set: shuffle (D2 ,([u{a,b,a,b}))

Hint: n2 n R yields the strings in R with a correct bracket structure over

{0,1,0,1} which brackets are removed by h yielding the desired context free

language. h simultaneously changes a's to O's and b's to I's and in doing

so sets up the structure for again intersecting with i52 so that after re­

moval of brackets {0,1,0,1} again by h the desired r.e. set Lis derived.

THEOREM 2.15. Every r.e. set is expressible in the foT'm T- 1(L) where Lis

a deteT'ministic context free language and Tis a mar>ked Dyck set substitu­

tion; that is, there is a Dyck set D such that T (a) = aD for aU a in the

domain of T, and the alphabets of D and the r.e. set are disjoint.

I I

PROOF. Let A be an r.e. set. In [12] it was shown that A could be generated

by a phrase-structure grammar in strong normal form and that a nondetermi­

nistic CPDA could be constructed to accept A by "parsing" in this grammar.

An analysis of that proof, shows that A can be represented in the form

A = { a I a2 ... an I 3 w 1 , w 2 , ... , w n E D such that

a 1 w 1 a2w2 .•• an wn E L} where

Dis a Dyck set and Lis the language accepted by a nondeterministic PDA, M.
Without loss of generality, we may assume that at each point in a computation

M has at most two choices of next moves. If, as in the proof of Theorem 2.13,

we code the correct choices by interspersing O's and I's into the input

strings of L,, then L can be made deterministic. Suppose we code these O's
• ➔ +- ➔ +-

and l's as two stn.ngs XX and Y Y and we expand the Dyck set D by allowing

➔ + ➔ +
the two new matching pairs XX and YY. Then it is not difficult to see that

A can be expressed in the form

A= {a 1a2 •.. an I 3 w1,w2 , ..• ,wn ED' such that

a 1w1a2w2 ... an wn E L'} where

D' is a Dy ck set and L' is a deterministic context free language.

The Theorem follows immediately from this. 0

The last theorem of this section gives a number of undecidability

results for DCPDA languages.

THEOREM 2. 16 .. Let 1 1 and 1 2 arbitrary DCPDA languages. AU of the following

questions are refJursively unsolvable:

(I) Is Ll empty?, r ·t? 1.-n1.- e., infinite?

(2) Is LI = 12?. Is 1 1 C L ?
- 2·

(3) Is LI n 1 2 empty?, t· ·t ? 1.-n1.- e., infinite?

(4) Is LI u 12 empty?, f' "t ? 1.-n1.- e., infinite?

12

PROOF. (1) First consider the emptiness question. We will show that if the

emptiness question for DCPDA's were solvable then the Post correspondence

problem would be solvable. So it will follow irmnediately that the emptJness

problem is unsolvable. Let (u1,u2, ••• ,un) and (v1,v2, ••• ,vn) be an instance

of the Post correspondence problem.

We will descripe a DCPDA M such that the set of words accepted by Mis non­

empty if and only if the Post correspondence problem is solvable for this

list; that is, if and only if there are i 1,i2 , ••• ,ik such that

u. u .••• u. = v. v .••• v. ~ M will accept exactly those words w¢wR with w
11 12 ik 11 12 ik
. * in {1,2, ••• n} such that w = i 1i 2 ••• ik and u. u ..••• u. =

LI 12 1k
v. v .••• v .•
il i2 ik

M works exactly like the DCPDA of Example 2.3 except that instead of pushing

a digit i on the auxiliary stack it pushes the corresponding· ui and instead of
-R ·:.R --.:. - -.

Pushing an "inverse" i it pushes v If v - a a a then v - a a a i • i - 1 2 • • • m' i - m m-1 • • • 1
where a is the "inverse" of a; so E(a,a) = e: for each relevant symbol a, where

E is the cancellation relation. Let L be the language accepted by M. Clearly L

is nonempty if and only if the given instance of the Post correspondence

problem has a solution. The unsolvability of the finiteness and infiniteness

questions follow easily from the observation that Lis nonempty if and only

if its infinite. (2) (3) and (4) follow from (1) by routine manipulations. D

We conclude this section by describing the effect on the derived results of

some changes in the model.

(i) The end of input not indicated by an endmarker: the DPDT mapping

becomes truly on line and acceptance by empty store and (non-halting)

final state is not equivalent any more for these DCPDA's.

Theorem 2.11 now becomes easy to prove since GALLAIRE [2] shows that

there is a context free language which requires at least n2/logn

time to be accepted by on-~ine multi tape deterministic Turiug machines.

Our DCPDA without endmarkers can be simulated in real time by these

devices and hence DCPDA languages without endmarker can be accepted

in linear time by such Turing machines. The same language could serve

for showing non-closure under length preserving homomorphic mappings.

The remainder of the results do not depend on the endmarker and hence

go through as well. (But for some of the examples).

13

(ii) Suppose we keep the endmarker $ and allow arbitrary partial cancella­

tion relations E: T x T ➔ {E:}. Under these conventions the DCPDA

languages are S (length preserving homomorphic images of Dyck lan­

guages)~ In this case it seems hard to prove that not all context

free languages are included. By the fact that there are deterministic

LBA languages which can not be recognized by multitape off-line deter­

ministic Turing machines in time n log/A-I (n) where A-l is the inverse

of the Ackermann function, HOPCROFT, PAUL & VALIANT [7] and the fact

that Theorem 2.6 still holds it follows that containment in DLBA is

strict:. Except for the non-closure under union and length preserving

homomorphisms all results in the paper go through.

(iii) Suppose we keep the endmarker $ and allow arbitrary partial cancella­

tion relations E: T x T ➔ T u{d. Under these conditions DCPDA

languages are S(X) where Xis an easily describable subclass of the

DPDA languages. All remarks of (ii) hold, but in addition it is now

easy to prove that the class S(X) is closed under complement. This is

because we can cancel arbitrary long portions (up to specific stack

symbols) of the auxiliary stack by long range cancellation symbols.

A similar device has been used by GREIBACH [6] in her introduction of

"jump"' PDA' s. Furthermore, it can now be shown that for L E S(X) the

questions is L = -r.*?, and L = R? for some given regular set Rare re-

cursively unsolvable.

Some of the problems remaining are the closure under complement and

solvability of L = r.*?, L = R? for our original DCPDA languages and (non)­

closure under intersection and union for the discussed language families.

A more intrinsic and tantalizingly difficult open problem is to prove that

not all contE!Xt free languages are DCPDA languages under conventions (ii)

or (iii).

14

3. HARDEST SOURCE LANGUAGES

The main result of this section shows that, for any object language L,

the class of all source languages for L, under DPDT mappings, always contains

a storage hardest language. The result is proven using techniques developed

by GREIBACH [SJ and SUDBOROUGH [13]. The result is in fact a generalization

of Sudborough's result which states that there is a storage hardest deter­

ministic context free language.

Recall that throughout this paper the abbreviation DPDT has been used

to mean deterministic pushdown transducer with an endmarker to delimit the

end of the input string and which satisfies the condition that all accepting

states are halting states. Given these conventions it is easy to see that

every DPDT computes a single valued partial function from input strings

into strings over the output alphabet. It is also easy to see that a partial ,

function Tis computed by empty store if and only if it is computed by some

DPDT by final state. We now formally introduce some notation and state the

main result of this section.

DEFINITION. If Lis any language, then S(L) denotes the class of all lang­

uages of the form T- 1 (L) = {wlT(w) exists and T(w)EL}, where Tis the par­

tial function defined by some DPDT. If Lis a class of languages S(L) de­

notes the class of all languages of the form T- 1 (L) where Lis in Land T

is the partial function defined by some DPDT.

DEFINITION. Let L1 and L2 be two languages. We write L1 ~log L2 and say L1

is log n reducible to L2 provided there are alphabets E 1 and E2 and a

* * function g from E1 to E2 such that:

(i)

(ii)

(iii)

* * L1 is a subset of E1 and L2 is a subset of E2 •

* For every win E1 , w is in L1 if and only if g(w) is in L2 •

g is computed by some deterministic off-line Turing machine which

uses at most log n storage tapesquares on inputs of length n.

THEOREM 3.1. For any language Y, we can find a language LY such that:

(I) LY is in S (Y) and

(2) For all Lin S(Y), L $log Ly•

15

It is easy to see that, for any non-empty Y, the class S(Y) contains all

deterministic context free languages. It is well known that there are deter­

ministic context free languages that require at least log n storage for

acceptance. So the language Ly is in some sense a storage hardest language

for the class S(Y).

Before proving Theorem 3.1, we will derive a few corollaries.

COROLLARY 3.2. For every language Y we aan find a language Ly such that

(1) Ly is in S(Y) and

(2) If Ly is accepted by a deteY'ministic (respectively nondeteY'ministic)

Turing maahine within storage S(n), then for every language Lin

S(Y), there is a constant c such that Lis accepted in deteY'ministic

(respectively nondeteY'ministic) storage S(nc), provided S(n) ~ log2n

and S(n) is monotone nondecreasing.

PROOF. Let L be any language in S(Y); let Ly be as in Theorem 3.1; let g be

a function, as in the previous definition, which log n reduces L to Ly;
let My and Mg be machines that accept Ly and compute g within storage S(n)

and log n respectively. A machine ML to accept L within storage S (nc) can

be constructed as follows. Given input w, ML operates by simulating Mg to

compute g(w) and simulating My to check if g(w) is in Ly• If My is determi­

nistic then ML will also be deterministic.

Since M runs in storage log n , it runs in time n c, for some c. Let n be the
g C

length of w, ML uses logn storage to simulate Mg and S(length(g(w))) ~ S(n)

storage to simulate My, so, except for the storage needed to hold g(w), ML

operates within storage proportional to S(nc). The length of g(w) may exceed

S(nc). So ML cannot store g(w) in the most straight forward way and still

keep its storage below S(nc). However, all ML needs to do in order to simu­

late My on g(w) is be able to generate g(w) one symbol at a time from left

to right and to keep track of the number of symbols between the end of g(w)

and the current symbol generated. This can be done in storage log n and so

M1 can be made to run in total storage S(nc). The details of such construc­

tions are well known. For more details on this type of construction see,

for example, SAVITCH [11]. 0

16

C
If we take S (n) to be a polynomial in log n and observe that log n =

0 (log n) , then Corollary 3. 2 specializes to:

COROLLARY 3. 3. Far any language Y we can find a language Ly such that

(I) Ly is in S(Y) and

(2) If Ly is accepted by some deterministic (respectively nondetermi­

nistic) Turing machine that runs in storage bounded by (logn)a.,

then every language in S(Y) is accepted by some deterministic

(respectively nondeterministic) Turing machine that runs in storage

bounded by (log n) a., provided a ;::: l.

Theorem 3.1 can be thought of a generalization of Sudborough's result

that there is a storage hardest deterministic context free language [13,14]

To illustrate this point we derive Sudborough's Theorem as a corollary to

Theorem 3. I.

COROLLARY 3.~,. There is a deterministic context free language L0 such that:

if L is any deterministic context free language then L ~ log 10 •

PROOF. Let Y be any language with exactly one word in it. (Actually, Y may

be taken to be any non-empty regular set). Then S(Y) is the class of all

languages, accepted by deterministic PDA's with endmarker. To see that S(Y)

is the class of all languages accepted by deterministic PDA's with end­

marker, just observe that the finite state control of a DPDT can be modi­

fied so that it can tell if its output is in Y. The corollary now follows

almost directly from Theorem 3. l. D

We can now proceed with the proof of Theorem 3.l. First we define the

la.1guages Ly that will turn out to have the properties listed in the Theorem.

* DEFINITION. Let Y be any language; let I be an alphabet such that Y:::. Z ;
--y+- ➔ +- ➔ +-

let n3 denote the Dyck set on three letters and let A, A, B, B, C and C be

the six symbols used for writing strings in D3 ; More precisely, D3 is the

set of all strings which rewrite to the empty string under the rules
-++--++- ---,-+- ---,-+-

AA, BB and CC each rewrite to the empty string. If XX is rewritten as the

empty string, then we say the two symbols cancel. We can and will assume

that the sue symbols alphabet for n3 and the alphabet I are disjoint; the

symbol# is yet another new symbol. If a= x1 x2 •.. Xl is a string such

17

➔ ➔ ➔ ➔ +
that each Xi is in {A,B,C}, then a denotes x1x2 •.. Xl; a is defined analogous-

ly. The language associated with Y is denoted 1y and is defined as follows.

1y consists of all strings of the form

* where the x. are in {A,B,C}, the a. are * in {A, B,C} , the /3. are in I
:1 i i

and there are indices ii < i2 < ... < il :,; m such that

➔ + -* + + + ➔

(1) AX. CY.. x. a. x. a. is in D3 il ii i2 i2 il il

(2) /3. /3 • ... /3 • is in Y and
ii i2 il

+ +
(3) ii is the least J such that X. is A•

J ' for each k < l, ik+I is the
+

least j which is greater than ik and is such that Xj cancels with the

++ + + ➔ + ➔
right most symbol of red(A X. a. X. a. . .. X. a.) .

ii ii i2 i2 ik ik
For any string a, red(a) denotes the string obtained from a by cancel-

ling as much as possible. That is, red(a) is obtained from a by applying

• 7-Y- ➔ + ➔ +
the rewrite rules A A+ e, BB+ E: and CC+ E: as many times as possible.

NOTATION. In order to make our notation more readable when discussing lang­

uages such as Ly, we will, for this section, make the convention that if y

is the string of symbols in a pushdown store, then the right end of y

corresponds to the top of the stack.

LEMMA 3.5. Par any language Y., Ly is in S(Y).

PROOF. We will describe a DPDT which computes a function T such that

Ly = T- 1(Y). In describing the DPDT, we will assume that the input string

is of the form

18

where the X.'s are in {A,B,C}, the a. are in {A,B,c}* and the$. are in r*;
1 1 1

Eis the alphabet for Y. There is no loss of generality in this assumption,

since the DPDT can check from such strings using its finite state control.
+ •

The DPDT has start stack symbol A and operates by repeatedly executing the

following procedure:

If the stack is empty then go to the end of the input and ACCEPT.

. +
Otherwise, the top stack symbol is of the form X where Xis in {A,B,C}.

+ ..
Let X be the top stack symbol and do the following:

Advance the input head to the first

+ + + . +
X. a. $. such that X. is X;

1 1 1 1

+
POP X off the stack;

+ +
PUSH a. onto the stack (the right hand end of a. on top);

1 1

OUTPUT$.•
1

It is routine to show that if Tis the partial function computed by the

above described DPDT, then Ly= T- 1 (Y). 0

The next lemma is stated in terms of 2-way deterministic pushdown trans­

ducers (2-DPDT's). A 2-DPDT is a deterministic finite state control connected

to a two-way, read only input tape with two endmarkers, a pushdown store

like that of a PDA, and a one-way, write only output tape. A formal defini­

tion of two-way PDA's can be found in GRAY, HARRISON & IBARRA [4]. A 2-DPDT

is obtained by adding an output tape to a two-way deterministic PDA.

LEMMA 3. 6. If T is any DPDT function then we can find a 2-DPDT M such that:

(I) M computes T.

(2) On any input string, the input head of M moves in the following regu­

lar fashion. M scans the complete input alternately from left to right,

then right to left, then left to right and so forth. Furthermore, M

moves its input head on every move. So if the input is a 1a 2 ••• an, in­

cluding endmarkers, then at successive time instances Mis scanning

the symbols:
a1,a2,···,an-I'an,an-l'an-2'"""'a2,al,a2, ••.
a 1,a ,a 1, ••• n- n n-

19

(3) M has only wo stack symbols.

(4) M has states numbered 0,1,2, ••• ,k with O the start state.
(5) M accepts by empty store and, in every accepting computation the last

wo states entered by the finite state control are k and O.

(6) M accepts within time O(n2).

PROOF. In the previous section we showed that every DPDA accepts in linear

time. Using this fact and the techniques of the previous section it can be

shown that every DPDT computes in linear time. It is fairly straight forward

to show that any DPDT that runs in linear time can be simulated by a 2-DPDT

which has property (2) and which runs in time O(n2). By standard techniques

the 2-DPDT can then be made to have properties (3), (4) and (5) and still

retain properties (1), (2) and (6). D

In order to complete the proof Theorem 3.1, it will suffice to establish '

the following lemma.

LEMMA 3.7. Let Y be any language, let L be any language in S(Y) and let E

be an alphabet such that Ls i::*. Under these conditions we can find a func­

tion g such that:

(1) g is computable by a log n tape bounded detePministia Turing machine

and
(2) For any string win E*, w is in L if and only if g(w) is in 1y·

PROOF. L = T- 1(Y) where Tis the partial function computed by some 2-DPDT

M, as in Lemma 3.6. Let A, B be the two stack symbols of M, where A, Band

Care as in the definition of n3• Leto be the transition function for M.
We will use the following notation.

o(i,a,X) = (j,a,8,y)

means that if Mis in state i, scanning input symbol a and having X on top

of the pushdown store, then M will go to state j, replace X by a (the right

hand end of a on top), output 8 and shift its input head left, right or not

at all depending on whether y is -1, +I or O respectively. We will code

each such instruction as a string of symbols and then use this encoding to

20

define g. We will omit y from these encodings, since we can always easily

predict the input head movement of Mand so need not have this information

in our encodings. We now proceed to define gin terms of codes which define

larger and larger pieces of the program for M. Let o(i,a,X) be as in(*).

code(o(i,a,X)) = X; ?(i,a,X)8

where n(i,a,X) = (k-i) + j _+ I. (Recall that the states of Mare numbered

0,1,2, ••• ,k. The reason for coding the state transition as n(i,a,X) will

become apparent if the reader fills in the details of the proof.)

+
code(a,i) = code(o(i,a,A)) # c0de(o(i,a,B)) # C

code(a) = code(a,O) # code(a,I) # ••• # code(a,k)#

code(a) is extended to a homomorphism by defining

Finally g is defined by

where wR denotes w written backwards, ¢and$ are the left and right input

tape endmarkers, and c is a constant such that M runs in time cn2 •

It should be clear that g is computable in log n storage, since the

most difficult part of computing g(w) is counting up to en and this can

easily be done in log n storage. It should also be clear that, with the

exception of the input head movements, code(a) in some sense codes all

possible moves of Mon input a. Now the string (¢w$wR)cn gives, in order,

the symbols scanned by the input head of M when the input string is w.
;. R en Let (yw$w) = a 1a2 ••• at. Then g(w) = code(a 1) code(a2) ••• code(at). If

M has an output for the input w, then Mon input w will execute one instruc­

tion from each of the blocks code(a 1), code(a2) ••• code(as), wheres is

the number of steps executed by Mon input w. Using these facts and tech­

niques developed by SUDBOROUGH [13], we can show that: w is in L = T- 1(Y)

21

if and only if g(w) is inly· The details are quite similar to Sudborough's

proof in [13] that there is a hardest deterministic context free language,

and we direct the interested reader thither. D

Before leaving the discussion of Theorem 3.1 we note that with a slight

modification to the proof we can show that every language in s2 (Y) is log n
-1 reducible to LY where S2 (Y) is the class of all languages of the form T (Y)

where Tis the partial function computed by some 2-DPDT that runs in poly­

nomial time.

We conclude this section with a brief study of classes of the form

S(L) where L ranges over some well known language families. For this pur­

pose let DPDA denote the deterministic PDA languages.

THEOREM 3.8. S(REG) = DPDA c S(DPDA) ~ S(CFL) ~ S(DLBA) = DLBA, and at least

one of the last -two inclusions is strict.

PROOF. Clearly DPDA ~ S (REG). To see that S (REG) ~ DPDA notice that the

finite statie control of a DPDT can always be modified to check if its out­

put is in a specified regular set. Hence S(REG) = DPDA. Since DPDA ~ S(DPDA)

and the language L3 of Example 2.3 is in S(DPDA) but not even in CFL we have

DPDA c S(DPDA). By definition S(DPDA) ~ S(CFL) S S(DLBA). Since there is a
-1

DLBA language which can not be recognized in time n log n / A (n), where

A-l is the inverse of the Ackerman Function, [7], and by a proof completely

analogous to that of Corollary 2. 7 we can show that each language in S(DPDA)

is accepted in linear time (both bounds for off-line deterministic multitape

Turing machines), we have S(DPDA) c. S(DLBA) and at least one of the last

two inclusions must be strict. Since DPDT's run in linear time by Lemma 2.5

they can be simulated in linear space and S(DLBA) ~ DLBA and hence

S(DLBA) = DLBA. 0

We conjecture that S(DPDA) c S(CFL) c S(DLBA) but have no proof for this

conjecture. Certainly, by Theorem 2.11, S(VnREG) c S(CFL).

Our last result exhibits a storage hardest language for the class S(CFL).

(By Theorem 3.8 and Sudborough's result (Corollary 3.4), we obtain a stor­

age hardest language for the class S(REG) = DPDA).

22

THEOREM 3r9. We aan find a language L1 suah that L1 is in S(CFL) and suah

that every language Lin S(CFL) has the property that L ~log L1•

PROOF. The Language L1 is a kind of combination -0£ Sudborough's language

and Greibach's [5] hardest context free language. The definition follows.

DEFINITION. Let D2 and D3 denote the Dyck set on two and three letters re-
+ + + + + +

spectively. As before, let A, A, B, B, C and C be the six symbols used for

writing strings in D3 ; let the first four of these be the symbols used for

writing strings in D2 • Let¢,# and£ be three additional symbols. Let R

be the regular set consisting ~£+all ~tri~gs of th~ form w1 # w2# ••• # wm

where each w. is of the form X a £ y1 £ y1 £ £ y1
1 i i I 2 °.. ,11 (i) + + + +

with X. in {A,B,C}, a. in {A,B,C}* and with each y: in {A,A,B,B,¢}*
1 1 J

L1 consists of all strings in R such that, in the above notation, there are

indicies i 1 < i 2 < i 3 < ••• < il ~ m and a function c with the properties that

++ + + + + +
(1) AX. a. X. a. x. a. is in D3 11 11 12 12 1l 1l

+ +
(2) ii is the least j such that x. is A· for each k < l, ik+l is the least

J
,

j which is greater than ik is
+

with the right and such that X. cancels
J

++ -+ + -+ + -+
most symbol of r(A X. a. x. a. x. a.)

11 11 12 12 1k 1k

(3)
ii i2 il

is in ¢D2. yc(i 1) yc(i2) yc(il)

To see that L1 has the desired properties notice that S(CFL) = S(LO) where

LO is Greibach's hardest context free language. The result is then immediate,

since L1 is the storage hardest language for S(LO) which we get by applying

the construction of Theorem 3.1. D

It would be interesting to exhibit a nice storage hardest language for

the class of S(DPDA). However, we have not yet been able to produce such a

language.

APPENDIX

THEOREM 2.11. Let L = {aibj ji::,; j} u {aibjckli + j = k}.

Then L8 =Lu {a,b,c}*{ is not aaaepted by any·DCPDA.

23

The proof of Theorem 2.11 is in the spirit of the proof of Theorem

4.1 in GINSBURG & GREIBACH [3], i.e., an exhaustive case analysis. We first

present an auxiliary definition and then establish a series of Lemma's, one

of which, Lemma A2, contains a result on Dyck languages which may be in­

teresting in its own right. In this Appendix we will closely follow the

notation of GINSBURG & GREIBACH [3]. So, in particular, in a PDA instant­

aneous description, the top of the stack is the rightmost symbol.

DEFINITION. Let M be a DPDA, f and g be deterministic gsm maps and let D2

denote the Dyck set on two generators. Then

As is well known, the restriction to the Dyck set on two generators does

not give us less than considering .Dyck sets on r generators, r ~ O.

LEMMA Al. If L ~ r*, ¢ t E, and Lu r*¢ = L(M) foP some DCPDA·M then thePe

is a DPDA M' and two deteY'ITlinistia gsm maps f and g suah that

D(M' ,f,g) = L.

PROOF. We simulate M by a DCPDA M* which, whenever Mis to read a nonempty

input symbol, does the following. M* codes its present state in the top­

most symbol on the ordinary stack and enters a new distinguished state q.
* s

Next, M reads the input symbol _and executes the appropriate move of M.
Clearly, L (M*) = L (M). Suppose that M* has the ID (q ¢ $, a.', y') after pro-

s
cessing some input w Er* and just preliminary to reading¢. Then

(qs¢ $, a.' ,y') IM: (-,-,-)where(-,-,-) is an accepting halting ID of M

with empty auxiliary stack. Therefore, there is a dgsm map f' which simu­

lates the finite control of M* starting in state q with fixed input ¢ $
s

and hence performing a dgsm map from (y')R to the auxiliary stack such that

24

a'f'((y')R) E n2 • Similarly, for each w EL there is an ID of M* (qs,$,a,y)

just preliminary to the reading of$ such that there is a dgsm map g for

which . a g (yR) E n2 • But for w E L we have also a.f '(yR) E n2 • Hence for a

dgsm map f = hf' , where h is an isomorphism which maps all symbols to their

inverses, (f(yR))R g(yR) E n2 • Setting M' = M* concludes the proof. D
ass

The next "deflating" Lelllllla for Dyck languages has a fleeting, but misleading,

resemblance to the uvwxy -Lelllllla.

LEMMA A2. Let
no no

wn0 = aB yo µ E n2 for some n0 > I a By o µ ! . Then

n n w =aByoµ
n

E n2 for all n ~ 1.

PROOF. Let D2 be

pairs. red(w), w

➔ + ➔ + ➔ + ➔ +
over the alphabet ~2 = {0,0,1,1} wi:h 0,0 and 1,1 matched

* E ~2 , denotes the resultant string obtained by cancelling
➔ + ++

symbols until no occurrences of O O or I 1 are left. w = v if red(w) = red(v).
* ➔ ➔ * ➔ For a word w E {0,1} we denote the corresponding word over {0,1} by wand

+ + * + the one over {0,1} by w. It is easy to see that for any w E n2 and any sub-
• ➔ . +

string v of w holds: red(v) = v 1 if vis a prefix of w, red(v) = v 1 if vis
++ * a suffix of w, and red(v) = v 1v2 for some v 1,v2 E {0,1} •

++++
For a substring vv of a word w E n2 we have vv = v 1v2v 1v2 and therefore

➔ + ➔ + * red(v2v 1) = u or u, u E {0,1} •

• ➔ + ➔ ++
Now let, in wn. above, red(a) = a 1, red(B) = B1B2, red(y) = Y1Y2 ,

++ 0 + ➔ + + ➔ ➔ + + ➔
red(o) = o1o2, red(µ)= µ1, red(B2B1) =Tor T and red(o 2o1) = a or a.

CLAIM. with hi = I a I.

PROOF OF CLAIM.

Case 1:
+ +
T ::/, E:. Then red(w) = z v

' no
+ * z v E ~2 , since

I ,no - l I + I BI I ~ I a B Y o µ I + I B 1 I > I a I •

➔ +- ➔

Case 2: red(o 2o1) = a ::f, E: SYlllllletric with case I.

It remains to be proven that !Tl = lcrl.

25

case 3: l•I > lo!. Since l•I = ls2 1 - lsII and lcrl = la 1I - lo 21
we have

Since n0 > I a.Sy o µ I and II I a.I y 2 1 - Ir I µ 1 I II < I a.Sy o µ I where II

denotes absolute value. Hence the amount of left brackets is un­

equal to the amount of right brackets and therefore w i n2 •
. no

Case 4: l•I < lol: Symmetric to case 3, which proves the claim.

In case T = o =£the Lemma is trivially true. Assume that l•I = lol ~ 1.

From the claim we see that

* for some v E {O,I}, and therefore 1,2,3,4

R If v 1 = v4 then v2 = v3 and T = o and the Lemma holds.
R + Assume that vI = v4v5 , v5 E {0,1} ; then lv2 1 - lv31 = lv 1 I - lv4 !.

(The case that lv4 1 > lvI I is symmetric). Therefore,

and since

26

+ +2
We have that v5 T is

* T 1,T2 E {O,I} , such

+ +n -I+
a prefix of red(v5T O v2),

+R + +
that a = -r 2 -r 1 •

+ + +
and therefore T = -r 1 T 2 ,

It is easy to see that, for n ~ 1,

w
n

Hence, under the assumptions made, wn E n2 , which proves the Lennna. D

LEMMA A3. Let x,y be fixed words and Zet f,g be deterministic gsm maps.

There are positive b,d such that for aZZ words z we can find an nO such
. . b+cd R b+cd that the foZZow~ng holds: ~f c ~ nO and (f(xy z)) g(xy z) E n2

then for aZZ i ~ 1 (f(xyb+idz))R g(xyb+idz) E n2•

i i PROOF. Suppose Mh is a dgsm transducer which transduces xy z to h(xy z);

in particular Mh reads all of its inputs of the form xyiz. By standard ar­

guments concerning the cyclic behavior of deterministic finite state auto­

mata under constant input there are positive bh, dh for Mh such that
bh+idh i

h(xy z) = aB y z
Mf and to b , d for

g g
the Lemma follows by

for some yz depending on z. Set bh, dh to bf, df for

M. By choosing b = max(bf,b) and d = l.c.m(df,d)
g . g g

Lennna A2. D

LEMMA A4. Let M be a Zoopfree DPDA. Then for an ID (q,am,yO) (i) or (ii)

beZow must hoZd.

(i) There exists n ~ 1 such that for aU m ~ 1 if (q,am,yO) j-! (p,E,y)

for some p and y then lyl :;; n ; or,

(ii) There exist positive integers m,e; words w,y; a symbol z and a

state p such that

(a) (m+he
,yO) ~ h q,a (p,e:,wy Z), and,

(b) k h (p,a ,wy Z) µ. (p',e:,y) implies that
h

:/: e: for k ~ 0. y = wy y', y'

27

PROOF. Ginsburg and Greibach prove this result for the special case where

yO is a single symbol. (Lemma 4.1 in [3]). The reduction of the above Lemma

to this special case is trivial. D

LEMMA A5. If M is a DPDA and f and g are dgsm maps then

i + j = k}.

PROOF. Suppose D(M,f,g) = L. We will derive a contradiction. Without loss

of generality we assume that Mis l~opfree. According to Lemma A4 either

case (i) or case (ii) holds.

Case (i). For all i ~ 0 these are p. and y. such that:
l. l.

,~ (p. , e:, y.)
l. l.

IY-1 s n . l.
for a fixed constant n. Hence

p. = p. and y.
i.1 i.2 i.1

i2 i2
= y .• Since a b

i.2

then are i 1,i2 (i 1>i2) such that

€ D(M,f,g) also

i1 i2
a b € D(M,f,g):contradiction.

Case (ii). There exist positive integers m,e; a state q; a symbol Z, and

strings y and w such that for all h ~ O.

(I)

(2)
k h (q,a ,wy Z) I-* h (q',e:,y) implies y = wy y', y' :/: e: (k ~ O).

28

,Again we consider two subcases: either the stack pops all y's under constant

input of h's or it does not.

Subcase I.For each h there are j and q" such that

Since the state set is finite there are h1,j 1 and h2,j 2, such that

0 'I= m + h 1e + j 1 'I= m + h2e + j 2 'I= 0, which lead to the same state q".

Si'nce m+h 1ebj I m+h1e+j 1 . . D(11 f) 1 m+h2ebj2 m+h1e+j 1 . . a c is in ,~, ,g a so a c is in

D(M,f,g) : contradiction.

Subcase 2. There are s,j,k,y2,q2 such that for all h ~ s,

(3)

(4)

j h I_:_ h-k (q,b ,wy Z) (q2 ,e:wy y2) and,

i h-k I * (q2 ,h ,wy y2) - (q3,e,y) implies

h-k
y = wy V for some v 'I=£ (i ~ O).

Now suppose !vi :5 n for some constant n and all i. Then, similarly to sub­

case I_above, we ca~ ascertain that there are h,j 1,j 2, j 1 'I= j 2 , such that

am+hebJ1 and am+hebJ 2 drive Minto the same ID. Hence, since

am+hebj1cm+he+j1 E D(M,f,g) also am+hebj 2cm+he+jJ E D(M,f,g) : contradiction.

i h-k . Therefore, we may assume that input b with Min state q2 and wy y2 on its

stack will cause the stack to grow arbitrarily large if i grows arbitrarily

large and (by Lemma A4) the following must hold: there exist

m2,e2,w2,y2,z2 and q4 such that the following holds, for all h ~sand

h' ~ O.

(5) m2+h'e h Id* h-k h' (q2 ,b 2 , wy y2) (q4, ,wy w2y2 z2) and

(6) (q4 ,bi,wyh-kw2y~ 1 z2) I-*- (q3 ,s,y) implies

h-k h' , wi'th y' 4 ~ y = wy W2Y2 y T <- (i ~ O).

,.

29

R
Now set x = z2 and y = Yz in Lemma A3 and choose t,d as b,d in Lemma A3.

Next choose h ~ s such that

(7) m + he > m2 + (t+d) e 2•

h-k R set z = (wy w2) in Lemma A3 and let n0 be as in Lemma A3. Finally choose

c ~ n0 such that

(8) m2 + (t+cd)e2 > -m + he.

By (8) am+hebmz+(t+cd)ez EL= D(M,f,g). Then (f(xyt+cdz))Rg(xyt+cdz) ~ D2.

t+d R t+d But then, by Lemma A3, also (f(xy z)) g(xy z) E n2 and therefore

am+hebmz+(t+d)ez E D(M,f,g) which is impossible by (7), and Lemma A5 is

proven. 0

PROOF of Theorem: Immediate from Lemma's Al and A5. D

REFERENCES

[1] AHO, A.V. & J.D. ULLMAN, The Theory of Parsing, Translation and Ccm­

piling, Vols. I and II, (Prentice Hall, Englewood Cliffs, N.J.,

1973).

[2] GALLAIRE, H., Recognition time of context-fPee languages by on-line

Tu.Ping machines, Information and Control, _!.1 (1969) , 288-295.

[3] GINSBURG, S. & S.A. GREIBACH, DetePministic context-fPee languages

Information and Control, 2_ (1966) 563-582.

[4] GRAY, J.N., M.A. HARRISON & 0. IBARRA, Two-way push dOuJn automata,

Information and Control,_!_!_ (1967) 30-70.

[SJ GREIBACH, S.A., The haPdest context-fPee language, SIAM J. Comput.

I 0973) 304-310.

[6] GREIBACH, S.A., Jwrrp PDA's and hieParchies of deteministic context-

fPee languages, SIAM J. Comput. l (1974) 111-127.

30

[7] HOPCROFT, J.E., W. PAUL & L. VALIANT, On time versus space, Tech.

Rept. Comp. Sci. Dept. Cornell University TR 75-264, Cornell

University, Ithaca, N.Y. (1975).

[8] HOPCROFT, J.E. & J.D. ULLMAN, Formal languages and their Relation

to Automata, (Addison-Wesley, Reading, Mass, 1969).

[9] JONES, N.D., Space-bounded reducibility among combinatorical pro-

blems, J. Comp. Syst. Sci. _!J_ (1975) '68-85.

[10] KASAI, T., A universal context free grammar, Inf. Contr. 28 (1975)

30-34.

[11] SAVITCH, W.J., Relationships beween nondeterministic and deter-

ministic tape complexities, J. Comp. Syst. Sci.~ (1970),

177-192.

[12] SAVITCH, W.J., How to make arbitrary grammars look like context-

free grammars, SIAM J. Comput. ~ (1973) 174-182.

[13] SUDBOROUGH, I.H., On deterministic context-free languages, multi-

head automata and the power of an auxiliary pushdown store,

Proceedings 1976 ACM Symposium on the Theory of Computing,

141-148.

[14] SUDBOROUGH, I.H., On the tape complexity of deterministic context-

free languages, Northwestern University Technical Report (1976).

31

FOOTNOTES

1. L9 = { a¾ n c I n ~ 1} u {a¾ 2n I n ~ 1 } •

The proof that 19 is not in DPDA is the same as the prodf of Theorem

4. 1 in [3]. 1 9 E DCPDA is proven as follows. The accepting machine

pushes the input word on the ordinary stack until it reads the end-

* * marker, meanwhile checking for inclusion in {a} {b} {c,£} by its

finite control. Depending on whether or not the last symbol on the

ordinary stack was a cit then chooses one of the two obvious dgsm maps

from the ordinary stack to the auxiliary stack so as to accept 1 9 •

2. The result and its proof remain valid even though we have changed the

definition of CPDA slightly from the definition in [12].

3. Theorem 5 in [12] is stated incorrectly. The two homomorphisms that

occur there should be different homomorphisms.

D1BA
r------------ -- -- ----,
I * L 1 DCPDA I
I I

CF I
*Lg I

I

DPDA

LJ

Figure I.

