
AFDELING INFORMATICA

stichting

ma'thematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J • C. VAN V L I ET

IW 73/77

TOWARDS A MACHINE-INDEPENDENT TRANSPUT SECTION

Prepublication

~
MC

JANUARI.

2e boerhaavestraat 49 amsterdam

Plki.n-te.d at .the. Mathema;Uc.a.t Ce.n:tll.e., 49, 2e. BoeJLhaave6.tJuutt, Am.6.teJLdam.

The. Mathema;tlc.al Ce.n:tll.e., 6ou.nde.d .the. 11-.th 06 Fe.b1tuaJl.y 1946, ,lo a. non
p1to6U -<..n6-ti..tu:ti..on a.hn,i.ng at .the. pltomo.:ti..on 06 pUlte. mathema;Ue1:> a.nd w
a.ppUc.a;Uon6 .. I.t ,lo .6pon601te.d by .the. Ne..thell1.a.nd6 GoveJLnme.n-t .th/tough the.
Ne..thell1.a.nd6 01tga.n-<..zmon 601t .the. Adva.nc.eme.n-t 06 PUite. Re6e.a.1tc.h (Z.W.O).

AMS (MOS) subject classification scheme (I 970): 68A30

ACM-Computing Reviews-categories: 4.22, 4.12, 4.41

*)
Towards a machine-independent transput section

by

J.C. van Vliet

ABSTRACT

If the transput section of an ALGOL-68 compiler is to be portable, it

must be described in such a way that it is clear which aspects are machine

dependent, and which are not. There should be a clear set of primitives

underlying the transput. In this report, a description is proposed which can

really be used as an imple~entation model: the transput is described in

pseudo-ALGOL 68, except for the underlying primitives, whose semantics are

given in some kind of formalized English. The state of this model is by no

means definitive, but may serve as a start for further discussion.

KEY WORDS & PHRASES: ALGOL 68, transput, portability, implementation model,

run-time system, file system.

This report will be submitted for publication elsewhere.

INTRODUCTION

In the Revised Report on the Algorithmic Language ALGOL 68 [1] (hence

forward referred to as the Report), Chapter 10 deals with the standard en

vironment. This standard environment is described in pseudo-ALGOL 68 and

comprises two main components: a collection of (mainly mathematical) func

tions and operations, and the transput (i.e., input and output). The standard

environment is part of the run-time system of an ALGOL-68 compiler.

One of the main objectives of the ALGOL-68 compiler that is being

developed at the Mathematical Centre is portability. Several aspects can be

distinguished:

for a compiler to be portable, the language in which the compiler is

written must be portable;

- there should be a clear interface with the machine on which the lan

guage is implemented; this interface should be independent of that

specific machine;

- the run-time system should be easy transportable.

The run·-time system of an ALGOL-68 compiler is likely to be a very

substantial part of that compiler, so its portability will heavily influence

the portability of the compiler as a whole. Apart from the standard environ

ment, the run-time system mainly contains storage management routines

(garbage collector!). These interact strongly, and both depend on the machine

independent object code chosen; they will not be discussed in this paper.

This paper, and the one by D. GRUNE [2], will focuss on the other aspect of

the run-time system: the standard environment.

If the standard environment is to be portable, it must be described in

such a way that it is clear which aspects are machine-dependent, and which

are not. There should be a clearly defined set of primitives underlying the

standard environment, and this set should in some sense be small. These

primitives will then form the operating-system interface. The "meaning" of

these primitives must also be defined. Defining their meaning might well

turn out to be as difficult as determining them. As WAITE [3] states: "If

the meaning of the entire program is to remain invariant, the meaning of

the invariants must remain invariant".

The approach we have chosen is to describe the standard environment in

2

pseudo-ALGOL 68. The pseudo part is then to be considered as a language ex

tension which should be reasonably implementable. This pseudo part is described

by D. GRUNE [2]. The underlying primitives of our model are not defined in

ALGOL 68. Instead, their semantics are given in some formalized English, re

sembling the way in which the semantics in the Report are defined. One ad

vantage of a description in pseudo-ALGOL 68 is that it can largely be tested

mechanically. It also becomes more portable, especially because the pseudo

ALGOL 68 part is accepted by our compiler too.

The transput section of the Report offers little or no help in finding

the underlying primitives. It may only be looked upon as a description of the

intention of transput. To give one obvious example: no implementer will

seriously consider the possibility of implementing the text of a file as

[][][J char, if his operating system already takes a different view on

files. As a consequence, the burden of finding all tricky spots is placed

upon the shoulders of each individual implementer. This effectively means

that the transput has to be rewritten for each implementation. The situation

becomes muddled if we take into account that certain ALGOL-68 limitations

have clearly influenced the description. For example, the mode foY'mat almost

exactly mirrors the structure of format texts. However, due to scope re

strictions, for the level above collection a different structure is used.

The advantages of a transput section that can be used as an implemen

tation model are obvious. Not only could it help to make it unnecessary to

re-implement it from the very beginning, but it could also be a means to

arrive at.standardization of the transput. (Of course, no matter how care

ful we are, there will always be operating systems that do not support some

of the primitives that are assumed available.) Existing implementations offer

little or no help with respect to standardization. The diversity, with

regard to transput, is striking:

- The ALGOL 68R implementatioµ [4] offers some version of the transput.

However, this 1s not the transput as described at any stage by an

ALGOL 68 Report, but it is some locally developed system;

- The Control Data implementation [5] covers almost exactly the transput

described by the Report. But it is a commercial product, and its

internal structure is proprietary information;

In the Munich 1mplementation [6], the transput 1s dealt with in a

3

machine-dependent way;

- Although it is not stated explicitly, it appears from [7] that the

Brussels group has implemented some version of the transput. In

general, they tended to stay as close to the original report as pos

sible (whose transput differs greatly from that of the Revised Report);

- The Oklahoma implementation [8] deals with transput in a largely

interpretive way. In [9], an interpreter for formatted transput, as

described in the original report, is given. This interpreter is

written in FORTRAN;

- The RE~nnes implementation [I OJ contains a form of transput which is

tailored to their SIRIS 7 operating system;

- In the ALGOL 68 Student compiler [II], almost the whole transput is

implemented, although they changed it slightly to make it fit their

own ideas;

- In general, sublanguages of ALGOL 68, such as ALGOL 68C [12],

ALGOL 68S [13], ALGOL 68/19 [14] and Mini ALGOL 68 [15], have very

limited transput capabilities. Usually, the first thing to be dropped

is formatted transput.

It is clear from the above that there is not much uniformity. Very

likely, each implementation has a different view on transput and implements

something different. This tendency should be counteracted! Let us therefore

start a discussion towards an agreement on a standard transput, similar to

the way in which we agreed upon a standard representation [16]. If such a

standard would be available in the form of an implementation model, it would

greatly alleviate the task of the individual implementer, and in this way

(indirectly) stimulate the diffusion of ALGOL 68.

In the following sections, two examples of parts of the ALGOL-68 trans

put are discussed, and an attempt is made to give a clear definition of the

underlying primitives. The first example deals with the routine float (section

10.3.2.J.d of the Report). It is shown that one clearly defined primitive

suffices for the conversion of real numbers to strings. This example is

taken from [17], where the transput conversion routines are treated in full

detail. The other example deals with books, channels and files (section

10.3. I. of the Report). It is important to note that the current state of

4

our model is by no means definitive, but may serve as a start for further

discussion.

CONVERSION BY MEANS OF FLOAT

The main problem in converting real numbers to strings is a numerical

one. An important application of the conversion routines is to measure the

accuracy of numerical algorithms, and we want to'ensure that that is really

what is measured, and not the accuracy of the conversion. It is obvious that

if this conversion is completely machine independent, it can not be accurate.

In the set of conversion routines that is proposed in [17], numbers

are first converted to strings of sufficient length (this part is machine

dependent), after which all arithmetic is performed on these strings. This

version may indeed be seen as an implementation model: for each direction of
'

conversion, there is only one place where real arithmetic comes in. As an

illustration, the routine float will be treated in greater detail.

The routine float is intended to convert real numbers to floating point

form. It has four parameters:

- v, the value to be converted,

- width, whose absolute value specifies the length of the string that

is produced;

- after, whose value specifies the number of digits required after the

decimal point, and

- exp, whose absolute value specifies the width of the exponent.

A sign is normally included in both the mantissa and the exponent. The user

may specify that a sign is to be included for negative values only by sup

plying a negative width. If the value of the exp parameter is zero, float

acts as if minus one were specifi~d, i.e., the exponent is converted to a

string of minimal length. The value of the width parameter, however, may

not be zero.

From the routine given below, the following may be observed:

(i) The routine does not use real arithmetic. Unless the exponent is of

the order of magnitude of max int, which is very unlikely, the integer

arithmetic neither presents any trouble;

(ii) The routine does not distinguish between various lengths of numbers;

they are just passed down' to subfixed;

5

(iii) Numbers are first converted to strings of sufficient length, after

which the rounding is performed on the strings. This seems to be the

only reasonable way to ensure that numbers like L max real may be con

verted using fixed or float;

(iv) The routine is written non-recursively;

(v) Care has been taken that the routine behaves exactly as the correspond

ing routine from the Report was probably intended to. This will not

be completely true for the routine subfixed, which necessitates some

changes in the editing of integers and reals in the routine putf in

section 10.3.5.1. of the Report.

(These remarks apply equally well to the routine fixed in [17], where also

an extensive description of the working of the conversion routines is given.)

proc float= (number v, int width, after, e:x:p) string:

begin int before := abs width - (after :f O I after+ 1 I OJ - (abs e:x:p + 1),

e:x:ponent, aft:= after, exspace:= abs e:x:p;

bool neg, rounded:= false, possible:= true;

strings:= subfixed(v, before+ after, e:x:ponent, neg, true), ex-part:=

(neg v width> 0 I before-:= 1); e:x:ponent -:= before;

while ex-part:= (e:x:ponent < 0 I "-" I; e:x:p > 0 I "+" I "") +

subwho le (abs e:x:ponent, lac boo l);

if_ ~ before + sign aft :::; 0

then possible:= false

e li f upb ex-part > e:x:pspace

then e:x:pspace + := 1;

(aft> 0 I aft-:= 1;

(aft= 0 I before+:= 1; e:x:ponent -:= 1)

I before-:= 1; exponent+:= 1); true

elif rounded then false

elif round(before + aft, s)

then e:x:ponent +·= 1; rounded:= true

else false

ii

,, ,, . ,

6

do:skip ad;

if.7 possible then undefined; abs width* errorchar

else (neg I "-'' ! : width > 0 I "+" I '"') + s [: before] +

(aft = 0 I "" I "·" + s[before + 1 : before + aft]) +

(expspace - upb expart) * " " + expart

The routine subfixed performs the actual conversion from numbers to

strings, and may be called from either fixed or float. When called from

fixed, it must return a string containing all digits from the integral part

of the value submitted, and after+ 1 digits from the fractional part. When

called from float, it must return a string containing the first after+ 1

significant digits. In both cases, the last digit is truncated, and not

rounded. (The rounding is done later on, and rounding the number twice may

cause something like 9. 46 to be converted to "10. O".) Considering this string

as a number, the value of the parameter p will be the shift of the decimal

point from the first digit. The parameter neg will indicate the sign of the

value submitted (true iff negative).

The routine subfixed must be completely accurate: As we said before,

it will be used to measure the accuracy of numerical algorithms, and we do

not want these measurements to be downgraded by the inaccuracy of the con

version. It is therefore impossible to give an ALGOL-68 routine that will do.

Instead, we give the following semantic definition:

It is a unit which, given a value V, yields a value Sand makes

p and neg refer to values P and B, respectively, such that:

Bis true if Vis negative, and false otherwise;

• it maximizes

upb S
M = 7

i = lwb S

P-i
C. * IO

i

under the following constraints:

• lwb S = I;

• upb S = P +after+ I if floating is false, and after+ 1

otherwise;

• for all i from lwb S to upb S:

0 ~ c. ~ 9, where c. = char dig(S[i]);
1. 1.

• M ~ IV!.

7

Remark: So that one need not know the storage allocation techniques used by

the compiler (which are needed to build the string), one may construct an

embJdding like:

proc? subfixed = (number v., int after., ref int p., r~f bool neg., bool floating)

string:

begin int size; guess storage(v., after., size., floating);

size:= some sufficiently large integer., an upperbound for

the number of digits that will result#

[1 size] chars;

do subfixed(v., after., p., neg., floating., size., s);

the actual conversion; the characters are placed ins.

As a side-effect., size indicates the number of digits placed

ins#

s[size]

end;

End of remark.

The (hidden) routine round is used for rounding. The parameters refers

to the string to be rounded, the parameter k is the index of the last ele

ment of s that will be returned. The routine yields true if the rounding

causes a carry out of the leftmost digit.

proc? round = (int k., ref string s) bool:

if bool carry:= char dig(s[k + 1]) ~ 5; s:= s[

then

for j from k by -1 to 1 while carry

k]; carry

8

do int d = char dig(s[j]) + 1; carry:= d 10;

s[j]:= (carry I "Of/ I dig char(d))

od;

(carry "1" plusto s); cari"y

else false

fi;

BOOKS, CHANNELS AND FILES

Books, channels and files model the actual transput devices. Therefore,

it is to be expected that most of the machine-dependencies of the transput

section are located in this area. The status of what is discussed below is

much more premature than that of the example given before. This part of our

system is still changing every week. Therefore, the discussion will be rather

informal, and certainly no formal semantics of any primitive can be expected

here. Still, some fundamentals are already visible, and deserve to be dis

cussed.

Let us start with the concept of a book. In my opinion, a book may best

be seen as modelling the actual device. As such, quite a few machine-depen

dencies may be expected. Indeed, nothing is specified in our model about

the internal structure of the mode book; as such, none of its fields are

accessed. If something is needed, procedures are provided that will yield

the information asked for; books are only used as parameters to procedures.

More specific, our considerations regarding the various fields of the mode

book from the Report are the following:

- The text is expected to be stored away in some opaque way; only parts

thereof are available at each instant of time;

The logical end of the book will in general not be known: it is

only recognized as such when it is reached;

The identification, whether in the form of a string or not, is ex

pected to be very operating-system dependent;

- The other two fields, users and putting, are used to answer the

question "Can I write on this book or not", which is also best

answered by the operating system.

9

In our view, a channel is a collection of attributes that is connnon to

some set of devices. As such, it may be considered quite independent of any

specific machine. However, it can still be disputed whether or not the

proc pos max pos is appropriate in the channel. It is only needed for chan

nels on which files may be established. For those files, the maximum size

must be known; this passibly also depends on the book.

Associated with the channel is the standard conversion key. It seems

appropriate to link this conversion key to the channel. However, we do not

specify the internal structure of this key, nor do we provide any conversion

key. Of course, table-driven keys will likely be the fastest. (It must be

noted that in various papers about system performance (see, e.g., WICHMANN

[19]), the use of conversion keys is discouraged, because of it being too

expensive.) So we do not specify the mode conv, and two conversion routines

are supposed to be available: convert int to ext and convert ext to int.

Two other machine-dependent routines associated with channels are file

available and match.

The concept of a file, which is ·actually the file control, is the most

heavily used concept in the transput section. In our model, it is considered

to be largely machine-independent. In the Report, the file contains a direct

reference to the text (apart from the indirect reference via the book), which

contains the actual data of the file. As in the case of the book, we do not

assume that the whole text is available at any instant of time. On the other

hand, writing or reading each character separately to or from an external

medium might well be very expensive, if not virtually impossible. Moreover,

ALGOL 68 requires the ability to undo operations performed on the current

line. This will probably not be possible if the character has already been

punched. Therefore, it seems reasonable to take one line of the text (a

buffer of one line) as a field of the file, and leave the rest of the text

invisible. Other lines may then only be reached by means of calls of one of

the routines read line and write line. (If, while writing, lines must be

compressed, it is quite natural to delegate this to write line as well.)

This model suggests a set routine in which the new position is searched

for by means of successive calls of read line. We may, however, want to

provide a faster set routine for random-access files. If different set

10

routines are available for different channels, it is quite natural to enter

the set routine in the channel. In this way, it is unnecessary to search for

the appropriate set routine, but it can simply be selected from the channel.

(See, e.g., STOY & STRACHEY [20], for similar applications of this important

idea.) It is probably advantageous to enter some of the other routines, such

as open, -in the channel too.

Another aspect of transput is the extensive testing that is done before

a character is actually read or written. We have tried to concentrate some

answers to these tests in the "status information" of the file, and provide

fast routines to inspect this status. At this moment, the status of the file

contains the following information:

- whether or not the file has been opened;

- whether or not the line has been ended;

- whether or not the page has been ended;

- whether or not the physical file has been ended;

- whether or not the logical file has been ended.

Routines opened, line ended, page ended, physical file ended and logical file

ended are provided to inspect this status. After each transput operation,

this status has to be updated. Updating page ended and physical file ended

obviously has to take place behind the curtain. Routines close file, line

end and logical file end are provided to update the appropriate information.

To short-circuit the chains of tests that are activated upon calls of routines

like get good line, the routines char ok, line ok, page ok and logical file ok

are proposed, to yield quick answers to the corresponding questions. If such

a routine yields false, the normal chain of tests is performed; otherwise,

actual transput may continue.

The mode file thus gets the form:

mode file= stPU.ct(

ref book book,

channel chan,

ref foY'rr!at foY'mat,

ref line line,

ref bool read mood, write mood, char mood, bin mood,

ref pos cpos, ref int c of lpos,

string term,

conv conv,

ref status status,

ref int char bound,

proc (ref file) bool logical file mended,

physical file mended,

page mended, line mended,

format mended, value error mended,

proc (ref file, ref char) bool char error mended).

Note that c of lpos is embodied in the file. The only reasonable question

concerning the logical end of the file is: "Have I reached the logical end

of the file or not". The answer to this question is known after we filled

the buffer with the line containing the logical end. For the moment,

1 1

c of lpos is expected to have a value greater than the length of the current

line if the logical end is not within the current line. Questions concerning

the logical end will then automatically be answered negatively. Also, the

maximum length of the current line is put in the file (char bound). Finally,

the mode forrnat is a real tree in our model, matching the actual format.

Therefore, we only need a reference to the root of the format that is used

at this moment.

Associated with the file are a number of machine-dependent enquiries.

Apart from the actual shape of the mode status, the following routines are

not (completely) specified 1.n our model (;they are considered primitive,

and their specification is to form the interface with the operating system):

- char of<., line ok, page ok., logical file ok;

- opened, line ended, par;e ended, physical file ended, logical

file ended;

- close file, line end, logical file end;

- read line, ?;)rite line;

- (part of) close, lock and scratch;

- (part of) set and reset;

- (part of) establish, create., open and associate;

- reidf;

- undefined.

12

This list is not meant to be exhaustive or final. However, we do think that

most machine-dependencies that arise from the transput section have passed

in review. It is hoped that further discussion may help us in reaching some

consensus.

REFERENCES

[l] WIJNGAARDEN, A. VAN, et al (eds.), Revised Report on the Algorithmic

Language ALGOL 68, Acta Informatica 5 (1975) 1-236.

[2] GRUNE, D.,Towards the design of a Super-Language for the ALGOL 68

Standard Prelude, IW 76/7h Mathematical Centre, Amsterdam.

[3] WAITE, W.M., Theory, in Software Portability Course, University of

Kent at Canterbury, March 29 - April 9, 1976.

[4] WOODWARD, P.M. & S.G. BOND, ALGOL 68-R Users Guide, Royal Radar

Establishment, Malvern, England, 1975.

[5] ALGOL 68 Version I Reference Manual, Control Data Services B.V.,

Rijswijk, The Netherlands, 1976.

[6] HILL, U., H. SCHEIDIG & H. WOESSNER, An ALGOL 68 Compiler, Technische

Universitat Miinchen and University of British Columbia, 1972.

[7] BRANQUART, P., et al, An Optimized Translation Process and its Applica

tion to ALGOL 68, Lecture Notes in Computer Science 38, Springer

Verlag, Berlin, 1976.

[8] ROBERTSON, A. & G.E. HEDRICK, A Portable Compiler for an ALGOL 68 Subset,

in [18], p. 59-64.

[9] BERRY, R.D., A Practical Implementation of Formatted Transput in ALGOL 68,

MS Thesis, Oklahoma St~te University, Stillwater, Oklahoma,

July 1973.

[10] LEROY, A., et al, On the Adequacy of the ALGOL 68 Environment Compared

with an Existing Current Operating System and Problems of I/O

Implementation, in [18], p. 202-220.

[II] BROUGHTON, C.G. & C.H. THOMPSON, Aspects of Implementing an ALGOL 68

Student Compiler, in [18], p. 23-38.

[12] BOURNE, S.R., A.D. BIRRELL & I. WALKER, ALGOL 68C Reference Manual,

University of Ca~bridge, Cambridge, England, July 1975.

[13] HIBBARD, P.G., A Proposed Sublanguage of ALGOL 68, ALGOL Bulletin 37

(July 1974), p. 30-54.

[14] GEN~ART, P.E., Implementation and Usage of the ALGOL 68/19 Compiler,

in [18], p. 13-16.

13

[15] AMMERAAL, L., Mini ALGOL 68 User's Guide, IW 32/75, Mathematical Centre,

Amsterdam.

[16] HANSEN, W.J. & H.J. BOOM, Report on the Standard Hardware Representation

for ALGOL 68, ALGOL Bulletin 40, August 1976, p. 24-43.

[17] VLIET, J.C. VAN, On the ALGOL 68 Transput Conversion Routines, IW 61/76,

Mathematical Centre, Amsterdam.

[18] HEDRICK, G.E., (ed.), Proceedings of the 1975 International Conference

on ALGOL 68, Oklahoma State University, Stillwater, Oklahoma,

June 10-12, 1975.

[19] WICHMANN, B.A., Performance considerations, in Software Portability

Course, University of Kent at Canterbury, March 26 - April 9, 1976.

[20] STOY, J.E. & C. STRACHEY, OS6- An Experimental Operating system for a

small computer. Part 2: Input/Output and Filing system, The Computer

Journal 15 (1972) 195-203.

