
s~ichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

H.J. BOOM

SEPARATE COMPILATION, DEFINITION MODULES,
AND BLOCK-STRUCTURED LANGUAGES

Prepub I i cation

~
MC

IW 77/77 JANUARI

2e boerhaavestraat 49 amsterdam

BlBUOTHEEK MATHEM,\TISCH cENTRUM
-AMSTERDAM-

P,un;ted a:t .the Ma:thema.U.c.a.l Cen;tJie, 49, 2e Boetr.haa.vu.:tll.aa:t, Am-6.telr.dam.

The Ma:thema.U.c.a.l Cen;tJie, 6ou.nded :the 11-.th 06 FebJw.a.Jl.y 1946, -l6 an.on.
p1Lo6U .lnt:i.tUu.t,,lon. a.,lm,i.n.g a:t .the pJtomo.tlon. 06 puJte ma:thema.U.C6 and .lt6
app.U.c.a..tlon&. I.t -l6 -0pont:io1Led by .the Ne.the/Lla.n.d6 GoveJLn.men;t .thllou.gh .the
Ne.the/Lla.n.d6 OJLgan..lza.U.on. 6oJL .the Advan.c.emen;t 06 Pwi.e Ret>eaJLc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 68A30

Computing reviews Category: 4.21, 4.22

SEPARATE COMPILATION, DEFINITION MODULES, AND BLOCK-STRUCTURED
LANGUAGES ,~)

by

H.J. Boom.

ABSTRACT

A "definition module" consists of a group of declarations
that may be invoked remotely in order to make them available at
the point of invocation, much as a procedure can be called
remotely. The definition module turns out to be a natural unit
for program composition. Using definition modules, it is possible
to compile parts of a pr6gram separately without loss of security
or program structure. This paper discusses how such mechanisms
can be installed in a high-level, block-structured, stack-
6riented language, and the benefits to be obtained thereby.

KEY WORDS AND PHRASES:
Definition module, module, separate compilation.

•) This report will be submitted for publication elsewhere

1. INTRODUCTION

Sometimes, a program gets too large for the logistic
support available to construct it as a single unit. The size of
the source text reaches limits imposed by the operating system,
source listings become inconveniently large, card decks no longer
fit in boxes, and large compilation times imply unacceptable
turn-around time. At this point~ it is necessary to break the
program into pieces which can be compiled separately of each
other. If the pieces are well-chosen, it will be possible to
recompile and alter them relatively independently of one another.
This is often true if the division is done according to the
modular structure of the progr9m; however, it may sometimes be
practical to divide it in other ways, and it may be inconvenient
to separately compile a module. It is useless, for example, to
try to recompile a macro independently from its calls.

One of the traditional ways of compiling parts of a
program independently is to break off single procedures, which
are then compiled separately using the same environment as the
main program. No global variables are available, except those
built into the language definition. The only way of
communicating with the procedure is via its parameters. Indeed,
calls of the procedure cannot even communicate with each other
unless the caller is willing to maintain the communication
convention. Some structured programming fans will be very happy
about this restriction; others quite unhappy. We gain explicit

- 1 -

environmental control of all our procedures. They can access only
that data we explicitly give them, and nothing else. On the other
hand, we are forced to pry unpleasantly deeply into the internal
structure of the procedure. If the procedure has to maintain a
history, the caller has to do it for him, and he must then know
the exact form the history tak~s, in order that he can do it
properly. Rather than wisely restricting the ability of the
procedure to cause damage to global variables by eliminating
them, we have forced every caller to meddle with the internal
structure of the procedure. Any fool who comes along to use the
procedure, furthermore, can interfere with the procedure via its
internal data base, which the fool is forced to deal with. He
cannot even leave it alone out of ignorance.

It is clear that, just as with procedures within a block
structured language, our separately compiled procedures must have
access to global variables. These are necessary for two reasons,

- to provide a means of maintaining a history, and
- to provide a place to keep a data base which is jointly

managed by a group of procedures.

Before we discuss traditional means of accessing such
global variables, let us consider linkage. Suppose a program
consists of a number of procedures, compiled separately, which
nonetheless call each other. Some linkage mechanism must be
provided to connect these procedures together. There are two
parts to such a linkage mechanism: In the source language within
each separately compiled procedure, a programmer must be able to
specify which other procedures are to be called, possibly by
"names", and when compiling these other procedures, he must then
be able to specify their names. We shall call such names
, external names". Secondly, there must exist a "linker" which, in
some environment associating these external names with the
procedures, connects the procedures to each other instead of to
their names.

Typical linkers do not consider the procedural structure
of a program, but see only

- pieces of code,
- names,
- "external definitions" of names, and
- "external references" to names.

The linker determines some order in which the pieces of
code are to be placed together in memory when executed, and this
determines the address for each externally defined name. It then
takes the address for each name and fills it in at every external
reference to the name. In this way, the names are replaced by
(relocatable) machine addresses. Conceptually the linker merely
accomplishes a change of notation, since machine addresses are
just another kind of name.

There is no reason why names should always refer to

- 2 -

procedures; they could just as easily refer to data or to empty
storage space. This is used to provide global variables.
Languages like Fortran and PL/I have COMMON and EXTERNAL
variables. Each COMMON block or EXTERNAL variable has a name. The
linker reserves space for the name to refer to and perhaps fills
the space with initial data, arid uses the external name to grant
the procedure access to the storage.

The scheme has serious drawbacks.

First of all, there is no hierarchical structure of
program pieces There is simply a vast sea of fragments, each of
which proclaims its name and hopes that no other has the same
name. The structuring primitives of the programming language are
available until one reaches the practical limits of single
compilation; after that one is tossed to the waves.

There is no reason to abandon structure just because a
problem is large; contrariwise, it is just then that structure
becomes indispensible.

Secondly, any procedure may access any datum or any other
procedure just by knowing its name. This causes serious security
risks, and makes independent proofs of correctness for
independent groups of procedures virtually impossible.

2. HOLES

It would be nice if the next step were to suggest itself,
but it does not.

Why not extend the block structure of the language to
separate compilation?

Experience has shown that block structure is a practical
device for structuring programs. It may not be perfect, but it
works, and the following remarks apply equally well to a number
of other schemes for structuring the name space.

Consider a program. It may consist of a begin and an end,
enclosing some sequence of statements, expressions, and
declarations, which may in turn contain more statements,
expressions, and declarations. We shall treat a procedure
declaration as if it contains an expression, called a nroutine
text", whose value is the procedure being declared. We require
that, given sufficient context to determine type conversions,
syntactic structure, etc., any statement or expression
(henceforth called a "unit·) can be cut out and separately
compiled (fig. 1, 2). In particular, this includes the routine
texts of procedure declarations. No restrictions are placed on
nonlocal variables involved in such units except the restrictions
inherent in the block (or other) structure of the language. We
shall discuss implementation of such a scheme later; first, let

- 3 -

us explore the practical consequences for program structure.

This chopping process need not restrict the kinds of
programs acceptible to an implementation; it affects only the
manner in which the program text is presented to the compiler. If
the language was good, it remains good; if it was bad, it remains
bad. It is conceivable that a programmer leaves his program
unchanged and alters only the chopping when he is presented with
a larger or smaller computer environment.

This chopping process tends to make the block structure
clearer. Large programs in existing block-structured languages
tend to have unwieldy parenthesis matching. To find the end
matching a begin across forty pages of program text is a--
nontrivial operation, even if the compiler helps by printing
nesting-level numbers and reformatting the source text according
to its parse tree. By cutting out large chunks and compiling them
separately, a block becomes much more readable. It may even be
useful to cut a program into pieces and feed all the pieces into
the compiler at one time.

Some readers might object that a forty-page block is an
atrocity, and that it should already have been cut up by dividing
it into procedures and calling them. This objection does not
apply, however, when the forty pages themselves consist mainly of
pages of procedure declarations. Such declarations may themselves
be nested, and may be arranged in the block structure so as to
enable certain shared and controlled use of nonlocal indicators.
Remember, nearly every procedure call uses a nonlocal identifier
to identify the procedure to be called.

Experience shows that large programs in languages with
block-structured chopping [2] tend to be written as a large
number of pieces, each of which is a few pages long, and may
contain some small number of pro'cedure declarations. Many of
these pieces contain ttholes", which are the sockets into which
the other pieces are placed. The pieces form a tree structure,
just like that of the block structure they represent.

When a piece of the program is compiled, the compiler
reads its source text and an "environment file". The environment
file tells the compiler the modes, names, and access algorithms
for all global indicators. The compiler produces an object code
file and zero or more environment files as output. One
environment file is produced for every hole in the source text of
the piece being compiled. The environment files can later be
used to compile other pieces that fit into the holes, as shown in
figure 3.

One effect of this order of compilation is that the
compilation of the main program cannot use any information from
the stuffing for the hole, although the hole may require
information from the main program. This unidirectional flow of
information makes simple chopping fit very well into block-

- 4 -

structured languages.

3. LIBRARIES

Let us now consider the problem of program libraries. A
typical program library may consist of a number of procedure,
mode, operation, and other declarations, which may refer to each
other in some way. A fairly natural way to implement such a
library is to write a block with a hole:

begin
<declaration prelude>;
hole x
<postlude>
end

This block is itself compiled in some standard environment. A
programmer wishing to use the library must then simply compile
his program using the environment file produced from hole "x"
when the library was compiled. All the declarations within the
<declaration prelude> will be available to him. Furthermore, the
<postlude> will be executed after normal termination, allowing
the library to close in a neat manner. Unless the program loader
and compiler conspire together, though, all of the procedures
declared in the prelude will be loaded, whether they are actually
used or not.

A programming language usually provides a number of
· standard procedures", which can be called without being declared
by the programmer. These can be considered as being declared in a
superblock which the compiler places around each program it
compiles. We can use the "holes" method of separate compilation
to implement the superblock in a pleasing way. It can be written
(partially, at least) in the prdgramming language itself, leaving
a hole for user programs. It can be compiled by the compiler
(once, except if it still needs debugging) to produce an
environment for each hole that it contains. One of these

/ environments is selected as the "standard environment"; the
others (if any) are simply separately compiled pieces of the
standard prelude. The standard prelude is then used for later
compilation of programs written by ordinary programmers. It is
also used to compile each library, and a programmer wishing to
use a library must write his program to fit into a hole left by
the library-writer, as shown in figure 4 We call the
combination of prelude and postlude around a hole a "circumlude".
We select one special hole (if there is more than one), and
consider it as the one where the ''real" program is inserted; the
other holes are for separately compiled pieces of circumlude.

This system looks quite elegant, but it has a serious
flaw - it is not possible to use two circumludes together, unless
one was compiled within a hole left by the other. This is because
it is not possible to have two pieces of code within one hole, or

- 5 -

one piece of code within two holes. The resulting collisions are
shown in figure 5. It is possible to compile one circumlude
within the other, or the other within the one as shown in figure
6, but this means that at least one of the two circumludes will
have to be recompiled by its user - an undesirable situation.
The circumludes are thus made to require each other as an
artifact of the separate compilation process, even though they
may be functionally independent. For these reasons, it is
generally agreed by the implementers of the simple chopping
method that it does provide a decent answer to the problem of
separate compilation of parts of a large program, but that it
does not answer the problem of program libraries.

Some system loaders may have useful mechanisms for
handling this kind of clash in an elegant way, but we shall seek
methods that work with the more conventional plug-in-socket
linking loaders. The method will involve two kinds of holes, one
for program parts, and one for library definitions. The holes
for library definitions must not require external references to
the libraries; otherwise, it will be impossible to place more
than one library in any given hole.

Another problem with simple chopping is that every
complete program will have the same entry point, which resides in
the run-time system. Since programs are often referred to using
their entry-point names within an operating system, this is
inconvenient. Furthermore, there would seem to be no a priori
reason to prevent linkage editing of two distinct complete
programs (that is, complete from the view of the programming
language) into one single linkage-edited object file. Use of
identical entry-point names may make this difficult.

4. CLASSICAL DEFINITION MODULES

The classical definition module [1,4) provides a way of
separating a group of definitions from the code that uses them.
Roughly speaking, a definition module is like a procedure, with
one important difference. A procedure may itself contain
declarations, and the indicators so declared are available only
internally. A definition module usually contains declarations,
but the indicators so declared are available to the caller of the
definition module as well. For a stack implementation, this means
that the local storage claimed by a definition module is not
released when the definition module returns control, but is
released simultaneously with· the local storage of its caller. Let
us consider an example.

definition d = def
-real x :=-0;
proc y = void
fecfi

int_I_= 3;
(1) #

(x +:= i)

- 6 -

end

inti;
Invoke~;

The text beginning with "definiti6n d = def" and ending
with the matching "fed" is a definition module declaration. No
action is performed when, in the normal course of execution, this
declaration is encountered, except for that normally performed
for procedure declarations. At point (1) in the program, only the
indicator "~" is known; "x" and "y" are not known.

Within the bloc~ from nbegin" to "end", the definition
module is invoked. At this time, the definltTons it contains are
executed, "x" and "y" are created. "x" is initialized to zero,
and the identifiers "x" and "y" are made available for use within
the block. Even though "i" is redeclared within the block, the
definition module itself still refers to the "i (outside the
block) that was global to its declaration (just like a
procedure). In particular, the procedure "y" uses the "i outside
the block, and not the "i'· inside the block.

Syntactically, the definition module invocation, "invoke
~", is to be considered a declaration.

The idea of a definition module is quite simple, and with
a bell and a whistle [1], it is quite surprising how much can be
done with it. First, however, we must discuss some
implementation questions.

5. INTERACTION WITH BLOCK STRUCTURE
I

If the programming language is block-structured and its
implementation involves a display or static chain for accessing
global variables, there is interaction between definition modules
and display management. Consider the following program:

- 7 -

begin# block A#
in t--I;
definition d =def# definition module D within A#

P!~)c p = void: j +:= 1 # procedure E within D #
real j := 0;

end

beg_!_1.:! # block B within A #
inti;

end

be~jin # block C within B #
Tnvoke d;
. . . i

end

begin# block E within C #
callp;
end~ -.-

] • e "'

The applied occurrence of "i" in definition module D identifies
the declaration in block A, and the applied occurrence of ''i" in
C identifies the declaration in block B, in accordance with
normal block-structure rules. The invocation of D suffices to
define the indicators declared within D for use by block C. In
particular, the invocation counts as a declaration of "p" and
\; j n. Therefore, the applied occurrence 11 j II in block C identifies
the declaration of "j" in the definition module via the
invocation in C.

The display structure reflects these identifications, as
we can see in figure 7. We shall use a static chain to represent
the display for accessing global variables; copying all display
pointers into each activation record would also work but would
needlessly clutter the diagram. Block A is entered in an
entirely normal manner (fig. 7a-b). The declaration of "d"
causes an entry-point-environment pair to be created, just as for
a procedure. Blocks Band Care also entered in an entirely
normal manner (fig 7 c-d). Then, from block C, definition module
Dis invoked. An activation record is made for it just as for a
procedure (fig. 7e), but when execution of the code within Dis
complete, the activation record is not popped from the stack.
Instead, a pointer to this activation record is placed within the
activation record for C (fig. 7f) so that the indicators defined
by D can indeed be accessed by C. In effect, Chas two display
pointers, one pointing to Band one to D. When block Eis
entered, its static chain pointer points to the activation record
of its statically enclosing block, namely c (fig. 7g). Within E
the procedure "p" is called. When the definition module D was
invoked, it created an entry-point-environment pair for p·;, with
the environment pointer pointing to D , s ac ti va tion record. ·· P"

- 8 -

can now correctly access its global variable ;, j" within the
activation record for D (fig. 7h)~ When control leaves P, and
later E, the stack shrinks appropriately (fig. 7i,j). The
activation record for D remains in existence until control leaves
C (fig. 7k). Band A then ter~inate (fig. 71, m).

We shall call abolishing the activation record for a
definition module "revoking·· the definition module.

On some machines it may be useful to allocate the
activation record for Das a component of the one for C. It may
even be useful to allocate it before entering C, in effect
passing it as a parameter to C. This, in turn, suggests a formal
equivalence which will be presented later.

Although we have used entry-point-environment pairs for
definition modules above, it should not be assumed that
definition modules are normal values with fully general
operations defined on them. In particular, there are no
definition module variables, and definition modules cannot be
passed as parameters. This is to ensure that the identity of the
definition module involved in any particular invocation can be
statically determined. Otherwise, it will be very difficult
indeed for a compiler to determine which indicators should be
added to its symbol table at an invocation.

Being able to determine the identity of a definition
module statically provides one significant advantage. It may
seem to be merely an optimization, but we shall see its true
worth later. In the same way as some compilers for Algol 60
implement procedures that are not passed as parameters, one can
delay making an entry-point-environment pair for a definition
module declaration until the moment that it is invoked. This
means that execution of a definition module declaration (but not
its invocation) may be a null action. We shall later see that
this is crucial for making program libraries convenient.

6. A FORMAL EQUIVALENCE

Let us assume for the moment that the programming
language to which we add definition modules permits anything that
can be declared to be a parameter. In a language with type
declarations, types can then be used as parameters. There are
good implementation reasons why this is usually not permitted,
but we shall assume it anyway· in order to construct a formal
equivalence.

For definition modules which are invoked only in deeper
ranges than those in which they are declared, we can set up a
formal equivalence with procedures. We illustrate this with a
definition module that declares four identifiers, "a, "b", "c',
and "d", but makes only "a" and · b" available to the invoker. The
definition module reads:

- 9 -

definition m = def
public int a - : = 6 ;
E.!:!~lic proc int b =int: a+c * (d +:= 1);
int c : = 3, d : = 4
fed;

The word "public" is associated with the protection mechanism
presented below: It indicates those definitions that are to be
made available to the invoker; others are secret. The invoking
block reads

begin
--riivoke _!!!;

y
end

We can replace the definition module declaration with the
following procedure declaration:

proc m = (proc(int, E~~~ in~) void p) void :

(int a : = 6;
proc int b =int: a+c * (d +:= l);
i ni-c :; 3 , d : = 4 ;

p{a,b)
)

We can replace the invoking block with the following call, which
passes a revised version of the old block as actual parameter:

m (

This procedure "m" and its call will have the same effect as the
original definition module and its invocation.

Having seen this, the question arises why we need
definition modules. Are not procedures sufficient?

No.

For valid implementation reasons, most languages place
stronger restrictions on para·meters than on declarations,
contrary to our convention in this section. As a result, not all
definition modules can be mimicked in this way. For example, one
cannot mimic a definition module which declares a mode or an
operator in Algol 68, or one that declares a type in Pascal. The
model of definition modules as procedures involves precisely
those complications that lead language designers to restrict
parameters, such as by requiring data types to be known at
compile time. Definition modules themselves, on the other hand,

- 10 -

are well~behaved, and do not hinder sensible implementation;
translating them as procedures makes their convenient static
properties difficult to discover.

Nonetheless, the translation as procedures demonstrates
that definition modules can be implemented with a stack, and it
may serve as an implementation 1 model on some systems.

7. DEFINITION MODULES AS CIRCUMLUDES

The formal equivalence suggests treating a definition
module as a portable pipe fitting between a hole and its
stuffing. The implicit hole in the invocation represents the
procedure call generated within the definition module for the
f<;>rmal equivalence. If we consider matters in this way, we may
wish to change our syntax for definition modules and invocations.

First, a definition module will contain a "canonical
hole", which we shall call a "gap". This will be the gap into
which we fit the invoker. In the above example, the gap
corresponds to the call "p (a, b} ·•

definition m = def
· ~ublic i~t a-~~ 6;

public proc int b = int
in_t c : = 3, d-: = 4

a +c * (d +: = 1} ;

gap
fe~;

Second, an invocation is a prefix to a block:

using d begin •• end

Upon invocation, the definition module is executed; at the gap,
the block is executed; and then the rest of the module is
executed. If a gap is permitted within a loop, one may
repeatedly execute the block (it is not clear that this is a good
idea. One might well wish to keep gaps out of loops, conditional
clauses, more deeply nested definition modules, etc.}.

Only one gap is permitted in each definition module.

With this formulation, it is possible to have
declarations after the gap (though what use they would be I can
not see}. It is also possible to have label definitions, and a
postlude to be executed after normal termination of the block.
If the program uses jumps, it may be impossible to rely on
execution of the postlude.

It is indeed possible to use the gap mechanism to
partially replace the hole mechanism in simple chopping. Instead
of letting the circumlude call the stuffing for one of its holes,
we let the stuffing invoke the definition module containing its
gap. The use of a definition module instead of a superblock with

- 11 -
BIBLIOTHEEK MATHEMATISCH eENrnUM

-Af\11C::Tl=Rnti.M __

a hole solves the entry-point-name problem mentioned earlier.

8.THE WHISTLE: PROTECTION

One might very well imagine that the writer of a
definition module may wish to make some declarations for internal
use, and other declarations for external use. The internal
declarations should not be accessible to the invoker of the
module .

. To this end, we specify that one can prefix the word
"public" to each declaration in a definition module, even to an
invocation of another definition module. If "public" is
prefixed, the indicators declared by the declaration will be
available to the invoker; otherwise, they are known only inside
the definition module. Another scheme is to provide a definition
module with a header or footer which lists all the definitions it
makes public (and perhaps also all the indicators it inherits as
global variables). This has the advantage of providing default
protection without requiring internal changes in the code when a
chunk is cut out of a program and placed into a definition
module. On the other hand, if the definition module consists of
essentially trivial declarations of many indicators, the header
method effectively requires the definition module to be coded
twice.' We shall later see that the notation used has
implications for the recompilation problem.

The "own" concept of Algol 60 was e~sentially a kludge to
provide something analogous to secrecy in definition modules.

There are some good reasons for choosing secrecy as
default instead of publicity. The most important one is that it
prevents accidental publication. It is impossible to forget to
write "secret" if one must instead write ",E~b_!ic" elsewhere.

9. THE BELL: SHARING

With the definition proposal so far, if two invocations
of some definition module are executed, two activation records
are created. This is usually either silly or dangerous.

Suppose that one wishes to perform structural analysis of
some prospective bridge. One may well wish to use standard
structural analysis programs instead of developing one's own.
One's analysis program might· well begin with two definition
module invocations

invoke stresses;
invoke vibrations;

in order to make both standard packages available. A user of a
package should not have to be aware of the internal structure of
the package. Stresses may well internally invoke some matrix

- 12 -

package (which
would be silly
matrix package
the extra one.
vipration~ may

we shall call matrix), and so might vibrations. It
to have two independent activation records-·for the
around. Some.trick must be found for eliminating
We must find some way whereby stresses and
jointly invoke the matrix definition module.

It can also be necessary for program correctness, instead
of merely for efficiency, that a definition module be invoked
only once.

-We invent the "shared" definition module. An invocation
of a shared definition module causes a new invocation of a module
only if one does not already exist. If one does exist, it makes
the old one available again. Since definition modules are
invoked and revoked in synchronization with the runtime stack,
this does not cause scope problems.

If one wishes to let definition modules be shared between
several invocations, the question arises as to the proper point
at which sharing occurs. There will have to be some compile- or
run-time data structure which records when a definition module
has been invoked, so that it will later be known whether it is
available for reuse. This "sharing point" is similar to a
semaphore, except that it provides sharing instead of exclusion.
There are some multiple invocations of a definition module,
however, that must clearly be distinct; In a multiprogramming
system, for example, each separate job invoking a definition
module will usually want its own separate invocation to prevent
unwanted interference between users. The operating system is
thus a conceptually unwise place to place this sharing point.
Furthermore, each definition module may require an environment
for proper execution. Different executions of the block in which
it is declared will provide it with different environments, which
must be distinguished at invocation. The sharing point must
therefore not be more global th~n the point at which
(conceptually, at least) the definition module declaration is
executed and its entry-point-environment pair is constructed.

On the other hand, the sharing point will have to be more
global than the first invocation of the module; otherwise it will
have no way of determining that it is indeed the first. We must
conclude that execution of the definition module declaration must
construct the sharing point, just as it constructs an entry
point-environment pair. The proper sharing point for an
invocation is therefore found when the definition module
declaration is identified. If a sharing point is actually built
at run-time, the definition module declaration will require
execution, and, as mentioned before, this is incompatible with a
convenient library mechanism. Sharing must therefore be decided
at compile time and be statically determinable. We adopt the
convention that, if another invocation of a shared definition
module exists in a range which (statically) includes the current
one, then a new invocation will simply access the outer one once
again.

- 13 -

Shared definition modules become important when
definition modules invoke each other. A shared invocation is
then a "requirement" by some definition module D that some other
definition module Ebe made available to it. If there is an
invocation of E active at the ,point of invocation of o, that
invocation's activation record is given to Das parameter {the
compiler must arrange this behind the scenes; the programmer need
not concern himself with the mechanism). Otherwise, the compiler
secretly invokes E, making its indicators available to D {but not
to the range invoking D, unless this range itself contains
invocations of E.). Other invocations of E will of course share
this new activation record. It is important to realize that in
this version of sharing it is statically determinable when
definition modules are invoked.

A typical large program or program library will consist
of a number of definition modules, most of which are compiled in
the same environment. These definition modules may use the
sharing/requiring mechanism to require that other definitions
modules are invoked. For each definition module, the compiler
determines which others are required directly or indirectly by it
and sees to it that the others are invoked as required.

If a definition module is used to define a data
structure, one may be tempted to use multiple invocations of the
module to construct multiple versions of the data structure, each
with its own private variables and administration. The
definition module is then treated as a data type definition, and
each invocation creates a value of this type. It seems
preferable to have a proper data structuring facility in the
language, instead of misusing definition modules. Attempts to
adapt definition modules to this misuse leads to non-stack
oriented features much resembling Simula classes. While classes
are certainly not to be despised, they do not constitute the
efficient modularity and separate-compilation facility discussed
here. It gains its efficiency from a relatively normal stack
implementation, which makes it difficult to use it like Simula
classes to build data structures. It is often possible to
pervert one feature into doing the job of another, but it cannot
be recommended. The proper way to construct multiple versions of
a data structure is not to use multiple invocations, but to
declare a procedure which constructs versions. The full data
structuring mechanism of the programming language can then be
used for manipulating the defined structures, and the procedure
declaration may of course be placed in a definition module.

It may be that unshared definition modules are not needed
in practice. Nonetheless, the whole nature of procedure calling
needs further study, since procedures, definition modules,
classes, coroutines, and parallel proccesses appear to have much
in common that is still poorly understood.

- 14 -

10. INTERACTION OF THE BELL AND THE WHISTLE

What does it mean tq have a shared secret invocation of
some module m within another module n?

It means that:
- (secrecy} the indicators defined by the invocation of mare

not published by n outside its own invocation.
- (sharing} other shared invocations of m will receive the

same activation record, under the usual conditions for
nonsecret invocations. Secrecy does not interfere with
sharing.

A typical large program will consist of a main block and
a number of definition modules. Each of these is compiled
separately. Each definition module and the closed clause may
''require" other definition modules. Normally, the sharing
mechanism will suffice to ensure that each definition module will
be invoked only once.

Definition modules may be needed within other definition
modules, blocks, or procedures if the standard environment of a
program is implemented by compiling it as a superblock, with the
users' programs compiled into a hole within the superblock. The
user's definition modules may thus end up within constructs in
the superblock.

11. SEPARATE COMPILATION OF DEFINITION MODULES

Each definition module must be declared within some
environment. This environment is necessary for the definition of
its nonlocal indicators. Each invocation, on the other hand,
needs to know which indicators are declared by the definition
module, and which other modules ,are required by it. If some
method is found for communicaeing these data, definition modules
can be compiled separately.

To enable such communication, the compiler recognises
''environment publishers" in sou~ce code. An environment publisher
is a construction that indicates that the compiler must place
environment information on an output file.

When a definition module is compiled separately, the
compiler reads a file of previously published environment
information in order to be able to compile correct code for
global indicators. The environment information must therefore
contain the declared indicators, their modes, and their access
algorithms. The compiler will produce, in addition to object
code, a "definition file" of analogous information for the
definitions and requirements in the definition module. This
definition file will be included in the compiler input when a
program is subsequently compiled which invokes or requires the
definition module. The environment of the invoking program must

- 15 -

contain the environment of the definition module as a proper or
improper subset, otherwise it will be impossible to guarantee the
definition module its global indicators.

Most definition modules will probably be compiled in the
standard environment produced by compiling the standard prelude.

As presented here, a definition module declaration does
not require execution (but there are variations on the sharing
mechanism which do require it). This is crucial to the
possibility of a convenient program library facility. Otherwise,
at a hole or env provided for the writing of libraries, an
unknown number-of separately compiled definition module
declarations must be executed. Normal linkage editors provide no
help in accomplishing this.

An implementation may, of course, construct the
environment information from a hole in such a manner that it can
be used for compiling a definition module. The crucial difference
is that there must be one and only one stuffing for a hole in any
linkage-edited object code; whereas there may be zero, one, or
many definition modules for each environment. Since a definition
module declaration requires no execution, no external reference
need be made by the object code of an environment publisher, and
there is no need to choose the correct definition module
declaration to insert. That is determined at invocation, not at
declaration. Figure 8 shows how a main program, a definition
module, and a program that uses the definition module can all be
compiled. ·

12. THE COMPATIBILITY CHECK

Some check is needed to ensure that at load time the
object code loaded is indeed that corresponding to matching
environments. One way of doing this is by a serial number. Each
environment or definition file is furnished with a serial number,
different from that of each other environment. Object code is
furnished with the serial number of the environment in which it
is compiled, the serial numbers of any environments or definition
files it may contain, and the S€rial numbers of the definition
modules it invokes. These serial numbers are compared for
identity at either linkage editing or execution time. If the
linkage editor accepts sufficiently long names, the serial number
can simply be appended to the external names already involved in
linkage.

Every linkage editor should accept really long names. Few
do. The limit is usually between six and eight characters, which
is absurdly inadequate even for just the identifiers commonly
used in modern programming lang~ages. Here we have another
example of misplaced efficiency considerations. The same
stupidity often occurs in job control languages. In order to
save microseconds per job the syntax is contorted to

- 16 -

incomprehensibility. It might be understandable if the job
control analyser were usually called from the inner loop of a
matrix inversion or multidi~ensional integration, but I have so
far seen no evidence of this. More time is probably wasted by
incomprehensible syntactic err.ors in the job control statements
than can possibly be saved by the syntax. Furthermore, the job
control language and linking loader are parts of the system that
every user uses fleetingly for every jobr and for every
programming system: they must therefore be general .

. Because linkage editors are uncooperative, the serial
number check must usually be performed at run time. A complete
interface specification would make a fine serial number for a
linkage editor, but at load time it will usually require
unconscionably much storage. One is therefore required to build
an arbitrary unique name generator. Concatenating the machine
serial number and the date and time is usually sufficient to
construct a unique name, provided that a global semaphore is
tripped sufficiently long to prevent another job from creating
the same name at the same time. Generation of unique names
should perhaps be considered an operating system primitive, or be
done according to standard system conventions. One mechanism
might be to let every program library contain a unique name
counter, which can be used by the compiler when it places object
code into the library. Unfortunately, this requires that some
form of name scope be recognized when combining libraries, since
different libraries will have independent name counters.

13. RECOMPILATION

After a definition module has been compiled, placed in a
library, and used by many customers, it may become necessary to
recompile it. This may be to fix a bug, to improve performance,
or simply to reconstruct definition or object-code files after
they have been inadvertently de~troyed. If the definition module
is recompiled, the access information or serial number in the new
definition file may not be identical to that in the old, even if
the same indicators with the same modes are published before and
after.

Some mechanism should exist to obviate recompilation of
all programs using the definition module. Two mechanisms can be
used. First, the recompilation can differ from the original
compilation in that the compiler is provided with the old
environment file and required to create object code to match.
Second, the access information can be computed in such a way that
it depends only on the published indicators and their modes (and
perhaps on their order).

If the entire access interface is accepted and checked by
the linkage editor, either method is sufficient. If, instead, an
arbitrary serial number is used for the check. the compiler must

- 17 -

receive the old environment so that it can compare it with the
new and avoid generating a new serial number. This is necessary
no matter whether the access.information depends on anything
other than the published indicators or their modes.

If the environment file contains information for
performing the constant propagation optimization (for a language
providing manifest constants, it might well do so), constraints
on recompilation will be more severe than if it contains no such
information.

If each definition module has an explicit interface
specification, as discussed earlier under "secrecy", it can be
used to determine the run-time interface independently of the
rest of the content of the definition module. If, as discussed
under "sharing", the invoker of a definition module must invoke
the other definition modules it "requires", then the identities
of the other definition modules must also be part of the
interface. (The only alternative to this appears to be to search
tables at run time to find shared activation records of
definition modules. This is tolerable if definition modules are
only rarely invoked. If they are used only to link together the
large-scale structure of the program, this will probably be the
case; if they are used in other ways, it may not be.

·14. EXAMPLE: PLOTTING SOFTWARE

A program library of the traditional sort consists of a
number of procedures. Quite often these procedures attempt to
communicate behind the scenes via COMMON storage or some other
mechanism. A set of routines for managing a graph plotter, for
example, might consist of a number of routines:

plinit to initialize the plotting system.
move to move the pen to a point.
down to lower the pen.
up to raise the pen.
letter to write text on the picture.
axis to plot axes.
newplot to start a new independent picture.
plend to terminate plotting and flush any internal buffers.
plwait (in case of an online plotter) to drain any

internal buffers in order establish synchronization
between the program and a human plotter operator.

etc.

Such a package of routines usually maintains joint data,
such as scaling factors, coordinate transformations, the current
pen position, and whether the pen is up or down. If the hardware
plotter interface is via a device that encourages data blocking
(such as magnetic tape, or a packet switched transmission line)
or if buffering is required to asynchronize plotting and
computing, the plotting routines may well wish to maintain

- 18 -

internal buffers. All of this internal information must not be
directly accessible to the user of the plotting system, lest he
damage its integrity.

In Fortran, a typical one of these plotting routines
might well begin

SUBROUTINE AXIS (...)
COMMON /SECRET/ POSX, POSY, AXIS, AYIS, ...

This leaves the routines open for mutilation by anyone
who cares to place a COMMON /SECRET/ statement in a program. This
is better than the situation in normal Algol 60 implementations.
There, independently compiled procedures are usually denied the
right of communicating via COMMON storage or anything similar.
This leaves two alternatives. First, one can escape to another
language to write the plotting procedures (or just the
communication interface). This is an admission of inadequacy of
the separate compilation mechanism, but is tolerable in practice.
Second, one can demand that all of these secret variables be
explicitly provided as extra call-by-name parameters each time
that a plotter procedure is called. This makes the secret
variables excessively prominent and actively encourages
tampering; we can not consider it a solution.

If definition modules were used to place these plotting
procedures in a library, the situation would be different. The
library could be compiled as a single definition module:

it:

def = def
--··- P!Otting

pr_~~ move = ... ,
pr<?C down = ...
pr!)C up =

!::i~<;:ret. £e._~..! posx, posy, axis, ayis, . . • ;

c the body of "plinit" ~;

de~;

A program wishing to use the plotting system would invoke

J:nvok~ _pl~_tting.

It would be impossible to call a plotting routine without first
invoking the definition module; this guarantees that the plotting
system will be properly initialized if used. Furthermore, the
routines can communicate via the secret variable, without
interference from the user.

- 19 -

The plotting definition module will have been compiled
beforehand (presumably by some system programmer) using the
standard environment of the programming language (In Algol 68,
this would provide it all the definitions of the standard
prelude.). Since the user program will also be compiled in this
environment (or a deeper one), it will be compatible, and can
thus invoke the definition module.

There is one possible difficulty. This mechanism appears
to imply that the object code for all the procedures in the
plotting.module will be loaded when any of them is required: they
are all part of one module. This can be avoided if the compiler
follows the sensible practice of having the object code for
procedures loaded only if they are used other than in their
declarations.

15. OPEN PROBLEMS

A number of problems can be seen. This paper has hinted
at some partial solutions, but they should not by any means be
considered final.

- It is necessary to have a library search for required
modules. These modules must be invoked at a proper block nesting
level, which must somehow be determined. It is probably a mistake

· to gather all such implicit invocations in some outer block1 they
should be done where required, even repeatedly, unless other
invocations exist. It is not-sensible to invoke a graph plotting
definition module at the operation system level because two
different jobs wish to use it on the same day, because then they
may get their plots tangled. (It might be sensible to load the
code once if it is reentrant, butthat is a different matter.)

- It is necessary to be ~ble to recompile a definition
module (perhaps to fix a bug) without having to recompile all the
programs that invoke it. Recompilation is necessary to match an
old interface.

- It is not clear what the lifetime for a definition
module invocation should be in a stackless.or blockless language.

- There is the problem of side effects of definition
modules. This will probably have to be handled like the side
effects of procedures - to be avoided but impossible to police.
And who is to judge effects and say which of them is unintended,
and therefore the side effect?

More explicit control is needed by the invoking program
over name visibility within the invoked modules. This is not as
important as a security measure to imprison naughty definitions,
but as a means to provide an overview of name and definition
flow.

- 20 -

- The invoking or regu1r1ng program and the invoked or
required definition module requir~ some means of establishing an
interface. Many methods can .be suggested. At one extreme we have
complete duplicate specification, with a load-time, link-time, or
run-time check. At the other extreme we have a single
specification from one side. Compilation produces an
environment-specifying file which is swallowed again by the
compiler when it compiles the program at the other side of the
inte~face. Each of these methods has its advantages and
disadvantages. It is clear that some flexible combination of
these methods is required in a convenient system, or else a new
method altogether.

ACKNOWLEDGEMENTS

The author wishes to thank the members and observers of
IFIP working groups 2.1 and 2.4 for much valuable discussion and
criticism of an early draft of this paper.

REFERENCES

[1) Steve Schuman, Toward modular programming in high-level
languages, Algol Bulletin 37.4.1, July 1974, 12-23.

[2] S. R. Bourne, A. D. Birrel, and I. Walker, Algol 68 C
Reference Manual. .

[3] I. F. Currie, Modular Programming in Algol 68, Algol Bulletin
39.4.1, February 1976, 13-19.

[4] Charles Lindsey, A proposal for a modules facility in Algol
68, Algol Bulletin 39.4.2, February 1976, 20-29.

- 21 -

begin

int i

begin

. . . i . . .

end

end

Fig. 1. A program.

begin

int i

begin

... i . . .
ena

end

Fig. 2. A program cut up

standard

"nvironment

compiler

~, compiler

object

code

object

code

Fig. 3. Separate compilation with a hole.

standard

environment
library

Fig. 4. Using a library

collision whit~

J
Fig. 5. Two libraries don't work.

Fig. 6. An unsatisfactory technique.

a) I

b) 0

c) ~

d) I AJ;Jj I

e) I Al: J2 r-D I

f) I A:L]it' I
g) 1 A:D Jin LE 1

h) 1,}_t]J]} I
;) I <]}J;:] Ii I

j) 1,1J/t I
k) ~

l) ~
Fig. 7. Static links.

m) I

~
I
l
• '1
I '}

'
~
~

'!lain
prosra111
(perhaps
standar
environment

module

compiler

co-mpi 1 er

object
code

object
code

/

/
/

, j • E•xecuti on

I
I

/

, ✓✓-' external ', /
✓"(,

/ '
/ / / '

~ H /

s~ • I compiler I • '

Fig. 8. Separate compilation with a definition module.

