
stichting

mathematisch

centrum ·

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS

PROGRAM TEXT AND PROGRAM STRUCTURE

Preprint

~
MC

IW 78/77 AUGUSTUS

2e boerhaavestraat 49 amsterdam

r.ieuornEEK M,\THEMr,r,scH cu,111uM
AMS i f.i"sD,,.M

Punted a.t. .the. Ma.t.hema.:ti.ca.l Cent/Le, 49, 2e. BoeJLhaa.ve.1,.tJr.aa.:t, Am.6.teltd.am.

The. Ma.t.hema.:ti.ca.l Cent/Le, 6ou.nde.d .the. 11-.th on Fe.b1tu.a1ty 1946, .u a. non­
p1to6U -<.n6.ti:t.utlon a.bn.ing a.t. .the. pltomo:tlon 06 pu!Le. ma.t.hema.:ti.C-6 a.nd .l:t6
a.pp.Uc.a.:ti.on6. 1.t .u -0pon601te.d by .the. Ne.thvri.o.nd-0 GoveJLnme.nt .th/tough .the.
Nethvri.o.n.d-0 01tga.nlza.:ti.on. 601t .the. Adva.n.c.eme.nt o 6 Pu/Le Re.1, e.a.Jtc.h (Z. W. 0) •

.AMS(MOS) subject classification scheme (1970): 68A30

ACM-Computing Review Categories: 4.20

* Program text and program structure

by

L.G.L.T. Meertens

ABSTRACT

Even if a program has been developed in a structured way, its structure
need not be reflected in the final program text. Modifications, which are
an important part of programming, should be applied at the highest
appropriate level of abstraction and worked out downward from there. It is
hard to enforce this discipline if a low-level program text is available:
such a text lacks the proper structure and thus invites patches. This
implies that the program text, as kept around, should reflect the structure
of program development. A language feature is proposed for making the
structure explicit that is introduced by the method of stepwise refinement.

KEY WORDS & PHRASES: structured programming
stepwise refinement
modifiability
documentation

This report is a preprint of a paper that will appear in the Proceedings
of the IFIP TC 2 Working Conference on Constructing Quality Software,
Novosibirsk, 22 - 27 May 1977.

O. INTRODUCTION

The deplorable quality of many software products is doubtlessly related
to the complexity of the task of designing and developing programs. We have
witnessed during the last ten years the emergence of a methodology to
reduce such complexity by using structure. And yet, in spite of a
widespread acceptance of the ideas involved, it appears that the general
situation has not substantially improved. It may be that it is too early to
notice the effects, but my assessment is different. The method of
structured programming is much older than the notion: it is as old as the
computer field. Generations of programmers have made use of structuring
techniques without being aware that they were doing so. The merit of the
prophets of Structured Programming is that they have described the method
explicitly, have created the terminology for discussing the design process
and have thereby done the groundwork for turning the art into a discipline.
But it is one thing to accept a discipline, and another thing to apply it.
Most larger software products are developed by teams that are under some
kind of pressure to present tangible results, such as an "operational"
system (for which it may suffice that it ostensibly does something, though
nobody knows what and there is no way to find out).

For a radical improvement we need more than a method or discipline: we
need tools with which the willing spirit can enforce the discipline upon
his weak flesh. To be sure, already many such tools exist: in fact, each
high-level programming language is one to some extent. But it is reasonable
to expect that a tool will provide an appropriate support for a given task
only if it has explicitly been designed for that purpose. What we need are
programming languages that have been designed with an explicit model of the
program construction process in mind.

1. STRUCTURED PROGRAMMING

The term "structured programming" refers to the process of program
construction, rather than to any intrinsic property of program texts
constructed in that fashion. It is theoretically possible - though highly
unlikely - that a programmer who constructs his program in a most
unsystematic way, eventually produces a program text identical to one
developed by a colleague in the most structured way possible.

When I use the word "program", it means a program text together with
the structure implied by the way in which the text was constructed.

The task of a programmer is to bridge a gap between a top and a bottom:
at the top he has a very abstract algorithm ("solve this problem") and at
the bottom he has a collection of concrete types and operations supported
by his machinery. His task is to implement the top algorithm in terms of
the bottom operations. Two important principles he may use to bring
structure in this task are:
(a) Layers of abstraction (Dijkstra [1]): Design a collection of data types

with corresponding operations, and possibly some other operations. This
collection describes an interface which factors the original task into
two new tasks: (i) implement the top algorithm in terms of the
operations of the interface, and (ii) implement the operations of the
interface in terms of the bottom operations. The design of an interface

2

is in a sense the design of a new, more problem-oriented, programming
language ..

(b) Stepwise refinement (Wirth [2]): Factor the original algorithm into a
number of sub-algorithms. The program is then composed from the
implementations of the sub-algorithms. This is clearly a top-down
method.

It is tempting to view stepwise refinement as a special case of (a),
since one might consider the sub-algorithms as operations of a new
language. For example, if "interpret command" is refined to "IF command ok
THEN execute command ELSE error message FI", this may be considered as the
design of a new language with operations "command ok", "execute command"
and "error message". This is, however, hardly helpful. The essential
difference bE3tween the operations of a layer and such sub-algorithms, is
that the operations of a programming language must have their semantics as
simple as possible and be of general applicability, whereas the semantics
of the sub-algorithms is in general quite complicated, and the
applicability is limited to one (or once in a while perhaps two or three)
occurrences, and only in conjunction with the other sub-algorithms.

It is better to consider (a) and (b) as different principles which
support and supplement each other. Both create hierarchies, but of
different natures: in one case an essentially linear hierarchy of layers
(or programming languages), in the other case a (hierarchical) tree
structure with the resulting program text as terminal nodes, where the
intermediate nodes are labelled with the intermediate sub-algorithms. In
either case the ordering in the hierarchy corresponds to the level of
abstraction, but these hierarchies should not be confused with each other.

To illustrate the process of stepwise refinement I will spend some time
on the problem of finding sentences of a context-free language that are
palindromes. (The choice of problem is rather immaterial for the purpose of
this paper. This problem has been selected since it has no obvious
solution, for it is undecidable whether a given context-free language
contains palindromes or not. For some languages, of course, the question is
settled easy enough, but no general method to solve the matter is
conceivable.) At this moment, I have only a vague notion how to attack such
a problem, but an approach is suggested by the following consideration. The
given problem is a special instance of the general problem to find common
elements of two sets (which, in this case, are a context-free language and
the set of palindromes). A procedure to solve this problem is to generate
members from one set successively, and to test each element for membership
of the other set.

The fac~ that the test for palindromicity is quite simple, whereas even
the order n test for membership of a general context-free language is
rather complicated (generating the elements of a context-free language is
in comparison almost trivial), and the fact that there are probably many
more palindromes of a given length than sentences of the language of that
length, both point in one direction: to generate sentences and to test for
palindromicity. It is silly, of course, to generate a sentence completely
if the first production step, say, already displays different terminal
symbols at the front and at the end. This suggests a process where the
generation process is guided by whatever terminal symbols have already
appeared or may still appear at the front and at the end. The process

should maintain a list of possible sentential forms (unfinished potential
palindromes) and each time select productions conforming to the present
findings, more or less like predictive parsing. Rather than taking the
reader by the hand and developing the program "together", I immediately
give some developmental steps as they occur to me now.

After the: very first steps, the algorithm reads as follows:

read grammar;

3

determine possible first and last terminal symbols for productions;
initialize sentential form list;
WHILE: neither list nor patience exhausted
DO develop promising form OD.

An obvious candidate for refinement is "develop promising form", and a
possible text is:

select promising {short} form;
determine its kernel {i.e., what is left of the form if matching

terminal symbols are deleted};
IF kernel is empty THEN solution found
ELSE develop form
FI;
remove form from list.

Next, "develop form" may be refined by replacing it by:

determine intersection between possible first and last terminal
symbols of kernel;

FOR each terminal symbol in intersection
DO select corresponding productions;

add developed forms to list
OD.

The following text has now been constructed:

read grammar;
determine possible first and last terminal symbols for productions;
initialize sentential form list;
WHILE: neither list nor patience exhausted
DO select promising {short} form;

determine its kernel {i.e., what is left of the form if matching
terminal symbols are deleted};

IF kernel is empty THEN solution found
ELSE determine intersection between possible first and last

terminal symbols of kernel;

FI;

FOR each terminal symbol in intersection
DO select corresponding productions;

add developed forms to list
OD

remove form from list
OD.

4

Although this is still a very simple piece of program, the structure is
already starting to become less obvious, since some of the abstractions
involved are no longer explicitly stated. When eventually all sub­
algorithms have been worked out and have replaced their indicators in the
above text, the tree-like way in which it was constructed will have been
obscured completely. The conceptual units of the program will no longer be
visible.

(It is too early for commitment as to an intermediate layer, but some
outlines are becoming visible. A priority queue is need~d, i.e., a list
type to which elements may easily be added, and whose shortest element can
easily be extracted. Alternatively, a simple queue could be used, in which
case "promising" means: derived in few production steps).

2. MODIFIABILITY

As in any model, the ideal situation depicted above is a
simplification. The less ideal but more common case is that the programmer
is not so lucky that he can plan his future steps in a surprise-free way.
Even if he is quite experienced and very careful, many decisions will turn
out to have such undesirable consequences that it is preferable to go back
and change the decision (and the careful application of the above
structuring principles tends to minimize the scope of the effects). If,
however, the program is properly modified - a matter of discipline - it
will eventually have the structure it would have had if the programmer had
made the correct decisions immediately!

It is not only during program development that modifications are
necessary. The situation that a large program has to be modified after it
has been written is also extremely common. For example, a design
requirement for all software products is that they behave "reasonably" even
when the user exceeds the limits of the specifications. What "reasonable"
means is a matter of user expectations and of human factors and cannot be
defined formally. Anyone who has been exposed to software products will be
able to supply a list of unreasonable properties that, though not bugs, are
still intolerable. One cannot blame (at least, in many cases) the designers
for not having foreseen the unfortunate consequences of the combined
working of a number of decisions each of which is reasonable enough on its
own. One can only require that the product be modified.

It should be clear that the quality of a program depends strongly on
its modifiability, if only because it is the result of a long sequence of
modifications. If these modifications are done poorly, the quality of the
program will be no better, however well designed the original program may
have been.

If a program has to be modified, knowledge of the program structure is
extremely important. The structure makes it possible to see if a proposed
modification would have farther-reaching consequences than was intended.
Alas, reconstruction from the program text of the way the program was
constructed is in general an impossible task.

The reason for introducing the notion of program structure was to cater
for the situation where the program is too complex to see and understand
all elements and their interrelationships simultaneously. For the validity

of the argument that knowledge of its structure is important, it is
therefore completely irrelevant whether the modifier coincides with the
original author.

3. STRUCTURING PROGRAM TEXT

I hope the reader is convinced that the program structure must be
described explicitly. But this is not enough. Not only must the program
structure be made explicit, but this explicit.description must also be
modified in parallel with the program. It is better not to have any
documentation than to have the documentation of a former version. Without
documentation it is at least clear that to modify the program reliably one
should discard the old text and start from scratch.

5

The most common reason for obsolescence of documentation is probably
that it is just too easy to modify a program without corresponding
modification of the documentation, or, to put it differently, that it is
not easy enough to modify the documentation at the same time. It is not
very realistic to expect that the quality of software will dramatically
improve as long as this situation persists. The conclusion is that the
structure of the program must be documented in the program text. In that
way the documentation can be updated as a routine part of the modification
of the program. Also, a description of the structure is always at hand when
the program text is looked at. (Remember that the program structure was not
an intrinsic part of the program text.)

For example, the "normal" way to implement a layer is to replace the
abstract operations textually by the text of their implementations. In that
case the structure is lost. What is needed is an explicit description of
the interface that can be understood by the receiver of the high-level
program text. The attention among language designers is now focussed to
such an extent upon this issue (under the name of "abstract data types")
that I shall spend no more words on it.

The same problem occurs with stepwise refinements. The normal way to
perform a refinement step is to substitute the refinement body !!l~• The
final text is no longer reminiscent of the derivation process.

The solution should be obvious. Simply never perform a refinement step
by literal in-situ substitution, but always retain the refinement as a
functional part of the program. Of course! Why should such a clerical task
as textual substitution be performed by the programmer, especially when it
is harmful to him? The start of the palindrome program from Section 1 could
then run exactly as it was developed there. The program text becomes a
linearization of the program tree, with repetition of the node labels
("develop promising form", "develop form") serving as a pointer. Since now
no low level text exists, it becomes even difficult to make a patch.

This requires of course new programming languages (or very simple
extensions of existing ones.)

Several questions arise. The first question is whether one could not
use procedures for refinements. The general answer is that procedures are a
completely different language feature: procedures govern the dynamic flow
of control, whereas refinements are intended to control the static program
structure. Refinements are possible (and sensible) for languages that do

}tJf ... U\l-;"}:[i_"': !-.---.:-.!ti'-~~; ;;~·.,·11 r~t."i):\t:_i.11

.A\•r."'r1·r,i.·• 1\t\.1

6

not have procedures at all (e.g., specification languages) or for program
parts not involving the flow of control (e.g., declarations). Moreover, for
languages that do have procedures we may ask the question: if procedures
would do, why, then, are they not used for the purpose? A probable reason
is that a procedure call, even without parameters, is rather expensive.
This is of course an implementation-dependent property and it is imaginable
that an implementation would make the obvious optimization for a
parameterless procedure that is called only once. But this makes the
implementation more complicated, and we should not encourage programming
language features which require an optimization for special cases. It
appears that procedures are too general a mechanism. If we look at the way
procedures are used in practice, a rough division in three classes can be
made: procedures for refinement purposes, which are called from one
position without parameters and are not recursive (seldomly used and then
only at a high level, near the top), procedures as building blocks for a
layer, usually called from many places with parameters but also not
recursive (except for the case where they traverse a recursive data
structure), and finally procedures to "divide and conquer" a problem that
can be expressed recursively, such as quicksort, backtracking or formula
manipulation .. It is unlikely that one feature is the best way of serving
such different uses. Anyway, procedures may have parameters and be called
recursively, and both possibilities should be excluded for refinements.
Another problem with procedures is that one certainly does not want
procedures to inherit access rights from their environment automatically,
whereas a refinement should inherit everything. For at the time the
refinement is written, we do not even yet know what there is to be
inherited. (This is in complete contrast with the operations of a layer,
which should inherit nothing whatsoever across the interface, that is,
statically.) Finally, many languages require definition of procedures
before application, an acceptable restriction, except for refinements.

The next question (having settled that refinements are a language
feature on their own) is the syntactic form of their "handle". I have
chosen the good old identifier. One reason is that it is an established way
of naming programmer-defined entities. Another reason is that a good choice
of identifiers is a better support to documentation than any other form I
can think of .. Identifiers almost compel a natural language choice, which,
for not extremely formally inclined people, is a natural way to express the
meaning of a sub-program on the proper level of abstraction. Even if a
handle such as "I:= {x I 3 u EV [k ~*xu]} n {x I 3 VEV [k =>* vx]}" were
allowed, the effect at best wouid be that the reader woul6 blink a few
times and then exclaim: Oh! he means "determine intersection between
possible first and last terminal symbols of k". Such formal expressions
have a value at the places where they belong - in the assertions of a
formal correetness proof. Another, admittedly weak, argument in favour of
identifiers is the possibility to write a very simple preprocessor to
handle refinements as an extension to an existing programming language.

Programmers are usually well-advised not to use very long identifiers.
Handles of refinements, however, occur only twice in the text and the
obvious argument against long identifiers does not apply. It makes sense to
make them long enough to convey some information as to the meaning of the
algorithm they stand for.

A research problem is what syntactic positions may be taken by
refinement handles. Obvious cases are statements and expressions. Formal

7

parameters, on the other hand, would be a bad idea. As can be seen from the
example in Section 4, it may be desirable to allow refinements for
declarations also. A definitive answer can only be developed with respect
to specific programming languages, however.

Various programming systems have been developed that aid in stepwise
refinement by taking over the clerical tasks of textual replacement (see
e.g. [3, 4]). These systems may also have the possibility to run an
incomplete program. I do not think this offers a solution. In the first
place, the proper and obvious tool for aiding .. the programming process is
the programming language. Programs are what we use to communicate
algorithms to ourselves, to other programmers and even to computers. The
main reason, however, is rather more down to earth: even with the best
conventions possible for indicating modifications, the pencil-and-paper
method will remain an order of magnitude simpler. As long as the program is
in its development phase, each impediment to easy modification is an
impediment to obtaining a reliable program. The value of describing an
algorithm incompletely (down to a certain level of abstraction) is obvious,
but the value of running an incomplete program escapes me.

4. AN EXAMPLE

The use of abstract data types to simplify program modifications is
discussed by Linden [5]. He rewrites Hoare's sieve-of-Eratosthenes program
[6] using abstract data types. But from his program it is apparent that the
main gain in readability stems from the choice of identifiers for the
operations on his abstract type "sieve set". His program would have been
better structured if refinements had been used. The implementation of the
operations is rather repetitious and it is as difficult to see that they
are correct as in Hoare's version. A change of representation would involve
the major part of the program. Worse yet, there is a rather obscure
correspondence between the high-level integer "next" in the program, and
the low-level value "xindex". Although Linden states: "this program is a
direct translation of the English definition of the algorithm", the coarse
structure of the English definition he gives and that of his program are
different! The structure of the core of the English definition is:

core:
FOR each integer FROM two through the

square root of n
DO remove all multiples from the set OD,

whereas that of his program is (slightly simplified):

core:
INT next:= 2;
WHILE next not exceeding the square root of n
DO remove multiples of next from the set;

find next member
OD.

find next member:
REPEAT next:= next+ 1
UNTIL next in set.

8

The correctness proof of the second version requires, unlike the first
version, a~ existence proof, given a prime p, of a second prime p' with
p < p' ,i p. This proof is not completely trivial. The optimization
involved is justified by the statement: "it is not necessary to remove the
multiples of any number which has already been removed from the set". This
corresponds, however, to a refinement

remove multiples if necessary:
IF multiples already removed
THEN SKIP
ELSE remove multiples
FI.

Below I give a version of the algorithm, in accordance with the ideas
of this paper. The problem is that the table of primes has to be
implemented using a bit map. Primitives for setting and testing one of the
bits O through wordsize-1 in a "WORD" are assumed available, as is the
upper bound n of the primes to be computed. The straightforward solution
would involve a division per table access, which is considered
unacceptable.

Some notations are employed below that are an immature attempt to
express some ideas for the emancipation of abstract data types, taken from
EL1 [7], namely the fact that for a new mode the primitive ways of access
have to be described explicitly. Operators may also be anonymous (type
conversion functions) or 3-adic (used to define a "generator" in the sense
of Alphard [8]).

Two new layers are used, a very simple one for the integral square
root, and a larger one for indexing. The definitions are not definitions of
the class type, but of the module type (Schuman [9]) where details of the
implementation are made invisible outside the module.

sieve of eratosthenes USING integral square root, indexing.

sieve of eratosthenes:
declare sieve of size n;
FOR each integer FROM two through the square root of n
DO remove multiples if necessary OD;
print table.

remove multiples if necessary:
IF multiples already removed
THEN SKIP
ELSE remove multiples
FI.

declare sieve of size n:
[n] BOOL prime;
fill prime.

fill prime:
FOR INDEX p FROM 2 BY 1 TO n
DO prime[p]:= TRUE OD.

print table:
FOR INDEX p FROM 2 BY 1 TO n
DO IF prime[p] THEN print (p) FI OD.

each integer:
INDEX p.

two through the square root of n:
2 BY 1 TO intsqrt (n).

multiples already removed:
-, prime[p].

remove multiples:
FOR INDEX mult FROM p * p BY p TO n
DO remove multiple OD.

remove multiple:
prime[mult]:= FALSE.

DEF integral square root:
BEGIN PROC (INT a) INT intsqrt:

IF a< 0 THEN ERROR
ELIF a= 0 THEN 0
ELSE INT rt:= a+ 2 + 1;

FI
END.

{a < (rt + 1 /}

WHILE rt> a+ rt

{a< rt2 }

DO rt:: (rt+ a+ rt)+ 2 OD;

{rt2 _$,a< (rt+ 1) 2 }

rt

DEF indexing:
BEGIN PRIMITIVE MODE INDEX:

(repr: STRUCT (INT intval, word, bit)
{invariant: intval =word* wordsize + bit},

assign (v): repr:= v,
val: repr);

{type conversion functions}
OP (INT a) INDEX:

(intval: a,
word: a+ wordsize,
bit: a MOD wordsize);

OP (INDEX a) INT:
a.intval;

OP (INDEX a, b) INDEX+:
IF a.bit+ b.bit < wordsize
THEN (intval: a.intval + b.intval,

word: a.word+ b.word,
bit: a.bit+ b.bit)

ELSE (intval: a.intval + b.intval,
word: a.word+ b.word + 1,
bit: a.bit+ b.bit - wordsize)

FI;

9

10

END.

OP (INDEX a, b, c) GENERATOR(INDEX) BY TO:
(init: a,
cont (i): i.intval .i c.intval,
next {i): i + b);

PRIMITIVE MODE [INDEX] BOOL:
(repr (size): [O: size.word] WORD,
assign (i, v): setbit (i.bit, repr[i.word], ABS v),
val (i): getbit (i.bit, repr[i.word]) = 0)

5. CONCLUSION

Let me first point out that I do not think that structured program
texts are a panacea for the software crisis. If the structure of a program
is abominable, it is not particularly helpful to faithfully mirror its
structure in the program text (except that a recipient of the program is in
a better position not to place unjustified confidence in the program).
Similarly, structuring program texts cannot replace the task of proving
correctness (but it may be of help). The main advantage of making the
program structure explicit as advocated here is that this provides
documentation as an integral part of the program text. All necessary
modifications can easily be made in the proper way, and updating this
documentation in parallel with the program becomes almost automatic (making
patches may become hard indeed). In short, future languages should support
explicit structuring of program texts and thereby increase the quality of
programs.

Of the two major principles introducing program structure, only one,
layers of abstraction, is receiving due attention from language designers.
The other one, stepwise refinement, seems more or less neglected. The
purpose of this paper has been to show that the introduction of refinements
as a language feature is desirable and feasible (in fact, SLAN [10] already
has a refinement facility, and the standard control structure of CDL and
its offsprings CDL2 [11] and ALEPH [12] is very similar). Since the
refinements correspond closely to the way a program is developed, they
should prove a natural instrument for the programmer.

ACKNOWLEDGEMENTS
The idea of structuring a program text according to the program

structure could not have evolved without the work of Dijkstra, Naur, Wirth,
Hoare, and too many others to mention. I am indebted to Kees Koster for
several suggestions about the content and organization of this paper.

REFERENCES

[1] Dijkstra, E.W., The structure of the "THE" multiprogramming system,
Comm. ACM 11 (1968) 341-346.

[2] Wirth, N., Program development by stepwise refinement, Comm. ACM~
(1971) 221-227.

11

[3] Henderson, P. & R.A. Snowdon, A tool for structured programming
development, Information Processing 74 (Proceedings of IFIP Congress
1974), 204-207, North-Holland, Amsterdam (1975).

[4] Cunningham, R.J. & C.G. Pugh, A language-independent system to aid the
development of structured programs, Software - Practice & Experience
£. (1976) 487-503.

[5] Linden, T.A., The use of abstract data types to simplify program
modifications, Proceedings of Conference on Data: Abstraction,
Definition and Structure, SIGPLAN Notices 11, special issue, 12-23
(1976).

(6] Hoare, C.A.R., Notes on data structuring, in, 0.-J. Dahl, E.W. Dijkstra
and C.A.R. Hoare, Structured Programming, Academic Press (1972).

[7] Wegbreit, B., The treatment of data types in EL1, Comm. ACM 11 (1974)
251-264.

[8] Shaw, M., W.A. Wulf & R.L. London, Abstraction and verification in
Alphard: Iteration and generators, Technical Report, Carnegie-Mellon
University and University of Southern California Information
Sciences Institute (1976).

[9] Schuman, S.A., Toward modular programming in high-level languages,
ALGOL Bulletin 37.4.1 (1974) 30-53.

(10] Hommel, G., s. J!hnichen & w. Koch, SLAN - Eine erweiterbare Sprache
zur UnterstUtzung der strukturierten und modularen Programmierung,
in Programmiersprachen Fachtagung 1976, Informatik Fachberichte 1,
Springer-Verlag, Heidelberg (1976).

(11] Dehottay, J.-P., H. Feuerhahn, C.H.A. Koster & H.M. Stahl,
Syntaktische Beschreibung von CDL2, Forschungsgruppe
Softwaretechnik, Technische Universit!t Berlin (1976).

(12] Bosch, R., D. Grune & L.G.L.T. Meertens, ALEPH, A Language Encouraging
Program Hierarchy, The International Computing Symposium 1973,
Davos, 73-79, North-Holland, Amsterdam (1974).

