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*) How "good" can a graph be n-colored? 

by 

Paul M.B. Vitinyi 

ABSTRACT 

The problem of how "near" we can come to an n-colorine of a given 

graph is investigated. I.e., what is the minimum possible number of edges 

joining equicolored vertices if we color the vertices of a given graph with 

n colors. In its generality the problem of finding such an optimal color 

assignment to the vertices (given the graph and the number of colors) is 

NP-complete. For each graph G, however, colors can be assigrn~d to the ver­

tices in such a way that the number of offending edges is less than or equal 

to the total number of edges divided by the number of colors. Furthermore, 

an O(epn) deterministic algorithm for finding such an n-color assignment is 

exhibited where e is the number of edges and pis the number of vertices of 

the graph (e ~~ p ~ n). A priori solutions for the minimal number of offending 

edges are given for complete graphs; similarly for equicolored K in K and 
m p 

equicolored graphs in K. 
p 

KEY WORDS & PHRASES: graph coloring, construction of course schedules with 

minimization of conflicts, computational complexity, 

analysis of algorithms, NP complete. 

This report will be submitted for publication elsewhere. 



1. INTRODUCTION 

In order to facilitate meetings at international sunnnit conferences, 

simultaneous translations ought to be provided for each pair of nonequilingual 

participants. What is ~he maximal number of translators possibly needed for 

p persons, each speaking one out of n distinct tongues, under the assumption that 

everybody may talk to everybody else at the ~ame time. (Situations like 

that seem to be one of the reasons why large meetings function badly - even 

without the language barrier). The question asks for the maximally possible 

number of edges connecting distinct colored vertices in "n-colorings" of K, 
p 

the complete graph on p vertices. In the sequel we shall assume the graph 

theoretical terminology and notation of HARARY [4]. 

Ann-coloring of a graph G = (V,E) is a partition of Vin disjoint 
n 

subsets v1,v2 , ••• ,Vn such that no element of E belongs to U Vix 

minimum number n such that an n-coloring is possible is caii!d its 

V .• The 
1 

ahr-omatia 

number x(G). Given some partition w of V into v1,v2 , ••• ,Vn the ratio 

#{a E E I a E U V. x V.} / # E is a measure of how far we are removed from 
i=I 1 i 

an n-coloring of G. E.g., if x(G) = n' ~ n then there is a partition ff such 

that this ratio is O. (Obviously, there always is a partition such that the 

ratio is I, viz. v1 = V and v2 ,v3 , ••• ,Vn = 0). In this paper we investigate 

the following question: given a graph G and an integer n what is the infimum 

of the above ratio and for what partition ff is it reached if the partition 

ranges over all possibilities. Therefore we introduce the following: 

DEFINITION. Let G = (V,E) be a graph and let TI be a partition of Vin dis­

joint subsets v1,v2 , ••• ,Vn. The number of bad edges in G with respect to TI 

is 

n 
B(G,TI) = #{a EE I a E U 

i=I 

and the number of good edges in G is 

C(G,TI) = #E - B(G,w). 

The n-aoZorabiZity distance of G is 

v. X V.} 
1 1 
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d(G,n) = inf B(G,TI) / #E TI 

and the n-aolorability of G is 

c(G,n) = I - d(G,n). 

Clearly, c(G,I) = 0 and c(G,X(G)) = I; c(G,n) is strictly increasing 

on the interval [I,x(G)J and c(G,n) = I for n ~ x(G). It is well known that 

c(G,5) = I for all planar graphs G and by the claimed proof of Haken and 

Appel of the four color conjecture c(G,4) = I for all planar graphs G. 

The notions outlined above have been used (at least implicitly) in the 

construction of course schedules and minimization of conflicts therein (a 

conflict being represented by an edge joining -courses which cannot be held 

simultaneously). However, there usually heuristic methods are elaborated 

while we propose to look at the problem from a more theoretical point of view. 

In the following weshow'tha:t finding c(G,n) is NP complete and give an O(p{p}) 
n 

deterministic algorithm to find c(G,n) and the corresponding vertex partition 

where {p} is a Stirling number of the second kind. We exhibit an O(epn) deter-
n 

ministic algorithm which for a graph G withe edges and p vertices always 

finds an n-partition of the vertices such that the ratio of bad edges to the 

total number of edges is less than or equal to 1/n. A priori solutions to 

c(G,n) are given for the case that G is a complete graph and similar problems 

about the number of equicolored K in K and equicolored graphs in K are 
m p p 

investigated. 

2. n-COLORABILITY FOR ARBITRARY GRAPHS 

To determine c in general is hard; indeed, it is NP-complete. That is 

to say, it is solvable by a nondeterministic algorithm in time polynomial 

in the number of vertices (i.e., the algorithm can "guess" the partition 

yielding c) and every problem which can be solved by a nondeterministic 

algorithm in time polynomial in the "size" of the problem can be reduced to 

this one deterministically in time proportional to a polynomial in the "size" 

of the problem. This latter fact follows since the problem of determining the 
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chromatic number of a graph is NP-complete, and determining c(G,2), c(G,3), 

, ... , c(G,n), with c(G,n) = I and c(G,n') < c(G,n) for n' < n, yields X(G) =n. 

For further details about NP-complete problems of this nature see KARl' [6]. 

The problem of determining c(G,n) can be stated as a quadratic programming 

problem, LENSTRA [7], and can be interpreted as a time-table problem. It 

can be approximated rather easily (by single vertex color changes) to local 

optima in the space of all n-partitions of the vertex set but to find a 

global optimum in the general case presumably requires checking all possibi­

lities. Refraining from doublures like isomorphic partitions etc., it is 

easily seen that checking all elements in 

l. i i 
W = {l{I} 12{1,2} 23 ... n{l,2, ... ,n} nJi 1 +i2 + ... +in= p-n 

suffices, the interpretation being that each element of the above set de­

notes a differient assignment of n colors to the ordered set of p vertices of 

the graph G. If we denote the cardinality of the above set by S(p,n) we see 

that 

S(p,n) = l 
i+i+ ... +i =p-n 

I 2 n 

l. 
n n 

By expansion of generating functions we note that S(p,n) is generated by 

00 

_____ I _____ ,....= '\' S(p,n)zp-n 
( I - z) ( I - 2 z) .•. ( I - nz) l 

p=n 

and by [5, ch.IV] 

n 00 

_____ z ____ ~ = l {p}zp 
( I - z) ( I - 2 z) ... ( I - nz) p=n n 

where{p} is a Stirling number of the second kind. Hence S(p,n) ={p} and since 
n n 

these Stirling numbers can be expressed as: 
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we infer that 
p 

{p} < n / n! 
n • (For further facts concerning Stirling numbers 

see the above reference.) In [ 1 J an 0( {p}) algorithm is described for gener­
n 

ating the sequence of n-partitions W by one or two digit changes (changes in 

the color assignment of a single vertex or two vertices in the graph). Hence 

an algorithm to determine c(G,n) works as follows (where we write the algo­

rithms in self-explanatory pidgin ALGOL): 

ALGORITHM I. 

Initiate with partition n0 and compute B(G,n0); 

Min B := B(G,n0); dl := d2 := 0; n := n0 ; 

while not all partitions have been generated 

do generate new partition ni+l from ni 

using PARTEXACT from [1]; 

od 

d1, 2 := number of bad edges incident 

on the one or two vertices changing 

color in going from n. ton. 1, 
l. 1.+ 

inn. and n. 1, respectively; 
l. 1.+ 

B(G,ni+I) := B(G,ni) - dl + d2 ; 

if Min B > B(G,n. 1) 1.+ 
then (Min B : = B ( G, n . 1 ) ; n : = n . 1 ) 1.+ 1.+ 
fi 

¢ c(G,n) := 1 - Min B/#E and TT contains the corresponding n-color assignment ¢. 

Since there are at most p- 1 edges incident on a vertex, computing d 1 and 

d2 takes O(p) time; the condition in the if statement can be satisfied at 

most O(p2) times since the number of bad edges is decreased by at least 1 

each time. Therefore we have (since PARTEXACT runs in time O({p})) a total 
n 

time of O(p)O({p}) + O(p2)O(p)O(n) for the algorithm. Hence: 
n 

THEOREM 1. There is an algorithm which determines c(G,n) for a graph G on 

p vertices in (deterministic) time O(p{P}). 
n 
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At this point we should contrast our approach with that of GAREY and 

JOHNSON [3]. Faced with a computationally intractable problem, it is a 

practical approach to relax the optimality constraint. Instead of requiring 

an optimal coloring one might, for instance, be willing to settle for a 

coloring which uses "close" to the optimal number of colors. It has been 

shown in [3], however, that to find an n-coloring of a graph G is still NP­

hard for all n s r x(G) + d for constant d arid r < 2. We have relaxed the 

optimality constraint in the other way. Faced with the problem of finding an 

n-coloring of G, where n might or might not be sufficient for finding a 

"true" n-coloring we settle for an assignment of the given n colors to the 

vertices of G such that the number of offending edges ,is minimal. We have 

shown that this problem too is NP-hard. It will now appear that, given G 

and n, we can always find a color assignment for which the number of bad 

edges is less than or equal to 1 /n - th of the total number of edges e in G 

and that there is an O(epn) deterministic algorithm to find this color -

assignment. 

LEMMA 2. d(G,n) s 1/n for aU graphs G. 

PROOF. Let a vertex v of color J be connected by x. edges with vertices of 
i 

color i, s i,j s n. Let x = min {x.}. As long as x. > X for some 
min Isisn i J min 

vertex V the number of bad edges can be decreased by changing the color of 

v to i for some x. = x .. Hence we can assume that for a partition yielding 
i min 

d(G,n) all vertices are colored in such a way that the number of bad edges 

incident on each vertex vis less than or equal to degree(v)/n, which 

proves the Lemma. D 

That Lemma 2 cannot be improved upon-is -seen by, e.g., the example of figure 1. 

The next algorithm embodies the procedure implicit in the previous 

proof: it finds a color assignment TI, using n colors, for a given graph G 

such that B(G,n)/#E(G) s 1/n. The color assignment found is a local optimum, 

i.e., it cannot be improved by changing the color of a single vertex. 

ALGORITHM II. (A,p,n). ¢ We assume that G is available as a vertex adjacency 

matrix A[ I :p, 1 :p] of dimension p x p and that n colors are used. Furthermore, 

we dispense with declarations. ¢ 

8lHl.l0 T ftcE.tc:.. :-,.·:/\ '. t-<-~·, ·•'.··cft l-i..;>t i t\!JM 

Al\:'.:o 1 i..li:JNvl 



initialize: for i from 1 by 1 top 

do last := 1; 'IT[i] := 1; 

for j from I by I top 

do if j ~ n then D[i,j] := 0 fi; 

if A[i,j] ,/, 0 

then (A[i, last] := j; last := last+ 1) 

fi 
od; 
D[i, 1 J := degree[i] := last - 1; 

Min[ i , 1 ]- : ,;. 0; Min[ i, 2] : = 2 

od; i := I; check:= p; 

6 

¢ Now A[i,j], 1 sis p and 1 s j s degree[i] contains the number of the 

j-th vertex connected with vertex i. 'IT[i] contains the color of vertex i 

and all vertices are colored initially with color 1. D[i,c] contains the 

number of edges connecting vertex i with vertices of color c; Min[i, J J := 

inf D[i,c] and Min[i,2] the associated color c. ¢ 
Jsisp 
lScSn 

Loop: whiZe i ,f, check 

do whiZe D[i,1T[i]J > Min[i,1] 

od; 

doc := 'IT[i]; 'IT[i] := Min[i,2]; 

od; 

for j from I by to degree[i] 

do D[A[i,j],c] := D[A[i,j],c]- 1; 

D[A[i,j],'IT[i]] := D[A[i,j],1T[i]J + 1; 

if Min~[i,j],2] = c 

then MinL\[i,j],l] := Min[A[i,j],1] - I 

eZse if Minl:A.[i,j],2] = 1T[i] 

fi 

then if D[A[i,jl,k] = inf{D[A[i,j],s]} 
lSsSn 

then (Mi.n[A[i,j ], I] := D[A[i,j ],k]; Min[A[i,j ],2] :=k) · 

fi 
fi 

od;check := i 

i:=ifi=p 
then 1 e Zse i + 1 

fi 
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t The loop checks cyclically over all vertices whether a change in color 

of a single vertex can decrease the number of bad edges; if so all relevant 

variables are updated in accordance with the new color assignment. If the 

loop is executed p times without the main condition being satisfied the program 

terminates. The array TI contains the resulting color assignment and the 

number of bad edges is l D[i,j]/2. t 
J:,;j:;;;n 

TI[i]=j 

--r 
Time analysis of Algorithm II: initialize runs in time O(p ). The condition 

in the main loop can be fulfilled at most e = #E(G) times since the number 

of bad edges is decreased by at least I each time. Each vertex has degree 

O(p). Looking for the infimum of n elements takes at most n comparisons. 

Hence the 'total algorithm runs in 0(p2) + O(e)O(p)O(n). Assuming without 

loss of generality that e > p > n we have: 

THEOREM 3. There is an aZgorithm which coZors the p vertices of a given graph 

G with n coZors such that for the resuZting partition TI it hoZds that 

B(G,TI)/e:;;; 1/n, withe= #E(G), and which runs in deteYlfTlinistic time O(epn). 

Clearly, Algorithm II can only be guaranteed to find local optima of 

B(G,TI)/#E(G)(with variable TI) with respect to single vertex color changes, 

in view of the fact that to find d(G,n) is NP-hard. 

It should be noted that for finding an optimal n color assignment to 

the vertices of a graph G only those vertices have to be considered which 

have degree~ n, since the vertices of lesser degree can always be colored 

so that they have no incident bad edges. Therefore, we assume that G has 

more than np/2 edges, and Algorithm II runs in time O(e2). 

3. n-COLORABILITY OF COMPLETE GRAPHS 

Although the problem of finding the n-colorability of arbitrary graphs 

is difficult we can say more for certain classes of graphs, e.g., c(G,n) = I 

if G is planar and n ~ 4. For the class of complete graphs we can give an 

exhaustive a priori solution since all vertices are interchangeable. 
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n m· 
Let TI bean-partition of V(K ). Then B(K ,TI)= -~ ( 2i) if TI partitions 

P P i-1 n m· 
V (K ) in (nonempty) sets of cardinality m1 ,m2, ••• ,m • ::iince . !: ( 2i) = 

P n 2 n i=l 
1/2(.!: m. -p) we have (if L J and 1 7 denote the lower and upper entier, re­

i=I i 
spectively). 

2 2 
LEMMA 4. inf B(K ,TI) = 1/2((n-r) LP/nJ + r fP/nl -p) 

TI p 
wher>e r is the r>emainder> of P/n. 

n 
PROOF. Let m be the smallest integer out of m1 ,m2, ••• ,mn' . !: m. = p. Then, 

i=] i 

n n n 
2 2 2 2 

I m. = I (m + (m. - m)) = I (m + 2(m. -m)m + (m. -m) ) 
i i 

i=I i i=I i i=I 

which is minimal for (m. - m) E {O, I} for all i, I s i s n. Hence a partition 
i 

TI of p 
n 

i:to m1 ,m2, ••• ,mr = f P/n 7 and mr+ 1 ,mr+Z, .•• ,mn = L P/nJ yields a 

.!: m. 2 • □ minimal i=] i 

COROLLARY 5. inf B(K ,TI)= (p(p-n)-r(r-n))/2n 
TI p 

(Substitute ( P/n - r/n) for L P/nJ and ( P/n + (n-r) /n) for> rP/n 7 in Lemma 4.) 

THEOREM 6. d(K n) = (p+r-n)(p-r) 
p' np(p-1) 

wher>e r is the remainder> of P/n. 

Clearly, lim d(K ,n) = 1/n and, furthermore, for n = 2 d(•) is non-n-+co p 
decreasing in p and assumes identical values for consecutive odd-even p's. 

In general: 

LEMMA 7. Let n ~ 2 be fixed. 

(i) d(K ,n) <.!_for> aZZ p. 
p n 

(ii) d(Kln+r'n) < d(Kln+r+t'n) 

< d(Kln+n-1 'n) = 
where O s r < n - I • 

d(K0 ,n) -l-n+n 



PROOF. (i) By Theorem 6. 

(ii) Assume that d(K_fo+r'n) ~- d(Kln+r+l 'n) for some n ~ 2, l ~ 

and r, 0 :o; r < n - l . By Theorem 6 we have 

Cln + 2r - n)fn 

n(ln + r) (ln + r - l) 

(ln + 2r + 2 - n)ln 
n(ln+r+ l)U.n+r) 

which leads to r ~ n - l: contradiction. Similarly we prove the remaining 

inequalities/equalities. D 

EXAMPLE. The Erdos-graph [2] has the mathematicians for its vertices; two 

vertices are joined by an edge if the corresponding mathematicians have 

co-authored at least one joint paper. What is the size of a possible 

9 

clique in the Erdos graph in which the number of edges joining equal sexes 

is minimal, equals the number of edges joining opposite sexes and which 

clique contains 4% more female than male mathematicians? (The latter female 

predominance corresponds to nature I s bias towards female births). From 

Theorem 6 we infer that the size of this clique is 625, viz. 325 females 

and 300 males. Using~ 3.8% instead of 4% yields the ominous clique K666 , 

and using l/600% allows the world population of 3.6 billion in such a clique. 

4. EQUICOLORED SUBGRAPHS. 

The number of equicolored K in K is, for a partition 1T of pin 
n m· m P 

m1,m2 , ... ,mn, equal to i~l (m1 ) (assuming (x) = 0 for x < y). The ratio of 
y n 

equicolored K to the total number of K in K is E (mi)/(P). The total 
m . m p i= I m m 

number of equicolored complete graphs in a partition 1T of pin m1 ,m2, ... ,mn 
n mi m· 

is given by .r: 1 .E 1 ( .1 ) and the ratio to the total number of complete sub-
1.== J= J n mi m· p 

graphs is given by i~ 1 -~ 1 ( •1 ) / -~ 1 (~). Similarly, the number of 
J J J J n mi m· 

equicolored subgraphs in K for a partition 1T is given by .I .I f(j) ( .1 ) 
n mi P . p 1.=I J=I J 

and the ratio by . I 1 . I 1 f (j) (m._1 ) /.E I f (J0
) (~) where f (J.) is the number of 

1.= J= J J= J 
graphs on j vertices. 



LEMMA 8. For aU above expressions with a given n ( and m if relevant) the 

infimum is reaahed for a partition of V(KP) in v1,v2, •.. ,vn of aardinaZity 

m1,m2, ••• ,mn where m1,m2, •.• ,mr = r,~7 and mr+l'mr+2, ••• ,mn = L!J where r 

is the remainder of E.. n 

PROOF. Let TI be a partition of pin m1,m2, .•• ,mn and let m' = mtn{m1,m2 , ••• , 

m }. Then, if m. = m'+j. we have 
n 1 1 

m'+ji-1 
m'+ji-1-m 

m' + 1 cm') 
m'+l-m m 

m' + X which is minimal for J0

1• E {0,1} for all i, 1 ~ i ~ n, since----> 1 m'+x-m 
for all x. It is easy to see that all expressions alluded to in the Lemma 

reach their minimum if this particular one does so. D 

The number of distinct labelled graphs over j vertices is found 

by noting th9 t every edge in K. can either be present or absent. Hence this 

number is 2(~)-1 (if we exclud; the empty graph). The number of equicolored 

graphs in KP for a partition TI of pinto m1,m2, ••• ,mn is therefore given by 

n mi 

I I 
i=l j=l 

and by Lemma 8 and the previous discussion we have 

THEOREM 9. The minimum number of equiaoZored graphs in an n-partition of K 
p 

is given by 

p-r + 1 
n 

r I 
j=l 

p-r 
n 

I 
j=l 

Similarly, we determine the :formulas for the .fnfima of the other expressions 

occurring above. 
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