stichting
mathematisch
centrum MC

AFDELING INFORMAT ICA IW 82/77 ME |
(DEPARTMENT OF COMPUTER SCIENCE)

J.W. DE BAKKER
SEMANTICS OF INFINITE PROCESSES USING

GENERALIZED TREES

Preprint

2e boerhaavestraat 49 amsterdam

BIBLICTHEEK MATHE! tATISOH CENTRUMA
ANSTERDAM

Printed at the Mathematical Centre, 49, 2e¢ Boerhaavestraat, Amsiterdam.

The Mathematical Centre, founded the 11-th of February 1946, 48 a non-
progit institution aiming at the promotion of pure mathematics and its
applications. 1t 4is sponsored by the Netherlands Governmment through the
Netherlands Organization for the Advancement of Pure Research (Z.W.0).

AMS (MOS) subject classification scheme (1970): 68A05

ACM-Computing Reviews—categories: 5.24

*)

Semantics of infinite processes using generalized trees
by

J.W. de Bakker

ABSTRACT

A proposal is outlined for the definition of the meaning of infinite
processes within the framework of denotational semantics. An infinite pro-
cess obtains as its meaning a function from (generalized) trees to trees.
A combination of least-fixed-point and greatest-fixed-point techniques is

used to characterize both trees and processes.

KEY WORDS & PHRASES: denotational semantics, infinite processes, trees,

least fixed points, greatest fized points

*)

This report will be submitted for publication elsewhere.

1. INTRODUCTION

In this paper, we give a preliminary account of an attempt we have made at using
generalized trees for the definition of the semantics of infinite processes. Often,
e.g. in the study of operating systems or of various forms of concurrent processes in
general, one considers processes which continue indefinitely as normal rather than un-
desirable objects. A language construct which gives a first impression of the problems

involved is, e.g., do S1 u 82 od. The operational semantics of this construct is fairly
clear: (*) Choose, nondeterministically, between S] and S execute the selected state-

2’
(M @

ment, and repeat (*). I.e., an infinite sequence of statements S
&)
{

ce. 4 1is

performed, where each S is either S] or S,. However, it is less clear what meaning

2

to attribute to such a statement in the framework of denotational semantics. There, it
is customary to view the meaning of statements as functions from states to states, with
the convention that for an input state for which the computation specified by the
statement does not terminate, as output state some special undefined state, often de-
noted by "1", is delivered. Thus, all infinite computations become indistinguishable,
and any analysis of their structure is virtually imposs@ble. As a remedy we propose

to attribute meaning to statements not as functions from states to states, but from
(generalized) trees to trees. More specifically, each tree t (with states labelling

its nodes) is transformed by (the function describing the meaning of) statement S into

a tree t' which is an extension of t in that t' results from t by replacing its leaves

by subtrees. E.g., the process do A od (with A some elementary action) transforms

a
a
b.//\\\\C into b c
A(b) A(c)
A% (b) A2(e)

To scme extent, it may seem that this idea amounts to nothing but the incorporation
of infinite computation sequences determined by statement S (or, rather, trees instead
of sequences because of the presence of nondeterminacy) into the framework of denota-

tional semantics. And, indeed, this is one way of viewing our proposal. There is more

to it, however. In order to deal with recursion, it is necessary to introduce some
ordering on the various tree-transforming functions involved, which ordering is in its
turn determined by an ordering on the trees. So we have to define this ordering, which
has in addition to serve the following purpose: We want to Ee able to distinguish be-
tween two interpretations of a tree as indicated here, viz. as specifying on the one
hand the set of all paths aa, aaa, ... (i.e. aa+),

and on the other hand this same set together with the
infinite sequence aw(i.e., aa+ U {aw}). Fixed points
methods are used for this set, and the difference just

mentioned is obtained through the distinction between

least and greatest solutions of equations between (sets
of paths associated with) trees. The following is an
example of this: Let, in general, t = < a,{tl,...,tn} > be a tree with root a and sub-
trees ti,...,t , 0 2 0. Consider Ehe equation t = < a,{t,<a,P>} >. Its least solution
has as associated set of paths aa , whereas its greatest solution has as associated
set of paths aa’ v {aW}. Corresponding to this distinction at the level of trees, we
have a distinction in the semantics of the language construct of recursion. Consider -
in a notation to be used only in this introduction - a recursive procedure P, the body
of which consists of a choice between either some elementary action A, or A followed
by a recursive call of P. Formally, P « A;P u A, say. For input state a we can choose

between two possibilities for the set of output states:
2
- {A(a), A"(a),...,L1}
2
- {A(a), A“(a),...,A%@)}.

Clearly, the second choice, which preserves more information, may be preferable in
certain situations, and requires a formalism which refines the method of simply deliv-

ering | whenever an infinite computation is encountered.

Our system of generalized trees is a candidate for such a formalism. Why do we
call them generalized? As suggested already, we view trees as specifying sets of paths,
and identify trees which have identical such sets. Therefore we identify, e.g.,

a a

l. Trees such as ///\\\ and ///\\\
b c c b

(both specify {ab,ac}).

a a
2. Trees such as and

b b b
c d c d

(both specify {abc, abd}).

Section 2 of the paper describes the syntax and semantics of our tree constructs,
section 3 the programming language (with elementary actions, sequential composition,

nondeterministic choice, (normal)recursion and infinite recursion (cf. the second

3
interpretation above)) to which meaning is attributed using fixed point techniques in

the domain of operators on functions from trees to trees.

Greatest fixed points (but without our generalized trees) have been used by Hitch-
cock & Park [1], Mazurkiewicz [2], and De Roever [3]. For the framework of denotational

semantics in general see, e.g., Scott & Strachey [4] or Milne & Strachey [5].

2. SYNTAX AND SEMANTICS OF GENERALIZED TREES

We first present the syntax. Let V be a set of tree variables, with typical ele-
ments x,y,... and let T be the set of trees, with typical elements t,... . Before giv-
ing the definition proper, we discuss a preliminary version which, for reasons to be
mentioned in a moment, turns out to be insufficient. We use as syntactic formalism

a variant of BNF which should be self-explanatory.

DEFINITION 2.0 (to be rejected).

tir= 0]x| <a,t> |ux[t]] vx[t]

where T = {tl,...,tn} is a finite (possible empty) set of trees
END 2.0

This definition tells us that a tree is one of

a) the tree constant 0 (which stands for the undefined tree, and has the empty set
of paths as its meaning);

b) a tree variable x;

c) a tree with root a and subtrees tl""’tn;

d) the Zeast solution of the equation (in to) tO = t[to/x];

e) the greatest solution of the equation t, = t[to/x].

0

(In clause d and e, t[to/x] denotes the result of substituting t. for x in t.)

0
The problem with definition 2.0 is that, e.g., the equation t, = t_ does have a least

solution but not a greatest solution. In fact, as least solutgon (3enoted by ux[x1])

we have the tree (also denoted by 0) with associated set of paths @, whereas for the
greatest solution (vx[x]) we need a tree such that the associated set of paths is

both a tree-set (in the sense of definition 2.3 below) and greatest within the collec—
tion of all tree-sets. No such set exists, which explains why we impose a syntactic
restriction on the use of the vx[t] formation in that t has no free occurrences of x,
unless these occurrences are shielded by some intermediate use of the <a,t> formation

rule, E.g., we do not allow vx[x], nor vx[uy[x]], but we do allow vx[<a,{x}>], or

vx[<a,{uyl<b,{x,y}>11>17.

DEFINITION 2.1. Let I be the set of states, with typical elements a,b,...,a],...,a'p...

For each W £ V we define a tree tW (where W records the tree variables which do not

allow v-formation).

tii= 0 |x| <a,t> qu[twllvx[tw o (x3)

- provided that x ¢ W
- where 1 = {tl,...,tg} is a finite (possibly

empty) set of trees with respect to @

END 2.1.

Below, we simply write t for t¢.

EXAMPLES. Possible trees are: 0, x, <a, {<b, @>, <c, {<d, @>}>1}>, uxl<a,{x}>],
vx[<a, {x}>]1, uxl[<a, {x,<a, @>}>]1, vxl<a, {x, <a, @>}>], vxl<a, {uyl<b, {x, y}>1}>1.

We now define a way of assigning meaning to these constructs. As indicated already,
we use sets of (finite or infinite)paths over I as meaning of t € T. More specifi-
cally, we introduce

-z, the set of states, as before

- Z*, the set of all finite sequences of elements in I

(with ¢ denoting the empty sequence)
¥, the set of all infinite sequences of elements in I,
S,...denote typical elements of hou

- S, with typical elements o,0', the set of

all subsets of 55U 5@,

The meaning T(t) of t ¢ T is given as an element ¢ ¢ S, but for the complication
that we need an environment function mapping tree variables in V to elements in S, in

order to cope with the presence of free tree variables in t.

DEFINITION 2.2. Let © = V =+ S, with typical elements 6,... . Let, for 0,50, € S,
(where the second ordering is the customary set-theoretic

1 @2 e $-> 8, @l c 9
Let, for ¢ a monotonic function, (i.e., o

0, = 0, whenever g, S o
I 2 1 2

inclusion). Let, for o 2

1 = 9, > @(o]) = @(02)) from S to S, ud de-
note its least fixed point and v its greatest fixed point. (Both exist because of the

whenever @l(o) = ®2(0) for all o « S.

Knaster-Tarski theorem.) Let, for each 6 € 0, x ¢ V and 0 ¢ S, 6{o/x} be an element
of @ which is defined by: 68{o/x}(x) = o, 68{a/x}(y)

6,%x and t, \o. T(t)(8{c/x}) be that function from £ to § which, when applied to

8(y) for x # y. Let, for each

o ¢ 8§, yields T(t)(@{co/x}) € S (i.e., Ao-...embodies the customary A-notation). We

9]

put, for each 6 ¢ 0:

a) T(0)(8) @ (the empty subset of 25 Zw)
b) T(x)(8) 6 (x)

) T(<a,1>)(6) = aTl(1)(8)

dy T(ux[t])(8) = ulro-T(t)(B{o/x})]

e) Tx[t])(®) = v[ro.T(t) (6{ac/x})]

where, in clause ¢, T(t)(8) is defined és T(t)(8) = th T(t)(8) (1#0), and T(P)(8) =

{e}. Moreover, we have, as usual, that ac = {as]seo}.

END 2.2.

EXAMPLES. Choose any 6. T(0)(6) = @, T(x)(8) = 6(x), T(<a,{<b,@>,<c,{<d,B>}>}>)(6)

{ab,acd}, T(ux[<a,{x}>1)(8) = @, T(vxl<a,{x}>]1)(8) = {a%}, T(ux[<a,{x,<a,d>}>1)(8)

{aa,aaa,...}, T(vx[<a,{x,<a,@0>}>]1)(6) = {aa,aaa,...,aw}, T(vxl<a,{uy[<b,{x,y}>]1}>1) (8)=
+. W :

(ab)™,

DEFINITION 2.3. A set of sequences o € S is called a tree-set whenever the following

two conditions are satisfied:

a) Each pair $,38, €0 has a finite non-empty sequence s as common prefix.

2
b) For each finite non-empty sequence s, the set of all sequences in ¢ which have s

as maximal common prefix is finite.
END 2.3.

EXAMPLES. The set {a,b} is not a tree-set, because it violates condition a, and the

set {aa],aa ..} is not a tree-set, because it violates condition b.

2%

The following proposition is stated here without proof:

PROPOSITION 2.4, For each t € T and each 6 € © such that 6(x) <s a tree-set for all

x € V, we have that T(t)(8) is a tree-set.

END 2.4.

2. SYNTAX AND SEMANTICS OF INFINITE PROCESSES

Let A be a set of elementary actions, with typical elements A,A ., and X a set

1o
of statement variables, with typical elements X,X],... . We define the class of state-

ments Stat, with typical elements S,... , in

DEFINITION 3.1.

Si:= A]x[sl;szls] u szlux[sjlvx[s]

Y

END 3.1.

Here, Sl u S2 indicates a nondeterministic choice between S1 and 82. Also, uX[S]

corresponds to a parameterless recursive procedure declared in an ALGOL 60-1like lan-
guage by proc P;S[P/X]. Moreover, vX[S] extends uX[S] in that possible infinite computa-
tions are also taken into account. E.g., the two procedures mentioned in the introduc-—

tion are written in this syntax as pX[A;X u A] and vX[A;X u AJ.

RIBLIOTHEEK NATHEMATISCH CEi (RS
AMSIERDAM

6

Now let M = T -~ T, with, for ¢l, ¢2 e M, ¢1 gtbz iff ¢1(t) ;(bz(t) for all t € T

(where t, = t_ iff T(t])(e) = T(tz)(e) for all 6 € 0). Let, moreover, A be the set of

all fini;e suisets of I, and let T = (X M) u (A > (2> A)); (The first part of each
vy € T gives some (arbitrary) meaning to statement variableé, the second part tells us
how elementary actions A ¢ A transform a € I to {al,...,an}(n 20) ¢ A. I.e., elemen-
tary actions are of bounded nondeterminacy.) We now give the definition of the meaning

of a statement.

DEFINITION 3.2. M: Stat -~ (I -~ M) is given by

a) For each t which is not of the form <a,@>:
M(S) (v) (0) = 0, M(S)(¥) (x) = x, M(S) () (<a,t>) = <a, M(S) (¥)(1)> (t#0),
M(S) (v) (uxlt]) = ux[M(S) (v) (£)1, M(S) (v) (vx[t]) = vx[M(S) (y)(t)].
(Here, M(S)(v) (1) = U M) () (0).)

b) For t = <a,(> we use induction on the structure of S:

1. MA)(v) (a,8) = {:<a,{<ai’¢>]ai€ T(A)(a)}>,. Hywe e

<a,{0}>, otherwise

M) (v) (<a,8>) = y(X)(<a,@>)

M(Sl;sz)(Y)(<a,¢>) = M(Sz)(Y)(M(Sl)(Y)(<a,¢>))

M(S1 u 52)(Y)(<a,¢>) = <a,{M(Sl)(Y)(<a,¢>), M(Sz)(y)(<a,¢>)}>

. MGXILSD) (v) (<a,@>) = ulx¢.M(S) (v{¢/X})1(<a,d>)

. MOXESD (v) (<a,B>) = vIr¢.M(S) (v{¢/X})1(<a,d>)

[N, B " I V)
e e .

END 3.2.

EXAMPLES. Let y(A)(a) = {a',a"}, Y(Al)(a) ={a]},y(A2)(a) ={a2}.

1. M) (v) (uxl<a,{x,<a,0>}>1) = ux[M(A) (y) (<a,{x,<a,@>}>)] =
px[<a, {M(A) (v) (x), M(A) (y)(<a,B>)}>] = uxl<a,{x,<a,{<a',@>,<a",@>}>3}>7.
Thus,

ag.--.. ag.-

a///\\\“; is transformed into a

1 a"

a
2. M(uX[Al;X U AZJ)(Y)(<3,¢>) and M(vX[Al;X U A1) (v) (<a,8>)

yield this tree with the infinite path

a
a .
//l\\\ a a a] a] all all ... excluded in the
4y a p—case and included in the v-case.

REFERENCES

Hitchcock, P. and D.M.R. Park, Induction rules and proofs of termination, Proc. 15F

ICALP (M. Nivat, ed.), pp. 225-251, 1973, North-Holland, Amsterdam.

Mazurkiewicz, A., Proving properties of processes, CC PAS reports 134, Warsaw,

1973.

. De Roever, W.P., Maximal fixed points solve some of the problems with Scott induc-

tibn, Proc. 4th ICALP, to appear.

Scott, D. and C. Strachey, Towards a mathematical semantics for computer languages,
Proc. Symp. Computers and Automata (J. Fox, ed.), pp. 19-46, 1971, Polytechnic
Institute of Brooklyn.

. Milne, R. and C. Strachey, A Theory of Programming Language Semantics, Chapman &

Hall, 1976.

