
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J. W. DE BAKKER

SEMANTICS OF INFINITE PROCESSES USING
GENERALIZED TREES

Preprint

~
MC

IW 82/77 MEI

2e boerhaavestraat 49 amsterdam

liUBLIDTHH.K r,n/,THEr/:J\TlSCH CC:NTRU-1\11
AMS~[f,DAM

Ptun:ted at :the Mathematic.al Ce.ntJz.e, 49, 2e Boell.ha.a.ve6.tJula;t, Am6:teJulam.

The Mathematic.al Centlr.e, 6ou.nded :the 11-:th 06 Febll.uall!J 1946, -l6 a. non
p11.06U .in6.t.ltu.tion a.,im.,i_ng at :the pll.omo:Uon 06 pull.e mathematic..6 a.nd w
a.pp.U.c.a.:ti.oru,. I:t -l6 .tipon601Led by :the Ne:the/l.la.nd-0 Gove11.nmen:t :th/Lough :the
Ne:the/l.la.nd-0 011.ga.n.ization 6011. :the Adva.nc.emen:t 06 Pulte Re6ea.1Lc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 68A05

ACM-Computing Reviews-categories: 5.24

Semantics of infinite processes using generalized trees*)

by

J.W. de Bakker

ABSTRACT

A proposal is outlined for the definition of the meaning of infinite

processes within the framework of denotational semantics. An infinite pro

cess obtains as its meaning a function from (generalized) trees to trees.

A combination of least-fixed-point and greatest-fixed-point techniques is

used to characterize both trees and processes.

KEY WORDS & PHRASES: denotational semantics, infinite processes, trees,

least fixed points, greatest fixed points

This report will be submitted for publication elsewhere.

I • INTRODUCTION

In this paper, we give a preliminary account of an attempt we have made at using

generalized trees for the definition of the semantics of infinite processes. Often,

e.g. in the study of operating systems or of various forms of concurrent processes in

general, one considers processes which continue indefinitely as normal rather than un

desirable objects. A language construct which gives a first impression of the problems

involved is, e.g., do s1 u s2 od. The operational semantics of this construct is fairly

clear: (*) Choose, nondeterministically, between s1 and s2 , execute the selected state

ment, and repeat:(*). I.e., an infinite sequence of statements SCI), s(2), ... 1s
Ci) . . performed, where each S is either s1 or s2 . However, it is less clear what meaning

to attribute to such a statement in the framework of denotational semantics. There, it

1s customary to view the meaning of statements as functions from states to states, with

the convention that for an input state for which the computation specified by the

statement does not terminate, as output state some special undefined state, often de

noted by ''...L", is delivered. Thus, all infinite computations become indistinguishable,

and any analysis of their structure is virtually impossible. As a remedy we propose

to attribute meaning to statements not as functions from states to states, but from

(generalized) trees to trees. More specifically, each tree t (with states labelling

its nodes) is transformed by (the function describing the meaning of) statement S into

a tree t' which is an extension oft in that t' results from t by replacing its leaves

by subtrees. E.g., the process do A od (with A some elementary action) transforms

into

To some extent, it may seem that this idea amounts to nothing but the incorporation

of infinite computation sequences determined by statement S (or, rather, trees instead

of seq11ences because of the presence of nundl'tcnnin,H·y) into the fr.:1mework of denota-

t ion,il semantics. And, indeed, this is onP way of viewing our proposi11. There 1s more

2

to it, however. In order to deal with recursion, it is necessary to introduce some

ordering on the various tree-transforming functions involved, which ordering is in its

turn determined by an ordering on the trees. So we have to define· this ordering, which

has in addition to serve the following purpose: We want to be able to distinguish be

tween two interpretations of a tree as indicated here, viz. as specifying on the one

a

a

a ..

+ hand the set of all paths aa, aaa, ••• (i.e. aa),

and on the other hand this same set together with the
' f ' . w " + { w}) F ' d . in inite sequence a li,e., aa u a • ixe points

methods are used for this set, and the difference just

mentioned is obtained through the distinction between

least and greatest solutions of equations between (sets

of paths associated with) trees. The following is an

example of this: Let, in general, t = < a,{t 1, ••• ,tn} > be a tree with root a and sub

trees t 1, ••• ,tn' n ~ O. Consider the equation t = < a,{t,<a,0>} >, Its least solution

has as associated set of paths aa+, whereas its greatest solution has as associated
+ set of paths aa u {aW}, Corresponding to this distinction at the level of trees, we

have a distinction in the semantics of the language construct of recursion. Consider

in a notation to be used only in this introduction - a recursive procedure P, the body

of which consists of a choice between either some elementary action A, or A followed

by a recursive call of P. Formally, P <= A;P u A, say. For input state a we can choose

between two possibilities for the set of output states:

- {A(a),
2

A (a), .•. ,.L}

- {A(a), 2 w A (a), ... ,A (a)}.

Clearly, the second choice, which preserves more information, may be preferable in

certain situations, and requires a formalism which refines the method of simply deliv

ering _L_ whenever an infinite computation is encountered.

Our system of generalized trees is a candidate for such a formalism. Why do we

call them generalized? As suggested already, we view trees as specifying sets of paths,

and identify trees which have identical such sets. Therefore we identify, e.g.,

I. Trees such as and

(both specify {ab,ac}).

2. Trees such as a

b()b
C d

and

(both specify {abc, abd}).

Section 2 of the paper describes the syntax and semantics of our tree constructs,

section 3 the prograrrnning language (with elementary actions, sequential composition,

nondeterministic choice, (normal) recursion and infinite recursion (cf. the second

3

interpretation above)) to which meaning is attributed using fixed point techniques in

the domain of operators on functions from trees to trees.

Greatest fixed points (but without our generalized trees) have been used by Hitch

cock & Park[!], Mazurkiewicz [2], and De Roever [3]. For the framework of denotational

semantics in general see, e.g., Scott & Strachey [4J or Milne & Strachey [5].

2. SYNTAX AND SEMANTICS OF GENERALIZED TREES

We first present the syntax. Let V be a set of tree variables, with typical ele

ments x,y, ..• and let T be the set of trees, with typical elements t, •.•• Before giv

ing the definition proper, we discuss a preliminary version which, for reasons to be

mentioned in a moment, turns out to be insufficient. We use as syntactic formalism

a variant of BNF which should be self-explanatory.

DEFINITION 2.0 (to be rejected).

t··= Olxl <a,T> lµx[t]J vx[t]

where T = { t 1, ••• ,tn} is a finite (possible empty) set of trees

END 2.0

This definition tells us that a tree is one of

a) the tree constant O (which stands for the undefined tree, and has the empty set

of paths as its meaning);

b) a tree variable x;

c) a tree with root a and subtrees t 1, ••. ,tn;

d) the least solution of the equation (in t 0) t 0 = t[t0/x];

e) the greatest solution of the equation t 0 = t[t0/x].

(In clause d and e, t[to/x] denotes the result of substituting t 0 for X in t.)

The problem with definition 2.0 is that, e.g., the equation t 0 = t 0 does have a least

solution but not a greatest solution. In fact, as least solution (denoted by µx[x])

we have the tree (also denoted by 0) with associated set of paths 0, whereas for the

greatest solution (vx[x]) we need a tree such that the associated set of paths is

both a tree-set (in the sense of definition 2.3 below) and greatest within the collec

tion of all tree-sets. No such set exists, which explains why we impose a syntactic

restriction on the use of the vx[t] formation in that t has no free occurrences of x,

unless these occurrences are shielded by some intermediate use of the <a,T> formation

rule. E.g., we do not allow vx[x], nor vx[µy[x]J, but we do allow vx[<a,{x}>], or

vx[<a,{µy[<b,{x,y}>]}>l.

DEFINITION 2.1. Let L be the set of states, with typical elements a,b, ... ,a 1, ... ,a', ...

For each W ~ V we define a tree tW (where W records the tree variables which do not

allow v-formation).

- provided that xi W
I n where T = {t0 , •.• ,t0} is a finite (possibly

empty) set of trees with respect to 0

END 2. I.

Below, we· simply write t for t 0 •

4

EXAMPLES. Possible trees are: 0, x, <a, {<b, 0>, <c, {<d, 0>}>}>, µx[<a,{x}>],

vx[<a, {x}>], µx[<a, {x,<a, 0>}>], vx[<a, {x, <a, 0>}>], vx[<a, {µy[<b, {x, y}>]}>].

We now define a way of assigning meaning to these constructs. As indicated already,

we use sets of (finite or infinite)paths over l: as meaning oft ET. More specifi

cally, we introduce

- l:, the set of states, as before

* - l: , the set of all finite sequences of elements in l:

(withs denoting the empty sequence)

l:w, the set of all infinite sequences of elements in l:,
. f * w s, ... denote typical elements o l: u l:

- S, with typical elements a,a', the set of

all subsets of i:* u i:w.

The meaning T(t) of t ET is given as an element a ES, but for the complication

that we need an environment function mapping tree variables in V to elements in S, in

order to cope with the presence of free tree variables int.

DEFINITION 2.2. Let 0 = V + S, with typical elements 0, Let, for a 1,a2 ES,

a 1 ~ a2 whenever 0 1 ~ cr 2 (where the second ordering is the customary set-theoretic

inclusion). Let, for ¢ 1, ¢2 E S+S, ¢ 1 = ¢2 whenever ¢ 1(cr) ':: ¢2 (cr) for all a ES.

Let, for qi a monotonic function, (i.e., cr 1 I:= a2 ~ ¢(0 1) = ¢(a 2)) from S to S, µ¢ de

note its least fixed point and v¢ its greatest fixed point. (Both exist because of the

Knaster-Tarski theorem.) Let, for each 8 E 0, x EV and a ES, 0{cr/x} be an element

of 0 which is defined by: 8{0/x}(x) = a, 8{0/x}(y) = 0(y) for x t y. Let, for each

i:l,x and t, An. T(t)(e{o/x}) be that function from S to S which, when applied to

o c S, yields T(t)(G{cr /x}) ES (i.e., \a• ••• embodies the customary .>..-notation). We
0

put, for each 8 E (-):

a)

h)

c)

d)

0 * w (the empty subset of l: u l:) T(O)(G)

T(x)(e) G(x)

T(<a,P)(B)

T(µx[tJ)(G)

aT(T)(G)

µ[~o•T(t)(B{cr/x})J

e) T(vx[t])(e) = v[Acr.T(t)(e{cr/x})J

where, in clause c, T(T)(e) is defined as T(T)(e) = U T(t)(e) (T~0), and T(0)(8) tET
{E}. Moreover, we have, as usual, that acr = {aslsEcr}.

END 2.2.

5

EXAMPLES. Choose any e. T(O)(e) = 0, T(x)(e) = e(x), T(<a,{<b,0>,<c,{<d,0>}>}>)(8)

{ab,acd}, T(µx[<a,{x}>])(e) = 0, T(vx[<a,{x}>])(e) = {aw}, T(µx[<a,{x,<a,0>}>])(8)

{aa,aaa, •.. }, T(vx[<a,{x,<a,0>}>])(8) = {aa,aaa, .•• ,aw}, T(vx[<a,{µy[<b,{x,y}>]}>])(8)=

(ab+)w.

DEFINITION 2.3. A set of sequences cr ES is called a tree-set whenever the following

two conditions are satisfied:

a) Each pair s 1,s2 E cr has a finite non-empty sequences as common prefix.

b) For each finite non-empty sequences, the set of all sequences in cr which haves

as maximal common prefix is finite.

END 2.3.

EXAMPLES. The set {a,b} is not a tree-set, because it violates condition a, and the

set {aa1,aa2, ... } is not a tree-set, because it violates condition b.

The following proposition is stated here without proof:

PROPOSITION 2.4. For eaah t ET and eaah e E 0 suah that e(x) is a tree-set for aZZ

x EV, we have that T(t)(0) is a tree-set.

END 2.4.

2. SYNTAX AND SEMANTICS OF INFINITE PROCESSES

Let A be a set of elementary actions, with typical elements A,A1, •.. , and X a set

of statement variables, with typical elements X,X1, •... We define the class of state

ments Sta.:t, with typical elements S, ... , in

DEFINITION 3. I •

END 3. I.

Here, s 1 u s2 indicates a nondeterministic choice between s 1 and s2. Also, µX[S]

corresponds to a parameterless recursive pror.edure declared in an ALGOL 6O-like lan-

guage by proc P;S[P/X]. Moreover, vX[S] extends µX[SJ in that possible infinite computa

tions are also taken into account. E.g., the two procedures mentioned in the introduc

tion are written in this syntax as µX[A;X u A] and vX[A;X u A].

li.lBLI.OTHEEK ·rv~A THEMATISCH c:t}.J rmJ.'.~
>.MSlEHDAM

6

Now let M = T-+ T, with, for~ l' ~2 e: M, ~ l '= ~ 2 iff ~ 1 (t) ~ ~ 2 (t) for all t e: T

(where t 1 '::' t 2 iff T(t 1) (0) E T(t 2) (0) for all 0 e: 0). Let-, moreover, A be the set of

all finite subsets of i:, and let r = (X-+ M) u (A-+ (i:-+ A))~ (The first part of each

ye: r gives some (arbitrary) meaning to statement variables, the second part tells us

how elementary actions A e: A transform a e: i: to {a1, .•. ,an}(n ~ O) e: A. I.e., elemen

tary actions are of bounded nondeterminacy.) We now give the definition of the meaning

of a statement.

DEFINITION 3.2. M: S:ta,t-+ (f-+ M) is given by

a) For each t which is not of the form <a,0>:

M(S)(y)(O) = 0, M(S)(y)(x) = x, M(S)(y)(<a,T>) = <a, M(S)(y)(T)> (T#0),

M(S)(y)(µx[t]) = µx[M(S)(y)(t)J, M(S)(y)(vx[t]) = vx[M(S)(y)(t)J.

(Here, M(S)(y)(T) = U M(S)(y) (t).) te:T
b) Fort= <a,0> we use induction on the structure of S:

I. M(A)(y)(a,0)
f1<a,{<ai,0>Jaie: y(A)(a)}>,

=
L <a,{O}>, otherwise

if y(A)(a) # 0

2. M(X)(y)(<a,0>) = y(X)(<a,0>)

3. M(s 1;s2)(y)(<a,0>) = M(S 2)(y)(M(S 1)(y)(<a,0>))

4. M(s 1 u s 2)(y)(<a,0>) = <a,{M(s 1)(y)(<a,0>), M(s 2)(y)(<a,0>)}>

5. M(µX[SJ)(y)(<a,0>) = µ[A~.M(S)(y{~/X})J(<a,0>)

6. M(vX[S])(y)(<a,0>) = v[A~.M(S)(y{~/X})J(<a,0>)

END 3.2.

EXAMPLES. Let y(A)(a) = {a',a"}, y(A1)(a) ={a 1},y(A2)(a) ={a2}.

I. M(A)(y)(µx[<a,{x,<a,0>}>]) = µx[M(A)(y)(<a,{x,<a,0>}>)] =

µx[<a,{M(A)(y)(x), M(A)(y)(<a,0>)}>] = µx[<a,{x,<a,{<a',0>,<a",0>}>}>].

Thus,

a

:,f.,
A

3 1 I: al 2

is transformed into aA)

a'Aa••·

yield this tree with the infinite path

a a a 1 a I a 11 a 11 ••• excluded in the

µ-case and included in the v-case.

7

REFERENCES

I. Hitchcock, P. and D.M.R. Park, Induction rules and proofs of termination, Proc. 1st

ICALP (M. Nivat, ed.), pp. 225-251, 1973, North-Holland, Amsterdam.

2. Mazurkiewicz, A., Proving properties of processes, CC PAS reports 134, Warsaw,

1973.

3. De Roever, W.P., Maximal fixed points solve some of the problems with Scott induc-
. th

tion, Proc. 4 ICALP, to appear.

4. Scott, D. and C. Strachey, Towards a mathematical semantics for computer languages,

Proc. Symp. Computers and Automata (J. Fox, ed.), pp. 19-46, 1971, Polytechnic

Institute of Brooklyn.

5. Milne, R. and C. Strachey, A Theory of Progrannning Language Semantics, Chapman &

Hall, 1976.

