
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.W. DE BAKKER

IW 83/77

RECURSIVE PROGRAMS AS PREDICATE TRANSFORMERS

Preprint

~
MC

JUN I

2e boerhaavestraat 49 amsterdam

P.tunte.d a;t .the. Ma;the.ma.:uc.ai.. Ce.ntAe., 49, 2e. BoeJ1,haa.veo.tJr..a.a;t, Am1.i.teJ1,dam.

The. Ma.the.ma.tic.al.. Ce.ntAe., 6ounde.d .the. 11-.th 06 Fe.b1tu.aJLy 1946, iJ.i a non
p1to6i.t in1.i.ti...tu,tfon a-i.ming a;t .the. pltomotion 06 pUILe. ma;the.ma.:uc.1.i and -l.t6
app.U.c.a.:uonJ.i. I.t iJ.i 1.ipon1.io1te.d by .the. Ne..th~ndl.i GoveJ1,nme.nt .th/tough .the.
Ne..th~ndl.i 01tganiza.:uon 601t .the. Advanc.e.me.nt 06 PU/Le. Reoe.a.1tc.h (Z.W.O).

AMS (MOS) subject classification scheme (I 970): 68A05

ACM-Computing Reviews-categories: 5.24

· d. f *) Recursive programs as pre 1.cate trans ormers

by

J.W. de Bakker

ABSTRACT

The connections between two ways of assigning meanings to programs are

investigated. On the one hand we have the approach in which a program deter

mines a function from states to states, on the other hand the proof-theory

oriented approach, advocated in particular by Dijkstra, where a program is

viewed as a mapping from postconditions to weakest preconditions. The main

result is a theorem which settles the mathematical relationship between the

two approaches for a language including nondeterminacy and full recursion.

We use the methodology of denotational semantics, extended with the Egli

Milner ordering to deal with nondeterminacy. The paper concludes with some

remarks on the possibility of a syntactic characterization of weakest pre

conditions, and on a recent theorem by Basu and Yeh on weakest preconditions

for the while statement.

KEY WORDS & PHRASES: predicate transformers, recursion, denotational

semantics, weakest preconditions, Egli-Milner ordering,

while statements.

This report will be submitted for publication elsewhere.

I . INTRODUCTION

Recent developments in programming theory have brought an increasing popularity of

the methodology of denotational semantics (e.g. Milne & Strachey (1976)) on the one hand -

with as one of its central themes the idea of assigning meaning to a program as a function

from states to stat es - and of the proof-theory-oriented approach (e.g. Dijkstra (197 5))

on the other hand, where meaning is (maybe implicitly) assigned to a program through

the induced relationship between predicates holding before and after its execution.

Our paper is devoted to an analysis of the relationship between the two approaches

for an example programming language which includes assignment statements together with

sequential composition, nondeterministic choice, if-then-else-fi, and parameterless

recursion. The main result of the analysis is a the_orem which may be seen as yield

ing the equivalence of the two approaches. Let us introduce some terminology to

state the theorem (the definition reappear in more precise form in the following sections):

The set I of states o, ... consists of all mappings from integer variables (syntactic

objects) to integers (mathematical objects), together with the "undefined" state .1.

The set P of p1'edicates p, ... consists of all mappings from states to truth-values

(with the convention that p(~) yields false). The meaning of a statement Sis obtain

ed by applying a semantic function M (defined by induction on the structure of S)

yielding M(S) E I ➔ I. (Effects of nondeterminacy are not yet taken into account

here.) Furthermore, for each statement S we define(syntactically) a corresponding

"predicate transformer expression" S, and the meaning of an expression such as S

is obtained by applying a semantic function F yielding F(S) E P ➔ P. (Note, however,

that a development of the theory with"~" as the identity transformation is also

possible: The same piece of text Sis then on the one hand given meaning as a state

transformation and on the other hand as a predicate transformation. The approach

taken here was chosen mainly for didactic reasons, emphasizing our "dualistic" view

of programs both syntactically and semantica' ly.) The relationship between programs

as state transformations and as predicate tr ,nsformations is now expressed 1n

Main theorem. For each statement S, predicate p and state o:

F(~;)(p)(o) = p(M(S)(o)).

J.W. de BAKKER 2

For the reader who likes diagrams, the theorem may also be stated as follows: Let,

for each m EE ➔ E, mt be defined as

mt= Ap•Ao•p(m(o)).

Then we have that the following diagram coIIllilutes:

s

s F F(S) = M(S)t

The approach of viewing programs as predicate transformers has in particular been

advocated by Dijkstra (1975), partly building upon earlier work by Floyd and Hoare,

and the question may arise as to how his ideas connect with the present result. The

answer is simple: Let, for each statement Sand predicate p, wp(M(S),p) be the

weakest precondition of (the meaning of) S with respect to predicate p. (Remember

that wp(M(S),p) is defined as the weakest predicate such that, for all states o,

whenever o satisfies wp(M(S),p), then execution of S for input o terminates with

output state satisfying p.) We shall show that wp(M(S),p) = Ao•p(M(S)(o)), and we

have the following corollary of our main theorem:

F(S)(p) = wp(M(S),p).

Observe that we introduce wp here as a mathematical object yielding, for each

m EE ➔ E and p E P,a result p'= wp(m,p) E P. We also discuss the problem as to

whether it is possible to give a syntactic characterization of wp. To be more spe

cific, let us consider the (syntactic) class of assertions (which contains, e.g.,

the class of boolean expressions as a subset) with elements c, •.•• Let T be the

semantic mapping which provides an assertion c with a meaning T(c) E P. Let S:c be

the above mentioned syntactic counterpart of wp, i.e., we have as intended meaning

of S:c

T(S:c) = wp(M(S), T(c)).

As is well-known, it is possible to give meaning-preserving reductions of S:c to

assertions involving only the components of S, in the case Sis an assignment state

ment, or made up using sequential composition, nondeterministic choice, and if-then

else-fi. We describe how to extend the syntax of assertions in order to be able to

perform a similar reduction for the while statement (or, somewhat more generally,

for programs derivable from flow diagrams). For recursive procedures in general,

however, we do not know how to do this, and we conjecture that such reduction is

impossible.

PROGRAMS AS PREDICATE TRANSFORMERS 3

The framework used to prove our main theorem is a more or less familiar part of de

notational semantics, extended with the Egli-Milner-ordering (Egli (1975)), to deal

with nondeterminacy. For an explanation and motivation of this ordering the reader

might want to consult our De Bakker (1976).(The present paper may be seen as a suc

cessor to De Bakker (1976). Note, however, the difference in the use of~; also,

as pointed out by John Reynolds, in De Bakker (1976) we should not have omitted the

restriction of bounded nondeterminacy.)

Besides by the wish to extend De Bakker (1976), our pap~r has also been motivated

by De Roever's (1976) article, in which the same problem is investigated. Moreover,

our definition of"~" for recursive procedures is taken from De Roever (1976) (cre

dited there to C.P. Wadsworth).

Our paper is organised as follows: The syntax of the example language, together

with the definition of the mapping"~" is given in section 2. Section 3 provides

the necessary background from denotational semantics, including a treatment of the

consequences of introducing the Egli-Milner-ordering. Section 4 presents the seman

tic mappings, elaborated in section 5 for integer and boolean expressions, and in

section 6 for statements and predicate transformer expressions. The least-fixed

point approach plays a major part in the latter. Section 7 gives (without proof) a

justification of the definitions in section 6, and section 8 contains the proof of

the main theorem. Section 9 brings the link with the notion of weakest precondition,

and section 10 introduces the extension of the class of boolean expressions to the

class of assertions including the S:c construct. The well-known reductions of S:c

for simple S, as mentioned above, are then given together with a treatment of iter

ative S. The section closes with a comment on a recent theorem by Basu & Yeh (1975),

pointing out an error in one of their results on u7p for the while statement. (For

section 10 compare also our De Bakker (to appear)).

As closing remark of this introduction, let us point out that we hope to have achieved

with our paper both a clarification of the status of recursive programs as predicate

transformers, and an illustration of some of the more appealing features of denota

tional semantics, such as its expressive power and its succinctness of argumentation.

Acknowledgements. I am indebted to A. NijhoZt and W.P. de Roever for a number of

heZpfuZ discussions on the subject of this paper.

2. SYNTACTIC DOMAINS

This section gives the syntax of our progrannning language. Besides some simple kinds

of integer and boolean expressions, it contains statements made up from assignment

statements through sequential composition, nondeterministic choice, if-then-else-fi,

and parameterless recursion. Moreover, the class of predicate transformer expressions

J.W. de BAKKER 4

is introduced, and a syntactic mapping from statements to predicate transformer ex

pressions is defined. The .formalism used in the syntactic ·definitions is a slight

variant of BNF, and should be self-explanatory. Throughout the paper, we do not

bother about syntactic ambiguities which may be remedied by suitable addition of

parentheses. "=" is used to denote syntactic identity.

EZements

(DI) CM.t {a1,a2•···} constants a, •..

(D2) lvaJt = {x1,x2•··•} integer variables x, ...

(D3) PvaJt = {XI ,Xz, ••• } procedure variables X, ...

(D4) TvaJt = {~1.~2•···} predicate transformer variables ~
(DS) Iexp integer expressions

alxlsts2! if b then s 1 else s 2 fi

s •• ••

(D6)

S • ·= ..
Integer expressions have integers as intended meaning.

Other arithmetic operations may be added, if desired.

Bexp

b • ·= ..
boolean expressions

truejfalsels 1=s 2 j7hjb1~b2 lb 1Ab2

b • •••

Boolean expressions have truth values as intended meaning.

(D7) S.ta:t statements s

(D8)

Statements have functions from states to states as intended meaning.

Procedure variables are used (only) in the construct µX[SJ of parameterZess

recursion: Occurrences of X in S correspond to recursive calls, and, for

S = ... X ••• X ..• , the meaning of the construct µX[•.• X ••• X •••] is

the same as the meaning - in an ALGOL-like language - of a call of the

parameterless recursive procedure P with declaration procedure P; ••• P .•• P •..

s1us2 is executed by executing either s1 or s2 (not both).

Pfl.:tJt

,i,. ·= 'f'•.

predicate transformer expressions q,, •••

[x:=sJl~l<1> 1°q,2 jq, 1Aq, 2 jif b then q, 1 else q,2 fijµ~[q,J

Let a predicate be a function form states to truth-values. Predicate trans

former expressions have functions from predicates to predicates as intended

meaning.

We now define a mapping"~" from S.ta:t to Pfl.:tJt in

(D9) (x:=s) = [x:=s]

(it is required that X _ Y iff X _ Y)

PROGRAMS AS PREDICATE TRANSFORMERS

(if b ~ the1~ S ,!, ~lse s2 fi) ~ - if b then .sl else s2 fi

µX[S] :: µ 2C[S]

Example.

µX[if x=a 1 then x:=x+a2 ;X;x:=x-a3 else x:=a4 fi u (x:=a5)J~ -

µ~[if x=a 1 then [x:=x+a2J 0 ~o[x:=x-a3J else [x:=a4J fi A [x:=a5JJ.

3. MATHEMATICAL DOMAINS

5

In denotational semantics, meaning is attributed to programming constructs by map

ping them to mathematical· domains provided with a certain structure. In our explan

ation of this, we shall sometimes refer to the underlying intuition about the meaning

of these constructs as determined by operational semantics. However, we omit formal

specification of this, which would proceed through one of the customary schemes

for viewing programs as producing computation sequences.

In subsection 3.1 we introduce the basic domains V and W of integers and truth

values, together with the necessary operations. Subsections 3.2 and 3.4 summarize

(without proofs) some of the essential facts about complete partially ordered sets

(cpo's), continuity, and least fixed points. Subsection 3.3 forms the heart of the

definitions. The set of states E = (IvM ➔ V) u {j_} is introduced (as usual, 11 J_ 11

stands for the undefined element), and the Egli-Milner-proposal (Egli (1975)) to

deal with nondeterminacy is used: The meaning m = M(S) of a statement Swill be

given as an element of the cpo M = I ➔ 1 T (i.e., all strict functions I ➔ T), where

T is the collection of all subsets of I which are either finite, or, when infinite,

contain J_ as element. This is the usual restriction to bounded nondeterminacy*):

For given input state, an infinite number of output states is allowed only when J_

is among them. E.g., consider the statement µX[(x:=x+l;X) u (x:=x)J for input state

satisfying x = O. This statement determines an infinite number of finite computations

leading to an infinite set of output states (all natural numbers are possible output

values for x), but also an infinite computation (always choose the first branch of

the choice) yielding J_ as corresponding output state. Subsection 3.3 also introduces

the domains W of truth values, P =[I ➔ W] of predicates, and PT= [P ➔ P] of pre

dicate transfonners, which definitions involve no special features. We draw atten

tion, however, to the definition of the extension of [I ➔ W] to [T ➔ W]: For each

predicate p E P and each TE T, p(T) is true iff T does not contain J_, and (T thus

being finite), p(a) holds for each a ET. Anticipating some of the definitions to

be given later, we observe already that this corresponds to the weakest precondition,

in the case that T = m(a) is obtained by applying the meaning m = M(S) of some state-

*) As pointed out by John Reynolds, this restriction should not have been omitted
in our De Bakker (1976).

J.W. de BAKKER 6

ment S to input state o: p(T) = p(m(o)) = (po~)(o) = (p 0 M(S))(o) = wp(M(S),p)(o).

Note that wp is defined here as an operation upon mathematical objects. The possi

bility of a linauistic counterpart of wp is discussed in section 10.

3 • I • Basic domains and notations

(D10) V

(D 1 I) W

{ ... ,-1,0,1, ... }

{tt,:Ef}

(DJ2) We assume known

plus: V x V ➔ V

equal: V x V ➔ W

not W ➔ W

integers

truth-values

(DJ 3) II C 11 and II u 11 have the usual set-theoretical

(D14) For any set C, cl' c2 E C and S E W, we put

Jc!' if s tt
if S the1~ c 1 else c2 fi = 1 if s ff c2,

3. 2 Complete partially ordered sets (cpo 's)

Elements

a' ...

13' •••

meaning

(DIS) Let C be a set with a partial ordering Ge· When confusion is unlikely,

we omit the index C in the ordering be· C is called a cpo iff

(i) C has a least element .L such that .L [c for all c E C.

(ii) Each chain c0 [;; ... b ci [... has a least upper bound

(Dl6) Let C,D be two cpo's, and let e 1 ,e2 : C ➔ D. We put e 1 [;;C➔D

all c, e 1(c) bo e2(c).

00

,LJQ C. • 1.= l.

e2 iff, for

(Dl7) Let C,D be two cpo's and let e: C ➔ D be monotonic (c 1 ~ c2 => e(c 1) [;; e(c2)).

We call e continuous iff, for each chain {c.}~ 0 , e(LJ c.) = LJ e(c.).
l. 1.= i l. i l.

(DIS) Let C,D be two cpo's. [C ➔ D] denotes the collection of all continuous

functions: C ➔ D.

(LI) (First lennna) For C,D cpo's, [C ➔ D] 1.s also a cpo. Also, for each chain

(L2)

{e.}~ 0 : GJ e.)(c) U (e.(c)).
l. 1.= i l. l. l.

For each epo C and¢ E [C ➔ CJ, ¢ has a least fixed pointµ¢
co i

ibto ¢ (.L) •
satisfying:

(i) ¢(µ¢) = µ¢

(ii) ¢(c) = C => µ¢ [C.

3. I . Basic domains and function domains as cpo 's

(DJ9) z =
0

IvM ➔ V

(D20) z = zo u { .L} (Z has elements a' .. .)

(D21) OJ bz o2 iff OJ .Lor o 1 = 02

PROGRAMS AS PREDICATE TRANSFORMERS

(13) Lis a cpo with respect to[~
-i,

(D22) W = {tt,ff}

(D23) 61 [W 62 iff 61 => 62

(D24) ..LW = ff

(=DI!)

(14) Wis a cpo with respect to ~W

(D25) T is the collection of all subsets T of L such that if ..L i T then T

is finite

(D26) (Egli-Milner)

Tl ~T T2 iff either ..LE Tl and T1\{..L} '.: T2 , or ..LI. Tl and Tl= T2

7

(Let Tl [T2. Interpreting Tl and T2 as approximations to the outcome M(S)(a) of

(the computation specified by) a statement S for a given input state a, we see that

TI can be properly contained (in the settheoretic sense) in T2 only if ..L E T 1: The

presence of ..Lin Tl indicates a path in the computation which has not (yet) deliver

ed a result. Note also that, though it is true that M(x:=I) c M((x:=1) u (x:=2)),

we do not have that M(x:=1) [M((x:=I) u (x:=2).)

(D27) ..LT = {..LL}

(15) Tis a cpo with respect to ~T

(D28) M = L ➔ 1 T, which is, by definition, the collection of all functions

m: L ➔ T such that m(..L) = {..L}

(16) Mc [L➔T] and Mis a cpo

(D29) P L ➔ 1 W, which is, by definition, the collection of all functions

p: L ➔ W such that p(..L) = ff

(17) P'.;:[L ➔ W]andPisacpo

(D30) PT= [P ➔ P], hence PT is a cpo (elements of PT are denoted by f, ...)

We now extend m: L ➔• T tom: T ➔ T and p: L ➔• W top: T ➔ W, as.follows:

(D31) m(T)

(D32) p(T)

U m(a)
CTET

if ..L E T

p(o), if ..L / T CTE T

(18)

(19)

Tl~ T2 => @(Tl) [ffi(T 2) Tl [T2 => p(TI) ~ p(T 2)

(D31) and (D32) preserve continuity. Also, (l.J m.)- = LJ ii\., and (LJ p.)- =LJ p ..
ii ii ii ii

(Note that these equalities do not hold, in general, without the condition

of bounded nondeterminacy.)

(D33) m1°m2 = ACT•m 1 (m2(o)), m1um2 = ACT•m 1 (a) u m2 (a)

(LIO) If m1,m2 EM then m1°m2 and m1um2 EM

(D34) porn= AO•p(m(a))

(LI I) If p E P and m E M then po m E P

(Cl) (First

(D35) f 1 of2
(112) If f 1,f2
Below, we omit explicit indication of "A" on m or p.

J.W. de BAKKER

3.4. Properties of aontinuous funations: M ➔ M

(D36) M1 = M, M I = [M ➔ M] n+ n
Lemma's (113) to (116) hold for each n ~ 0:

(113) For each i such that I $ i $ n: Am1• ... •Am •m. EM 1. n 1 n+
(114) For each m EM, Am1• ... •Amn•m EM n+I
(LIS) If ~1,~2 E Mn+!' then

(116)

(C2)

Am1• ... •Amn•~ 1(m1) ... (mn) o ~ 2(m1) ... (mn) E Mn+I' and

Am1• ... •Amn•~ 1(m1) ... (mn) u ~2(m1) •.. (mn) E Mn+!

If~ EM 2 , then n+
Am 1 ° ••• •Am •µ[Am 1•~(m1) ••• (m)(m +I)] EM 1 n n+ n n n+
Let PT 1 = PT, PT I= [PT ➔ PT], n ~ 0. n+ n
Results analogous to (113) to (116) hold for PT 1, n ~ O. n+

4. SEMANTIC l-lAPPINGS

8

In this section we introduce the semantic functions mapping the elements in the

four syntactic domains to their respective meanings in the corresponding mathemati

cal domains. In each case, the semantic function is defined with respect to some

given mapping from the integer-, procedure-, and predicate transformer variables to

their meanings. These initially given mappings (elements oft, rand 0) are subject

to change during the evaluation of the semantic function through the effects of

assignment on states a Et, and the effect of the least-fixed-point definition of

recursion on elements y Er and 6 E 0. The notation used to describe these effects

is also given in this section ((D41) to (D43)).

Elements
(D37) A E Cn.6-t ➔ V

(the function A remains the same throughout the paper)

(D38) I: (Iva.11. ➔ V) u {.L} a• •••

(D39) r = Pva.11. + M y ••••

(D40) 0 = Tva.11. + PT e' •••
For each 0 E r, a EV, x E Iva.11., o{a/x} E L is defined by

(D41) .L{a/x} = .L. and, for o f, .L, o{a/x}{x} = a, o{a/x}(y) = o(y) for each y t x •

Similarly.

(D42) y{m/X} (X) = m, y{m/X} (Y) y(Y) for each y t X

(D43) e{ f/~}(O = f, e{f/0 (n) e(n) for each n t ~

(D44) V: Iex.p + (I:O ➔ V)

T: Bex.p + (I: ➔ W)

M: Stat+ (r ➔ M)

F: P!tbt + (0 ➔ PT)

(Extension of V to deal with V(s)(.L) would require a cpo structure on V; this

PROGRAMS AS PREDICATE TRANSFORMERS

serves no further purpose in our paper and is therefore omitted.)

The definitions of V, T, M and F follow in sections 5 and 6.

5. SEMANTICS OF INTEGER AND BOOLEAN EXPRESSIONS

9

This section brings the definitions of the meaning of integer and boolean expres

sions, using the domains and functions as given in section 3. The definitions are

straightforward and do not require additional comment.

(D48) V(a)(CT) = A(a)

(D49 V(x)(CT) = CT(x)

(DSO) V(s 1+s 2)(o) = plus (V(s 1)(CT), V(s 2)(CT))

(DSI) V(if b then s 1 else s2 fi)(CT) = if T(b)(CT) then V(s 1)(CT) else V(s 2)(CT) fi

(D52) T(b)(~) = ff

In (D53) to (D57), we assume CT # L

(D53) T(true)(CT) = tt, T(false)(CT) = ff

(D54) T(s 1=s 2)(o) = equal (V(s 1)(CT), V(s 2)(CT))

(DSS) T(7b) (CT) =, not (T(b) (CT))

(D56) T(b 1~b 2)(o) (T(b 1)(CT) ~ T(b 2)(CT))

(D57) T(b 1Ab2)(o) = (T(b 1)(CT) A T(b2)(CT))

6. SEMANTICS OF STATEMENTS AND PREDICATE TRANSFORMER EXPRESSIONS

(D58) M(x:=s)(y) = \CT•{if CT=~ then~ else CT{V(s)(CT)/x} fi}

(D59) M(X)(y) = y(X)

(D60) M(s 1;s2)(y) = M(s 2)(y) 0 M(S 1)(y)

(D61) M(s 1us 2)(y) = M(S 1)(y) u M(s 2)(y)

(D62) M(if b theE: s 1 else s 2 fi) (y) =

\CT• if CT=~ then{~} else if T(b)(CT) then M(S 1)(y)(CT) else M(s 2)(y)(CT) fi ii

(D63) M(µX[S])(y) = µ[\m•M(S)(y{m/X})J.

Examples. (identifying for simplicity's sake Cn..o;t and V). Let CT # L

I. M(x:=O;y:=x+l)(y)(CT) = M(y:=x+l)(y)(M(x:=O)(y)(CT))

M(y:=x+l)(y)(CT{O/x}) = CT{O/x}{V(x+l)(CT{O/x})/y}

CT{O/x}{plus(V(x)(CT{O/x}),V(l)(CT{O/x}))/y}

o{O/x}{plus(0,1)/y} = CT{O/x}{l/y}.

2. M((x:=l)u(x:=2))(y)(CT) = {o{l/x},CT{2/x}}.

Remarks

I. Note that for programs without recursion (and without free procedure variables),

the definition of His in fact independent of y.

J.W. de BAKKER 10

2. For a justification, in the framework of operational semantics, of the least

fixed-point definition of recursion, we refer to De Bakker (1976).

3. For each SE Sta.:t and y Er, we have that'M(S)(y) EM.

(This is a special case of theorem (Tl.I) below.) Also, for each S, y and X,

1,.m•M (S) (y{m/X}) E [M -+ M] (also from (Tl. I)). Thus• putting~~- ;>..m•M (S) (y{m/X}) •

~ has a least

M (µX[SJ)(y) =

fixed pointµ~=~ ~i(L). From (D63) we therefore obtain
1

µ~ = L.J m. • with mO = L. = AcJ-{L}, and m. 1 = Hm.) = M(S)(y{m. /X}).
1 1 M 1+ 1 . 1

(This result will be used in the proof of theorem (T2).)

(D64) F([x:=s])(0) = ;>..p•;>..cr•p(if cr

(D65) F(~)(0) = 0(~)

L then L else cr{V(s)(cr)/x} fi)

(D66) F(ct, 1 o ct, 2) (0) = F(ct, 1)(0) o F(ct, 2)(0)

(D67) F(ct,1A<P2)(8) = F(ct,1)(0) A F(ct,2)(0)

(D68) F(if b then ct, 1 else ct, 2 fi)(0) =

1,.p•1,.cr•if T(b)(cr) then F(ct, 1)(0)(p)(cr) else F(ct, 2)(0)(p)(cr) fi

(D69) F(µ~[ct,])(0) = µ[1,.f•F(ct,)(8{f/~})J

Remarks

Similar to the remarks on the definition of M.

7. FIRST THEOREM

(Tl. I)

(Tl.2)

For each n ~ 0, SE S;ta,t, y Er, and

1,.m1• •. ,•1,.mn•M(S)(y{m1/x1} ..• {mn/Xn})

For each n ~ 0, <PE PJz,Vt, 0 E 0, and

XI~ ... ,Xn

E M I. n+

~I' ••• ' ~n

E PvaJt:

E TvaJt:

The proof is direct by induction on the complexity of Sor ct, (reduce the assertion

of the theorem for some S (or ct,) and all n to the same assertion for all S' (or ct,')

of less complexity and all n), using lelllllla's (L13) to (Ll6) and their analogues.

8. SECOND THEOREM

The theorem of this section is the central one of our paper, because it determines

the relationship between the meaning of a statement Sas state-transforming function

(M(S)) and as predicate transforming function (F(S)). (The connection with weakest

preconditions follows in section 9.) The theorem is subjected to the condition of

consistency of the pair <y,0>, which is nothing but a way of ensuring that the

theorem holds (by definition) in the case that Sis simply a procedure variable X.

(D70) (Consistency) Let y E r, 0 E 0. The pair <y,8> is called consistent iff, for

each <X,~> such that X =~.we have that

PROGRAMS AS PREDICATE TRANSOFRMERS

0(~) = Ap • p o y(X).

(T2) For each S, and each y and 0 such that ~y,0> is consistent:

F (s) (e) = p • p o (M (s)(y)) •

Proof. Induction on the complexity of S.

1. F((x:=s)~)(0)(p)(o) = (df.~)F([x:=s])(0)(p)(o) = (df.F)

p(if o = J. then J. else o{V(s)(o)/x}fi) = (df.M)p(M(;x::=s) (y)(o))

2. F(X)(S)(p)(o) = (df.~)F(~)(e)(p)(o) = (df.F)

e(~)(p)(o) = (consistency)p(y(X)(o)) = (df.M)p(M(X)(y)(o))

3. F((s 1 ;S2)~) (0)(p)(o) =

F(s 1 o s2) (e) (p)(o) =

(F(SI)(0)° F(S2)(e)) (p)(o) =

F(s1)(0)(F(s2)(0)(p))(o) =

F(S2)(0)(p)(M(s 1)(y)(o)) =

p(M(s2)(y)(M(S 1)(y)(o)) =

p(M(s1;s2)(y)(o))

4. M((S 1us 2)~)(0)(p)(o) =

F(S 1As2)(e)(p)(o) =

5.

6.

F(s1)(e)(p) (o) A F(s2)(e)(p) (o) =

p(M(s 1)(y)(o)) A p(M(s2)(y)(o))

p(M(s 1)(y)(o) u M(S 2)(y)(o)) =
p(M(S 1us 2)(y)(o))

if-then-else-fi case omitted.

F(µX[S]~)(e)(p)(o) =

F(µ~[SJ)(e)(p)(o) =

µ[Af•F(S)(e{f/~})J(p)(o) =

(U f.)(p)(o), (with f 0 = Ap•Ao•ff, f. 1 = F(S)(e{f./~})) =
l l 1+ l

J (f.(p)(o)), by (LI).
i l
Also,

p(M(µX[SJ)(y)(o)) =

p(µ[Am•M(S)(y{m/X})J(o))

p((~ mi)(o)), (with m0 = AO•{J.}, mi+I = M(S)(y{mi/X})) =

LJ p(m.(o)), by (Cl).
i l
Thus it is sufficient to show: For all i, and all p and o,

f.(p)(o) = p(m.(o)). We use induction on i:
l l

(i) i = 0: (Ap•Ao•ft)(p)(o) =ff= p({J.}) = p((Ao•{J.})(o)).

(df.~)

(df.F)

(df ,o)

(ind.)

(ind.)

(df.M)

(df.~)

(df. F)

(ind.)

(032)

(df.M)

(df. ~)

(df.F)

(Tl. 2)

(df.M)

(Tl. I)

(ii) Assume (*): f.(p)(o) = p(m.(o)). To show f. 1(p)(o) = p(m. 1(o)),
l l 1+ 1+

or F(S)(8{f./~})(p)(o) = p(M(S)(y{m./X})(o)). Now this holds by the
l l

induction hypothesis on S (the complexity of Sis less than the

complexity of µX[S]), provided that the pair <y{m./X}, 0{f./~}> is
l l

1 1

J.W. de BAKKER 12

consistent, i.e., that for all <Y,n> such that Y = n, and all p

and a, we have: e{f./n(n)(p)(o) = p(y{m./X}(Y)(o)). We distinguish two cases:
1 1

(ii. I) n = s (hence Y = X). Then we have to show:

8{f./F,;}(F,;)(p)(o) = p(y{m./X}(X)(o)), or
, 1

f. (p) (a) = p (m. (a)), which is nothing but (*).
1 1

(ii.2) n is (hence, Yi X). Then we have to show:

8{f./F,;}(n)(p)(o) = p(y{m./X}(Y)(o)), or
l. 1

8(n)(p)(o) = p(y(Y)(a)), which follows from the

consistency of <y,8>. D

9. WEAKEST PRECONDITIONS FOR RECURSIVE PROGRAMS

(D71) wp(m,p) = p O m.

Note that (pom)(a) holds iff p(a') holds for each a' e m(a), or, equivalently, iff

for each a' e m(a), both a'# i and p(a') = tt are satisfied. Hence, we have indeed

the equivalence of (p 0 m)(a) and wp(m,p) according to the usual definition of weak

est precondition.

For Se S;ta;t and¢ e P'1XJ1. which have no free occurrences of procedure variables or

predicate transformer variables, we may as well omit they- and 8-arguments in the

definitions of Mand F. Using this, we obtain

(T3) For each Se S;ta;t without free procedure variables, and each p e P

wp(M(S) ,p).

Proof. From ('I'2) and (D71). D

10. WEAKEST PRECONDITIONS FOR THE WHILE STATEMENT

In this section we extend the class of boolean expressions B~xp to the class of

assertions M-6n, including, in particular, for each statement Sand assertion c, the

construct S:c which is the syntactic counterpart of the weakest precondition. That

is, we define its meaning T(S:c) by: T(S:c) = wp(M(S),T(c)). Furthermore, we present

the more or less well-known rules for expressing S:c through an induction on the

complexity of S, in case it is an assignment statement, or made up from given state

ments through sequential composition, nondeterministic choice, if-then-else-fi, or

the while statement. We do not know how a similar rule for a general recursive

procedure would look like. In other words, we do not know how to reduce syntactically

µX[S]:c to a construct involving S:c (or, possibly, S:c' for suitably defined c'),

and we conjecture that such reduction is impossible. (On the other hand, for so -

PROGRAMS AS PREDICATE TRANSFORMERS 13

called iterative programs, i.e., recursive programs which are subjected to the

restriction that they are derivable as equivalents of flow diagrams using McCarthy's

well-known construction, we can easily generalize the result for the while state

ment, as illustrated by an example.)

Our results for the while statement :·are to some extent reformulations of, e.g.,

De Bakker & De Roever (1973) or Dijkstra (1975). We close this .section with a

comment on a recent theorem involving weakest preconditions for the while statement

by Basu and Yeh (1975), to the effect that this theorem is incorrect.
',

Elements

(D72) Avo.Jt. = {s1,S2•···}

(D73) MML

assertion variables

assertions

c··= blslc 1Ac2 j if b then c 1 else c2 filS:clµs[c]

(D74) ~ = (Avo.Jt. + P) u r

(D75) olr denotes o restricted tor

(D76) T: M-0n + (~ + P)

Tis extended from boolean expressions to assertions as follows:

(D77) T(b)(o) T(b)

(D78) T(s)(o) o(s)

(D79) T(c 1 Ac2) (o) =)..cr•T(c 1) (o) (cr) A T(c2) (o) (cr)

(D8O) T(if b then c 1 else c2 fi)(o) =

)..cr•if T(b)(cr) then T(c 1)(o)(cr) else T(c2)(o)(cr) fi

(D8I) T(S:c)(o) = wp(M(S)(olr),T(c)(o))

(D82) T(µs[cJ)(o) = µ[)..p•T(c)(o{p/s})J

(to be justified similarly to (Tl)).

c,d, •••

0, •••

We now introduce notations for validity of assertions and of equivalences between

them, for substitution in boolean expressions, and for the while statement.

(D83) An assertion c is valid - written as F c - iff, for all o and all cr # i,

T(c)(o)(cr) = tt holds. Similarly, F c 1 = c2 holds whenever, for all

o and a, T(c 1)(o)(cr) = T(c2)(o)(cr)

(D84) b[s/x] denotes the result of replacing all occurrences of x in b

bys (formal definition omitted)

(D85) dummy d£· (x:=x)

(D86) while b do Sod d~. µX[if b then S;X else dummy fi]

The following lemma's show how to express S:c in terms of the components of S.

(117) F (x:=s):b = b[s/x]

(it is left to the reader to verify that this equivalence does

not hold for arbitrary c E A-0-0n)

(118) F (s 1;s2):c

(119) F (S 1us2):c

s 1 : (S 2 :c)

(S 1 :c) A (S 2 :c)

J.W. de BAKKER

(L20) I= if b then s1 else s2 fi : c =

if b th~ S 1 : c else s2 : c fi

(L21) [= while b do Sod: c =

µ;;;[if b then S: ;;; else c fi]

Remarks.

14

). As a consequence of (L21) we have - assuming no free procedure - or assertion

variables in Sor c -

2.

T(while b do s od : c) LJ p., where, for each a,
i 1.

f wp(M(S),p.)(a), if T(b)(a) tt
p0 (a) ff, p. l (a)

1.

1.+ l T(c) (a) if T(b)(a) ff

As an illustration of how (L21) might be generalized to iterative programs, we

have, e.g. (using one of Bohm and Jacopini's (1966) non-while-statement-reduci

ble flow diagrams):

I=

We now introduce the notation to state our comment on Basu & Yeh's result (theorem

9 of (Basu & Yeh (1975)). Following them, we restrict ourselves (from now on) to

deterministic programs.
C

(D87) _I holds iff validity
c2 c1=cz
when --

c

of c 1
or __ c_ hold.

c1=cz

implies validity of c2 . Similarly, we define

df (c 1 A (S: true)) ~ (S:c2) (this embodies (for deterministic S)

the usual notion of partial correctness of S with respect to precondition

c 1 and postcondition c2)

We have

while b do S od c

(C3) I=

if b then S (while b do S od:c) else c fi

d = if b then S:d else c fi
(C4)

(while b do Sod : c) ~ d

(C3) and (C4) together express the least-fixed-point property of while b do S od:c.

and are therefore, when taken together, equivalent with (L21).

PROGRAMS AS PREDICATE TRANSFORMERS 15

According to Basu & Yeh, we also have

{dAb}S{d} A ((dA7b) ~ c) A ((while b do Sod c) ~ d)

d = if b then S:d else c fi

However, taking b = true, and using the fact that I= while~ do S od :c = false

holds, we obtain as a special case of this

{d}S{d}
d = S:d

which is invalid: Take, e.g., S = (x:=x+l), and d - (x>O). Then, though I= {d}S{d}

holds, it is not true that I= d = S:d also holds, since S:d is equivalent with

x ~ 0 (and not with x > O).

REFERENCES

De Bakker, J.W. (1976), Least fixed points revisited, Theoretical Computer Science

I, PP· 155-181.

De Bakker, J.W. (1976), Semantics and termination of nondeterministic recursive

programs, in Proc. 3d Coll. Automata, Languages and Progrannning (S. Michaelson

& R. Milner, eds.), pp.435-477, Edinburgh University Press.

De Bakker, J.W. (to appear), Semantics and the foundations of program proving,

IFIP Congress 77.

De Bakker, J.W. and W.P. de Roever (1973), A calculus for recursive program schemes,

in Proc. 1st Coll. Automata, Languages and Progrannning (M. Nivat, ed.), pp.167-

196, North-Holland.

Basu, S.K. and R.T. Yeh (1975), Strong verification of programs, IEEE Transactions

on Software Engineering.!_, pp.339-346.

Bohm, C. and G. Jacopini (1966), Flow diagrams, Turing machines, and languages

with only two formation rules, Connn. ACM 2_, pp.366-372.

Dijkstra, E.W. (1975), Guarded connnands, nondeterminacy and formal derivation of

programs, Connn. ACM~. pp.453-457.

Egli, M. (1975), A mathematical model for nondeterministic computations, Technolog

ical University, Zurich.

Milne, R. and C. Strachey (1976), A Theory of Progrannning Language Semantics,

Chapman & Hall.

De Roever, W.P. (1976), Dijkstra's predicate transformer, nondeterminism, recursion

and termination, in Proc. s th Symp. Math. Foundations of Computer Science

(A. Mazurkiewicz, ed.), pp.472-481, Lecture Notes in Computer Science~.

Springer.

