
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

K.R. APT & L.G.L.T. MEERTENS

I W 84/77

COMPLETENESS WITH FINITE SYSTEMS OF INTERMEDIATE
ASSERTIONS FOR RECURSIVE PROGRAM SCHEMES

Preprint

~
MC

SEPTEMBER

2e boerhaavestraat 49 amsterdam

P4ln.ted a.:t :the Ma-thematic.al Ce.nt'te, 49, 2e BoeJLhaa.ve..1.i.br.aa;t, Am6.teJLdam.

The Ma.:thema;t,i.c.al. Cenvi.e, ,6ou.n.ded the 11-th 06 FebnUCVLy 1946, ,lt, a. non­
p.1r.o.i,U ino.t.Ltu.:Uon cum,i,ng at the pJtomo.tion 06 puJte. ma.:thema.UC6 a.nd ..i.U
a.pp.U.c.a.:tiono. I:t ,lt, -0ponoo.1r.ed by :the Ne;thetr.1..a.nd-6 GoveJr.nme.n.t th.Jtou.gh :the.
Nethvc,,.fun.d-6 01tga.niza.:tion ,601r. the Adva.nc.ement 06 PuJte. Rue.Mc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 68A05

ACM-Computing Reviews-categories: 5.24

Completeness with
*)

program schemes "

by

te systems of intermediate

K.R. Apt & L.G.L.T. Meertens

ABSTRACT

for recurs

It is proved that in the general case of arbitrary context-free schemes

a program is (partially) correct with respect to given initial and final

assertions if and only if a suitable finite system of intermediate assertions

can be found. Assertions are allowed from an extended state space. This result

contrasts with the results of DE BAKKER & MEERTENS [1], where it is proved

that if assertions are taken from the original state space V, then in the

general case an infinite system of intermediate assertions is needed. In the

case of functional schemes (where any deterministic scheme 1s a functional

one) one can take V x V for the extended state space, thus obtaining a seman­

tical counterpart of the use of auxiliary variables.

KEY WORDS & PHRASES: pa:rtial aorreatness, intermediate assertions, relational

framework, extended state spaae, reaursive pr-ogram

schemes.

*) This report will be submitted for publication elsewhere.

I. INTRODUCTION

In DE BAKKER & MEERTENS [1] it was shown that an infinite system of

intermediate assertions is needed to prove the completeness of the inductive

assertion method in the case of an arbitrary system of (mutually) recursive

parameterless procedures. On the other hand, GORELICK [4] extended the results

of COOK [2] and obtained a completeness result for a Hoare-like axiomatic

system (see HOARE [5]) for a fragment of ALGOL 60 in which (deterministic)

systems of recursive procedures are allowed. Thus any true asserted state­

ment is provable. (Observe, however, that the axiomatic system uses an oracle

determining the truth of formulas from the underlying assertion language.)

From the proof we can extract all intermediate assertions about atomic sub­

statements of the original program. Since proofs are finite, we obtain a

finite system of intermediate assertions. The purpose of this paper is to

investigate this apparent contradiction.

The solution lies in the fact that Gorelick uses auxiliary variables

(to store the initial values of variables) which have no semantical counter­

part in the relational framework of [l]. Semantically, the use of auxiliary

variables corresponds to the use of states which have an additional coordinate

(from a space W) inaccessible to a program. We shall call the domain of such

states an extended state space.

We prove that if one allows intermediate assertions from an extended

state space, then one can always find a finite system of intermediate asser­

tions. More precisely, a program is partially correct with respect to given

initial and final assertions if and only if a suitable finite system of

assertions from an extended state space can be found. For the space W one can

take the powerset of the original state space V. (Theorem 4.4 of[!] shows

that for W one could also take the set of all so called index-triple sequences.)

In the case of "functional" declaration schemes one can take for W the original

state space V. Informally speaking, in the general case programs are viewed

as predicate transformers, whereas in the case of functional schemes they

are viewed as state transformers.

In [l] it is proved that in the case of regular declaration schemes

(corresponding to flow-chart programs) one can always find a finite system

of intermediate assertions. In more syntactical terms this can be interpreted

2

as a statement that auxiliary variables are not needed for correctness proofs

in the case of flow-chart programs. They are needed in the general case of

arbitrary systems of (parameterless) procedure declarations.

In the relational framework any subset of the state space can be taken

as an assertion. This is clearly not the case with Hoare-like axiomatic

systems, where assertions are formulas from an assertion language. Thus one

should be cautious iu translating results from one framework into the other,

because there can exist subsets of the state space which do not correspond

to (are not defined by) any formula from the assertion language. This problem

within the relational framework could be resolved by defining a language over

the state space in which assertions could be expressed. However, a natural

question then arises which formulas (subsets) should be accepted as assertions.

We shall not pursue here this matter further,leaving it as a subject of an­

other paper.

2. PRELIMINARIES

As in DE BAKKER & MEERTENS [1] we shall use binary relations over the

state space to provide an interpretation for systems of mutually recursive

procedures. More precisely, given a set P = {P 1, ••• ,Pn} of p.rocedure symbols,

we define a language of "statements" S(P) as follows: let A = {A1 ,A2 , ••• } be

a set of "elementary action" symbols, B = {t 1,t2 , ••• } a set of "Boolean

expressions". S(P) is then the least set containing Au Bu P that is closed

under the operations; · (seque_ncing) and u (nondeterministic choice).

By a declaration scheme we mean a set V = {P 1 4'= s1, ••• ,Pn <= SnJ where

for i = I, ... ,n, P. E P, S. E S(P).
l. l.

In [I] a theory of partial correctness and inductive assertions has been

worked out in a relational framework. (The meaning of) a program is viewed

as a binaPy relation over the state space, i.e., a set of pairs of initial

and final states, whereas an assertion is viewed as a subset of the state

space, i.e.,the set of states satisfying the assertion. We recall some

definitions from [I] which are used below.

Let V be the domain of states. Letters R,R1, ..• denote binary relations

over V, p, q, r subsets of V, x, y, z elements of V.

R1;R2 = {(x,y): 3z[xR1z A zR2yJ}

p = {(x,x): x E p}
+

poR = {y: 3 x[x E p A xRy]}

I= {(x,x): x EV}

Q denotes the empty set.

3

Throughout the paper we use the convention from [1] that in any expres­

sion involving programs and assertions built up by using;, u or~ we suppress

the subscript " + ".

So, for example, if we write p;R c R;q we actually mean p ;R c R;q,
- + - +

i.e., Vx,y[(x E p " xRy) ➔ y E q], or (informally speaking) that the program

R is partially correct with respect top and q. We shall need the following

results proved in [I].

LEJ:.1}'1A l. (i) (Rl ;R2) ;R3 = Rl;(R2;R3) (= RI ;R2;R3, from now on)

(ii) R1; (R2uR3) = RI ;R2 u RI ;R3
(iii) (R1 uR2) ;R3 = R1 ;R3 u R2;R3

(iv) po(R1;R2) = (poR)oR .
1 2

If x1, ... ,Xn, Y1 , ... ,Yn are subsets of V x V then by definition

(X 1 , ••• ,X) s; (Y 1 , ••• ,Y) iff X. SY. for i = 1, ,n.
n n i i

~ is a partial ordering.

Let V = {P 1 ~ s1, ..• ,Pn <= Sn} be a declaration scheme. By an inter­

pretation iv into a state space V we mean a mapping from S into relations

over V such that for each A EA iv(A) is a binary relation over V, for each

t EB i0 (t) is a subset of V, for each PEP iv(P) is a binary relation

over V and

(a)

(b)

(c)

The above definition is the usual denotational semantics of recursive program

schemes. Its justification and equivalence with operational semantics is an

immediate consequence of the results proved in [1].

4

Observe that if for example V = {p <;:: t 1;t 2}, then due to the conven­

tion mentioned above iV(P) = i 0(t 1)+;iV(t 2)+.

In the sequel we shall always consider programs with respect to a given

declaration scheme. We shall freely identify statements and their inter­

pretations,hoping that no confusion will result from this.

3. EXTENDING THE STATE SPACE

We want now to use the assertions from an extended space VxW. In order

to do this we have to extend (in an obvious way) several operations from V

into VxW. Let U,V denote subsets of (VxW) x (VxW), a,b,c subsets of VxW,
t 0,0', ... elements of W, f,g,h partial functions from W into W. Let R =

{ ((x,cr), (y,cr)): xRy A a E W} be the extension of a program R to the space

VxW. The operations ; and+ mentioned above retain their meaning when ap­

plied to subsets of (VxW) x (VxW) and VxW, so obviously Lemma 1 holds in

the case of the extended state space VxW. We shall use in the sequel "mixed"

expressions involving assertions from VxW and programs from VxV. While

doing so we shall always mean their "extensions" to (VxW) x (VxW), which

can be obtained by attaching the subscript+ to assertions and the super­

script t to programs. For example, if we write R1;a;R2 , we actually mean
t t

R1;a+;R2. The reader should convince himself that the convention of omitting

brackets (from Lemma I) does not lead now to any ambiguities, since
t t t

(Rl ;R2) = Rl ;R2.
For any two sets A and B a subset f of AxB is cal.led a function if

Vx,y,z[((x,y) E:f A (x,z) E:f) ➔ y=z].

If f is a function then dom(f) = {x: 3y((x,y) Ef)}. For xEdorn(f) we denote

the unique y such that (x, y) E f by f (x).

We write f: A--+ B to denote the fact that f is a subset of AxB part
which is a function. If f: A - B and dom(f) = A we write f: A ➔ B. part

We define

a(f) = {(x,cr): GE dom(f) A (x,f(o)) Ea},

a[cr] = {x: (x,cr) Ea}.

5

t t
Observe that a;R S R;b means that a+;R c R ;b+' i.e., that

Vx,y,cr[((x,crh:aAxRy) + (y,cr)Eb].

Obviously we have

a;R S R;b iff for all crEW a[cr];R S R;b[cr], (*)

so correctness of a program with respect to assertions from the extended

state space can be proved by a simple reduction to the original state space.

In the proofs below we shall use Scott induction to prove inclusions

between relations on VxW.

Scott induction. Let V ={PI<= SI(PI, .•. ,Pn), .•• ,Pn <= Sn(PI, •.. ,Pn)} be

a declaration scheme. Let E,e_(X1, •.. ,Xn) and Er(X1, .•. ,Xn) be two expressions

built up from assertions from VxW and programs from VxV and formal (place­

holding) variables XI, .•. ,Xn using; and u and let the following two condi­

tions be satisfied

(i) El(n, ••• ,n) s Er(n, ••• ,n), and

(ii) for each RI, ••• ,Rn s VxV
if E,e_(RI, .•• ,Rn) S Er(R1, ••• ,Rn)

then E,e_(SI (RI, .•• ,R0), ••• ,Sn (RI, ••• ,Rn)) S

E (S 1 (R1 , ••• ,R), ••• ,S (R1 , ••• ,R)).
r n n n

The proof is analogous to the proof of the version formulated in [1].

4. COMPLETENESS RESULTS

(i) The general case.

The general form of the theorem we want to prove threatens to obscure

its basic simplicity because of the heavy use of indices that is needed.

We shall therefore state our theorem by means of an example. It should be

clear how to extend it to the general case of an arbitrary context-free

declaration scheme.

6

THEOREM I. Assume the declaration P ~ A1;P;A2 ;P;A3 u A4. For any -two

assertions p, q .s V

p;P .S P;q

iff there exists a set W., assertions a, b .s VxW, a set u 5::. W and functions

f: W --r W g: W ~ W and a: p -+ u such that
part ' part

and

a;A1 ;::: A1 ;a(f),

b(f);A2 .£ A2;a(g),

b(g);A3 .£ A3;b,

a;A4 .S. A4 ;b

a .s a,

b n (Vxu) ,£ qxu.

PROOF. If paPt.

We first prove by Scott induction that

a;P .s, P;b.

Assume that a;X s X;b for some X .£ VxV, i.e., that

Vx,y,a[((x,a)Ea "- xXy) + (y,a)Eb].

Thus for any function h: W--+- W part

'v'x,y,a[(a E dom(h) A (x,h(cr))Ea A xXy) + (y,h(o))Eb],

i.e. according to our notation,

a(h);X .£ X;b(h).

Now, due to the assumptions, Lenuna 1 and (4),

(1)

(2)

(3)

(4)

a;(A1;X;A2;X;A3) = (a;A1);X;A2 ;X;A3 .5: A1;a(f);X;A2;X;A3 S

A1;X;b(f);A2;X;A3 .5: A1;X;A2;a(g);X;A3 .S. A1;X;A2;b(g);A3 c

(A1;X;A2;X;A3);b.

~, by Lemma 1 and the assumptions,

e obviously a;n .s. O;b, by Scott induction (3) holds.

lve are now ready to prove p;P .5: P;q. Suppose that xep and xPy for

x,y e: V. We have to show: ye:q. By the assumptions x e dom(a.), so

7

(x) is defined and (x, cr) e: a. By (3), (y ,a) e b. Since cre:u, by the as­

t;;ions (y ,cr) E qxu, so ye:q.

Onty if part.

We have to es·tablish the existence of W,a,b,u,f,g and a. satisfying (I)

(2).

W = {r: rs V}, the powerset of V. Define

a = { (x, r): X E r, r .s. V},

b = {(x,r): X e: roP, r .5: V},

u = {p}

let

f = {(r,roA1): r .s. V},

g = {(r,ro(A1;P;A2)): r S V},

Cl. = p X {p}.

~l:'ve that for any rs V and h: W -+ W

tr] =h(r) and b(h)[r] =h(r)oP,

Hence, for any r .5: V:

a[r]=r, b[r]=roP,

a[r];A1 = r;A1 .s, A1;r 0 A1 = A1 ;f(r) = A1;a(f)[r],

b(f)[r];A2 = f(r)oP;A2 = (r 0 A1) 0 P;A2 = r 0 (A1;P);A2 ~

A ·(ro(A •P)oA .) = A •ro(A ·P·A) = A ·g(r) = 2' 1' · 2 2' I' ' 2 2'
A2;a(g)[r],

8

b(g)[r];A3 = g(r)oP;A3 ~ A3 ;(g(r) 0 P) 0 A3 =
A3;(ro(A1;P;A2)oP)oA3 = A3 ;ro(A1 ;P;A2 ;P;A3) ~

A3;roP = A3;b[r],

a[r];A4 = r;A4 ~ A4;roA4 ~ A4 ;roP = A4;b[r].

So by(*) (1) holds.

By the definition of a, a= px{p} ~ a. By the definition of b,

b n (Vx{p}) = {(x,p): x E poP}. But by the assumption p;P ~ P;q, so

poP = q. So {(x,p): x E poP} = qx{p}.

This concludes the proof of Theorem 1.

The above theorem should not be too surprising to the diligent reader

of DE BAKKER & MEERTENS [l]. A similar fact is there stated as 5.3 on page

354. In [l], however, assertions are always subsets of the original state

space, thus the above system {a,a(f), a(g), b, b(f), b(g)} from the ex­

tended state space corresponds to the infinite system {a[cr], b[a]} 0 E W from

the original state space. Observe also that the proof of the "only if part"

of 5.3 is much more difficult--the required space Wis the space T of the

index-triple sequences. On the other hand, Tis always a countable set,

which is not the case if we take for V the set {r: r ~ V} (unless Vis

finite), as we did in the proof of the "only if part". In some situations,

however, we can simply take for W the state space V.

(ii) The case of functiona_l declaration schemes.

The reader should be warned that if W=V, the construct a;R becomes am-
t biguous, its meaning being either {(x,y): 3z[(x,z) Ea A zRyJ} or a+;R. In

the considerations below we always mean the latter by imposing the convention

that letters a,b (with possible subscripts) always mean assertions.

Assume an arbitrary context-free declaration scheme

{P. <= S. l u S. 2 w ••• u S. M }1:_ 1 ,
1 1, 1, 1, i 1-

(5)

with M. some integer ;:: I, and each S .. , j=I, ... ,M., of the form
l. l.,J 1.

S .. = A(i,j,O); P(i,j,I); ..• ; A(i,j,K .. -!); P(i,j,K ..);
1.,J 1.,J l.,J

A(i,j,K ..),
1.,J

with elementary actions A(i,j,k), P(i,j,k) E {P 1, ... ,Pn}' and K .. an
1.' J

integer ~ 0 (if K .. =O then S .. is simply A(i ,j ,O)).
1.,J 1.,J

DEFINITION l. The scheme (5) is called functional if

9

i) for all i=l, ... ,n, j=l, ..• ,M. and k=O, ••• ,K. . A(i,j,k) 1.s a function.
1. 1.,J

ii) each P. (i=l, ..• , n) is a function.
1.

Observe that the condition ii) is clearly fulfilled if i) holds and

M.
1.

We shall now prove that in the case of functional declaration schemes

we can take VxV as an extended state space. Again we prove it by means of

an example, leaving the general case to the reader.

THEOREM 2. Suppose that P ~ A2 ;P;A2 ;P;A3 u A4 is a functional declaration

scheme. For any two assertions p, q '=- V

p;P C P;q

iff there exist assertions a, b '=- VxV, a set u '=- V and functions f: v-V part)
g: v-v and a:p +u such that (1) and (2) hold.

part

PROOF. The "if part" is an immediate consequence of Theorem I. To prove

the "only if part", put a= {(x,x): x EV}, b = {(y,x): xPy}, u=p and let

f=A,, g=A1;P;A2 and a={(x,x): x E p}.

Let x,y,o be arbitrary elements of V.

(i) We have to show: a;A1 .::: A1 ;a(f), i.e., (x,o) Ea and xA1y implies

(y,o) Ea(f), which 1.s equivalent to OE<lom(f) and (y,f(o)) Ea. Suppose

(x,o) Ea and xA1y. By the definition of a x=o, so, since f =1' 1 , OE dom(f),

y=f(x) =f(o) and (y,f(cr)) Ea.

(ii) We have to show: b (f) ;A2 '=- A2 ;a(g), i.e.• a E dom(f), (x,f(o)) Eb and

xA2y implies a E dom(g) and (y,g(o)) Ea.

Suppose a E dom(f), (x,f(o)) Eb and xAzY· Then f(o)Px. Since oA 1f(o)

JO

we find o(A1;P;A2)y, so O"Edom(g) and y=g(o), i.e., (y,g(a)) Ea,

(iii) We have to show: b(g);A3 s::_ A3 ;b, i.e., a Edom(g), (x,g(a)) Eb and

xA3y implies (y,a) Eb. Suppose a Edom(g), (x,g(o)) Eb and xA3y. Then

g(a)Px, i.e., by the definition of g a(A1 ;P;A2 ;P)x and so o(A1 ;P;A2 ;P;A3)y.

l'hus, aPy, which means that (y, o) E b.

(iv) We have to show: a;A4 ;:. A4;b, i.e., (x,a)E a and xA4y implies (y,o) Eb.

Suppose (x,a) Ea and xA4y. Then x=a and xPy, i.e., (y,o) Eb.

(v) Obviously a.:::, a.

(vi) We have to show: b n (V xu) ;:. qxu, i.e., (x,y) Eb and YEP implies xEq.

Suppose (x,y) Eb and yEp. Then, (y,x) E p, and since p;P S:. p;q, we find xEq.

This concludes the proof.

REMARK. In most cases one deals with deterministic programs which can be

represented by means of functional declaration schemes. A notable ex­

ception is Dijkstra's guarded command construct (see DIJKSTRA [3]), which

gives rise to programs of bounded determinacy. It is easy to see that in

the case of declaration schemes of bounded determinacy we can take for W

the set of all finite subsets of V. The proof is analogous to the proof of

the "only if part" of Theorem I.

5. AN APPLICATION

Having obtained specific forms of completeness results we shall illus­

trate their usefulness by the following example.

Let the state space V be the set of natural numbers N. Consider the

following declaration

P <= [n:; JOOJ;[n := n+l l];P;P u [n > lOOJ;[n := n-1O] (6)

where, of course, [n:SJOO] = {x: x:51OO}, [n := n+ll] = {(x,y): y=x+ll}

and so on. Pis of course McCarthy's well-known 91 function defined in a

I 1

relational framework. We want to prove that

[n:5:lOO];P .s P;[n=9J]. (7)

Observe that the above declaration is of the form P <= A1 ;P;A2 ;P;A3 u A4
where

Al = [n:5:IOOJ;[n := n+ll]

A2 = I

A3 = I

A4 = [n > l 00]; [n := n-10]

Since (6) is a functional declaration scheme, we can use Theorem 2 to prove

(7). The easiest way to proceed is to define the required relations and

functions as in the proof of Theorem 2, taking for P [n:5: lOO];[n := 91] u

[n> IOOJ;[n := n-10], and to check that (I) and (2) hold.

Thus we define:

a = { (x,x): X E N};

b = {(x,y): (x=9 l Ay :5: 100) v (x=y-10 A y>lOO)};

u = {x: X s 100};

f = { (x, y) : x :,; l 00 A y = x+ 1 1 } ;

g = [n:5:lOO];[n := n+ll];([nslOO];[n := 91] u [n>IOO];[n:=n-10_

= {(x,y): (90:5:x:5:lOOAy=x+l) v (x<90Ay=91)};

a= {(x,x): x s JOO}.

We leave the task of checking that (I) and (2) indeed hold to the reader.

Now, by Theorem 2, (7) holds.

ACKNOWLEDGEMENT

We are grateful to J.W. de Bakker for critical comments on an earlier

version.

12

REFERENCES

[!] DE BAKKER, J.W. & L.G.L.T. MEERTENS, On the Completeness of the

Inductive Assertion Met'hod, Journal of Computer and System

Sciences, vol. 11, No. 3, pp. 323-357 (1975).

[2] COOK, S.A., Axiomatic and Interpretive Semantics for an Algol Fragment,

Technical Report no. 79, University of Toronto (1975).

[3] DIJKSTRA, E.W., A Discipline of Programming, Prentice-Hall, Inc.,

London (1976).

[4] GORELICK, G.A., A Complete Axiomatic System for Proving Assertions

about Recursive and Non-Recursive Progrcarzs, Technical Report

no. 75, University of Toronto (1975).

[5] HOARE, C.A.R., An Axiomatic Basis for Programming Language Constructs,

C. ACM _!2, pp. 576-580 (1969).

