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* Keyword grammars 

by 

L.J.M. Geurts & L.G.L.T. Meertens 

ABSTRACT 

A simple condition is derived for the "keyword skeletons" in a 

language, guaranteeing that the language may be parsed by a simple no

backup parser that can be generated from the grammar of the language 

without preprocessing. It is also shown that this condition is, in some 

sense, necessary. 

KEY WORDS & PHRASES: deterministic top-down parsing 

LL(1) grammar 

s-grammar 

* This report is a preprint of a paper that will appear in the Proceedings 

of the Fifth Annual International Conference on the Implementation and 

Design of Algorithmic Languages, Guidel, 16 - 18 May 1977. 





0. INTRODUCTION 

In [1] an outline is given of a project to design a language, aimed at 

the "BASIC market" but equipped with an appropriate arsenal of structured

programming tools. This language has provisionally been called B. In the 

same paper, a line of reasoning is given that leads to the following 

approach for the syntax of B. 

A program is composed of a sequence of statements. Each statement type 

is composed of "keywords", statements and expressions. Some possible 

statement types are "PUT expression IN expression 11 , "WHILE expression 

statement" and "PASS". 

For the purpose of the subsequent discussion, a "keyword" may be any 

terminal symbol, but in order to understand some issues it may be helpful 

to think of a keyword as being a word delimiter, specifically. A statement 

always begins with a keyword. An expression, on the other hand, never 

begins with a keyword (but it may begin with or even consist of an 

identifier that looks the same). Expressions may be thought of as being 

conventional formulas, which have a syntax of their own and which can be 

parsed by any conventional bottom-up technique. For this paper, however, 

only one property of expressions is relevant: if e is an expression and k 

is a keyword, then ekz is not an expression for any string z. 

We define the "constructor" of a statement type to be the sequence of 

keywords used for its composition. So the set of constructors corresponding 

to the statement types given above is {PUT IN, WHILE, PASS}. In [1] a 

restriction is mentioned on the set of constructors, namely that the first 

keyword of each constructor be "unique", i.e., distinct from the remaining 

keywords of that constructor and from all keywords of other constructors. 

It is claimed there that under this "uniqueness condition" it is possible 

to use with great liberty almost any combination of keywords, statements 

and express:Lons for a statement type. 

The aim of this paper is to investigate this claim more precisely. To 

this purpose, the notions of "keyword graph" and "keyword grammar" are 

introduced. It will be shown that for a keyword grammar satisfying the 

uniqueness eondition a very simple top-down deterministic parser may be 

derived in a straightforward way. Not only is the uniqueness condition 

sufficient for this, but, as will be shown, if only information present in 
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the set of constructors may be considered, it is also necessary. This is 

especially relevant since we are considering the possibility of allowing 

user-defined statement types in B. For the admissibility of such a feature, 

not only should a condition be imposed to prevent ambiguity, but this 

condition should also ensure the applicability of a parsing method chosen 

beforehand and be extremely simple for the user to apply. 

Finally, :Lt will be shown that the language described by a keyword 

grammar satisfying the uniqueness condition has a prefix property. This 

property is relevant in view of the treatment of layout in B, where each 

statement may start at a new line (which is also obligatory, unless that 

statement is the last part of another statement), in conjunction with the 

wish to check each line separately for syntactic correctness. 

Section 1 surveys some (well known) elements of top-down parsing, as 

given in [2]. Mental digestion of this section is not necessary to follow 

the remainder of the paper. In section 2 keyword graphs and keyword 

grammars are introduced, in order to make the paper more or less self

contained. Section 3 contains the results. Some final remarks are made in 

section 4. 

Throughout the paper the treatment is informal. For example, we refrain 

from defining a keyword grammar as being a 1O-tuple <Q,W,E,R,T,Y,U,I,O,P>, 

et cetera. In general, we aim at insight rather than rigour. Readers 

familiar with [2] should have no difficulty in giving a formal treatment. 

Some elementary familiarity with context-free grammars and parsing is 

assumed. The terminology is that of [2]. 

1. TOP-DOWN PARSING 

A deterministic top-down parsing method is a method that allows the 

construction of a parse tree for input strings of terminal symbols produced 

by some given grammar in the following way: Start with a partial parse tree 

consisting only of the top node, which is labelled with the initial symbol 

of the grammar. At each step, the leftmost "untreated" node in the parse 

tree is taken, and treated as follows. If the node is labelled with a 

terminal symbol, it is equal to the first symbol of the input string, and 

that symbol is deleted. If, on the other hand, the node is labelled with a 

nonterminal symbol, a production for that nonterminal symbol is selected by 



inspecting the first k symbols of the input string, and the parse tree is 

developed accordingly. 
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If the input string was indeed produced by the given grammar, the 

process should terminate with a complete parse tree (all nodes treated) and 

an empty input string (all symbols deleted). For this method to work, the 

selection of a production should be completely determined by the grammar, 

given the nonterminal symbol and the first k symbols of the input string, 

and it should guarantee that terminal symbols will indeed be present in the 

input string when expected. Formal conditions for this are given in [2], 

and a grammar satisfying these conditions is known as an LL(k) grammar. 

Since each LL(k) grammar is also an LR(k) grammar, the LL(k) property also 

allows the application of a bottom-up parsing technique. 

It is not necessary to actually construct a parse tree or, if one is 

constructed, to consult its nodes during parsing. Top-down methods may be 

easily implemented by a system of mutually recursive routines, one for each 

nonterminal symbol. During the parsing process, the untreated part of the 

tree is then reflected in the link stack. 

In [2], a parsing machine (PM) is defined, and a straightforward way is 

given to transcribe a grammar into a PM program. The general PM works with 

a system of mutually recursive routines. The difference with the 

deterministic method given above is that it does not select a production, 

but instead tries the productions one by one, until it finds one that 

succeeds. If a production fails, e.g. by the absence of an expected 

terminal symbol, the machine "backs up" by reinserting the symbols that 

have possibly been deleted and tries the next production. If all 

productions for a certain nonterminal symbol fail, then the production from 

which the routine for that nonterminal symbol was called also fails in 

turn. The transcription of grammars into ALGOL 60 or ALGOL 68 programs 

implementing this method is described in [4]. 

A case of special interest is the restriction of PM by allowing no 

back-up. This requires that if the wrong production is tried, failure 

occurs within that production on the very first symbol of the input string. 

If on failure the PM should already have deleted symbols from the input 

string that correspond to the failing production, it simply fails on the 

whole input string. It is shown in [2] that under this restriction exactly 

those languages may be recognized that are produced by an LL(1) grammar. 
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However, the straightforward transcription of an LL(1) grammar may 

yield an incorrect PM program. In general, it is necessary to turn the 

grammar first into some standard form. For some grammars this is 

unnecessary, provided that the productions are properly arranged, i.e., 

tried in the right order. It is also possible that each arrangement of the 

alternative productions is fine and allows a straightforward transcription 

into a correct PM program. We shall abuse the notation "LL(1-)" to indicate 

such grammars .. 

Below a property very similar to LL(1-)-ness will be derived for 

keyword grammars satisfying the uniqueness condition. Examples of LL(1-) 

grammars are the s-grammars introduced in [3]. It is not necessary to give 

a formal definition of LL(1-) grammars here, since we will derive the 

necessary properties directly from a specialized version of the no-backup 

PM, which is tailored to keyword grammars and performs a recursive walk on 

a "keyword graph". However, we mention (without proof) a simple condition 

that, in conjunction with the well-known condition for LL(1)-ness, gives 

LL(1-)-ness: 

An LL(1) grammar is of type LL(1-) iff none of its (reachable) 

"nonfalse" nonterminal symbols has two or more productions, where a 

nonterminal symbol A is "nonfalse" iff the grammar has a production of the 

form 

a) A->#, where# denotes the empty string, 

orb) A-> x1 ••• Xn, where x1 is a nonfalse nonterminal symbol. 

Note that a production of the form A-># in an LL(1-) grammar is 

rather silly, since it is the only production with A as a left-hand side, 

so that A might as well be deleted throughout the grammar. So, without 

substantial loss of expressive power, all #-productions may be removed 

(with the trivial exception of a grammar for the language {fl}) • For a 

#-free grammar, all nonterminal symbols are easily seen to be nonfalse, so 

a fl-free LL ( 1) grammar is of type LL ( 1 -) • 

2. KEYWORD GRAPHS AND KEYWORD GRAMMARS 

A "keyword graph" over a set of "keywords" (terminal symbols) and a set 

of "statement types" (nonterminal symbols) is a set of directed graphs, one 

for each statement type, each of which has two distinguished (and distinct) 
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vertices: the "source" and the "sink". Each vertex lies on an (oriented) 

path from the source to the sink of ohe of the directed graphs. An arc from 

a vertex u to a vertex vis called an "out-arc" of u and an "in-arc" of v. 

A vertex with at least two out-arcs is a "fork". Each arc is either 

labelled with a keyword, or with a statement type, or with the special 

symbol E (which may be interpreted as "expression"). In addition, a keyword 

graph satisfies the following three restrictions: 

(R1) the out-arcs of the source are labelled with keywords only; these 

are called "first keywords" of the corresponding statement type; 

(R2) no vertex has both an in- and an out-arc labelled with E; 

(R3) a sink has no out-arcs, but only in arcs. (A similar condition 

might be formulated for sources, but turns out to be irrelevant.) 

(The reason for these restrictions will become apparent later on.) 

A keyword graph over the set of keywords {BEGIN, END, PUT, IN, CASE, 

ELSE} and the set of statement types {S} is shown in figure 1, and one over 

Figure 1. A keyword graph with one statement type. 

the same set of keywords but over the set of statement types {s1, s2 , s3} 

is shown in figure 2. 

Given a context-free language L(E) for the expressions, a keyword graph 

determines a context-free language for each of the statement types, as 

follows. First, each arc labelled with a statement type Sis relabelled 

with a new terminal symbol T(S). Eis considered as a terminal symbol. 

Then, the subgraph for each statement type is a finite-state automaton that 

describes a regular language. Each string of this language corresponds to a 

walk through the subgraph from source to sink, and is composed of the 
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Figure ~- A keyword graph with three statement types. 

labels of the arcs traversed. These languages may be described by context

free grammars. Next, change each T(S) back into S. Similarly, reclassify E 

as nonterminal and add the productions of its context-free grammar. It 

should be clear that each string produced by this grammar may also be 

produced by a "recursive walk" over the keyword graph, using an (initially 

empty) stack of vertices, as follows: Start at the source of the subgraph 

for the statement type for which a string must be produced. Each time, 

follow an arc leading from the current vertex. (This is always possible, 

unless the current vertex is the sink, since there is a path leading from 

it to the sink.) If the arc is labelled with a keyword, emit that keyword. 

If it is labelled with E, emit a string from L(E). If it is labelled with a 

statement type S, push the vertex to which the arc is leading on the stack 

and start a walk on the subgraph for S. On reaching a sink, the stack is 

popped and the walk proceeds from the (previous) top vertex. If the stack 

is empty, however, the walk is complete. 

For later use, we give a more precise definition, which is not 

operational but recursive instead: 

A recursive walk for a statement type S through a keyword graph is a 

finite sequence of arcs u1 w1 ••• un wn, n 1. 1, where 



- u1 is an out-arc of the source, and un is an in-arc of the sink, of the 

subgraph for S; 

- each ui, i = 2, ••• , n, is an out-arc of the vertex of which ui_ 1 is an 

in-arc; 
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- each wi, i = 1, ••• , n, is a recursive walk for T if ui is labelled with 

a statement type T, and is empty otherwise. (Note that w1 is always 

empty.) 

The "emission" of a recursive walk w is the string obtained by 

replacing each arc of w by 

- the keyword kif it is labelled with k; 

- empty if it is labelled with a statement type; 

- a string from L(E) if it is labelled with E. 

Because of the last type of replacements, w may emit several strings. The 

definition may be extended in an obvious way to partial walks. 

The purpose of introducing this notion of a walk is that we want to use 

a keyword graph to parse a given input string by trying to walk the graph, 

directed by the input string. This corresponds to the performance of the PM 

mentioned in section 1. 

A "keyword grammar" is a context-free grammar (whose terminal symbols 

are again called keywords and whose nonterminal symbols are called 

statement types), having a special symbol E (the classification of which is 

- for the moment - left open). However, where a conventional context-free 

grammar allows simply one nonterminal symbol at a time in the right-hand 

side of a production, we allow a non-empty set of statement types. 
* Moreover, letting X stand for such a set of statement types, X may also be 

used, indicating zero or more repetitions of X. In addition, a keyword 

grammar satisfies the following three restrictions: 

(R1') the right-hand side of each_ production begins with a keyword; 

(R2') no production contains two consecutive symbols E; 
* (R3') each form X is followed by a keyword. 

But for the notational extensions and the special symbol E, keyword 

grammars would bes-grammars. These extensions can be undone, of course, by 

considering each X and x* as new nonterminal symbols and by adding 

productions x* -> #, x* -> xx* and X -> S for each Sin X. The result is a 

conventional context-free grammar, which in general, however, will no 
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longer be a keyword grammar. 

An example of a keyword grammar is given by 

* S1 -> BEGIN {S1, S2} {S1, S2} END 

S1 -> PUT E IN E 

S2 -> CASE E {S1, S2} {S2, S3} 

S3 -> ELSE {S1, S2}. 

The "constructor set" of a keyword grammar is the set of sequences of 

keywords, one for each production, consisting of the keywords occurring in 

that production, taken in the same order. (Properly speaking, we should use 

the term "multiset" rather than "set", since we have not yet excluded the 

possibility of two productions with identical constructors.) 

The constructor set of the example grammar is {BEGIN END, PUT IN, CASE, 

ELSE}. 

It is straightforward to derive a keyword graph from a keyword grammar, 

and the keyword graph for the above grammar is that of figure 2. Forks in 

such keyword graphs are always of one of three types: 

- sources, all of whose out-arcs are labelled with keywords; 

- forks corresponding to a set X of statement types, where all out-arcs are 

labelled with statement types; 

forks corresponding to an x*, where in addition one out-arc is labelled 
* with the keyword following X. 

The inverse transformation is not so straightforward; in general it is 

only possible by structural changes. 

3. CONDITIONS FOR DETERMINISM 

Let a keyword graph and an input string derived from a recursive walk 

over the graph be given, and consider a machine able to walk the graph. To 

this purpose the machine has an instruction "read expression", which, as 

far as it is concerned, functions as a black box. At any time, it has only 

knowledge of the first symbol of the input string, which it may delete. 

Rather than forbidding the reinsertion of deleted symbols (as for PM), we 

forbid the machine to backtrack in the graph, so it can follow an arc only 

if it is sure that its choice is correct (under the assumption of having a 

correct input string). Under this restriction, reinsertion is simply no 



help, so the same effect is achieved. Similarly, we need not specifically 

require that the machine is aware of the out-arcs of the current vertex 

only, since information from subsequent arcs is irrelevant when only the 

next first input symbol is known. 
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What problems may the machine encounter? As long as there is no fork, 

its choice is determined by force. Suppose therefore that a choice between 

several arcs presents itself. If one arc is labelled with E, the situation 

is hopeless, since the machine has no knowledge of L(E) and therefore no 

way to decide between a continuation of the walk over this arc and any 

other continuation. Another obviously awkward situation arises if two arcs 

are labelled with the same keyword. If several arcs are labelled with 

statement types, the machine may only select one that has the current first 

input symbol as a first keyword. If the sets of first keywords for these· 

types are not disjoint, it will find itself in a quandary if some shared 

first keyword happens to be the current input symbol. The same problem may 

arise if one arc is labelled with a statement type and another with a first 

keyword of that statement type. 

We want to prove that this informal examination has given precisely the 

situations that must be excluded to guarantee a determined choice for all 

input strings and all possible expression languages L(E). In order to show 

this, we need a more precise definition of "determined choice": 

A keyword graph has the "determined-choice property" iff for all L(E), 

for all pairs paw and pa'w' of recursive walks for the same statement type, 

where p denotes a partial walk and a and a' denote arcs, and for all 

strings xs of aw and x's' of a'w', where x and x' denote symbols, x = x' 

implies a= a'. 

Note that the determined-choice property is not sufficient to guarantee 

by itself that the same walk will be re-produced that emitted the input 

string. For the instruction "read expression" might not delete exactly the 

same part as was emitted as an element of L(E). Therefore, we simply 

postulate that if a is labelled with E, then for any emissions e of a ands 

of w, where aw is part of a recursive walk, read expression started on es 

will exactly delete e. (This might be an outright impossible requirement 

if, e.g., es is genuinely ambiguous. If the natural assumption for a 

bottom-up device is made that read expression always deletes a maximal 

expression, then a simple sufficient condition on L(E) that excludes such 
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ambiguities is the ekz-condition mentioned in the introduction. The proof 

of this statement is omitted.) 

THEOREM 1. A keyword graph has the determined-choice property iff it 

satisfies the following four conditions: 

(i) no out-arc of a fork is labelled with E; 

(ii) no two out-arcs of a fork are labelled with the same keyword k; 

(iii) no two out-arcs of a fork are labelled with statement types s1 and s2 
such that s1 and s2 have a common first keyword k; 

(iv) no two out-arcs of a fork are labelled with a statement type Sand a 

keyword k such that k is a first keyword of S. 

Proof. (If part) Let G be a keyword graph having the determined-choice 

property. Consider two recursive walks paw and pa'w' and strings xs and 

x's' emitted by aw and a'w', and suppose that x = x'. We will show that a i 

a' leads to a contradiction. Obviously, if a i a', a and a' are out-arcs of 

a fork. Because of condition (i), their labels are keywords or statement 

types. If a is labelled with a keyword k, we find immediately that x = k. 

Otherwise, a is labelled with some statement type S. By the definition of 

"recursive walk", the first arc of w is an out-arc of the source for S, so 

its label is some first keyword k of S. In obtaining a string xs emitted by 

aw, a is replaced by empty, and the first arc of w by k. Therefore, x = k. 

For a' we find in the same way that x' is equal to some keyword k' that 

either labels a' or is a first keyword of the statement type labelling 

Since x = x', k = k', so one of the conditions (ii) through (iv) is 

immediately violated. Therefore, a= a'. 

, 
a • 

(Only-if part) For each violation of one of the four conditions a keyword 

graph does not have the determined-choice property. If condition (i) is 

violated, there must be some fork (reachable with a partial walk p) with an 

out-arc a labelled with E and at least one other out-arc a'. If a' is 

labelled with E too, it is obvious that any pair of continuations aw and 

a'w' have emissions xs and x's' with x = x', provided that L(E) is chosen 

such as to contain at least one non-empty string. If a' is labelled any 

other way, let x's' be the emission of some continuation a'w' and take L(E) 

= {x'}. Then each continuation aw has only emissions xs with x = x'. For 

each violation of one of the remaining three conditions, it should be clear 

from the considerations in the if part that either out-arc of the fork is 



the begin of some continuation whose emission starts with the keyword k 

mentioned in those conditions. D 
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Now the time has come to apply this result to keyword grammars. First, 

we extend the determined-choice property from keyword graphs to keyword 

grammars in an obvious way: a keyword grammar has the determined-choice 

property iff the keyword graph derived from it has that property. 

We are interested in relating this property to the constructor set of 

keyword grammars. Therefore, we define the notion "to warrant determined 

choice": 

A set of constructors C warrants determined choice iff all keyword 

grammars having C as their constructor set have the determined-choice 

property. 

Finally we define a uniqueness condition for sets of constructors, 

expressed in terms of such sets themselves, without reference to grammars: 

A set of constructors satisfies the uniqueness condition iff the first 

keyword of each constructor is distinct from the remaining keywords of that 

constructor and from all keywords of other constructors. 

THEOREM 2. Let C be a set of constructors. C warrants determined choice iff 

C satisfies the uniqueness condition. 

Proof. (If part) Let G be a keyword grammar having C as its constructor 

set, and consider the keyword graph H derived from G. We have to check the 

properties (i) through (iv) of the determined-choice property for H. We 

recall from section 2 the three possible types of forks for derived keyword 

graphs, and notice that never is an out-arc of a fork labelled with E. This 

gives property (i). If two out-arcs are labelled with keywords, then the 

fork is a source, so the uniqueness condition implies (ii). If two out-arcs 

are labelled with statement types s1 and s2 , the s1 and s2 must be distinct 

elements of a set of statement types. So property (iii) follows from the 

uniqueness condition too. Finally (iv) is immediate. 

(Only-if part) Let C be a set of coristructors violating the uniqueness 

condition. This means that the first keywords of Care not distinct, or 

that a first keyword of C also occurs at another position. For either case, 

we construct a counter-example keyword grammar that shows that C does not 

warrant determined choice. As for the first case, this is rather trivial. 

Let k 1 k2 .... km and k1 k2 ... k~ be the constructors of C causing non-
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uniqueness, and take any grammar G containing the productions 

S -> k 1 k2 ••• km and 

S -> k 1 k2' k' • • • n • 

As for the second case, let the constructors of C causing non-uniqueness be 

k1 ••• km and k1 ... k1_1 k1 k1+1 ••• k~, i 1 2. Take any grammar G 

containing the productions 

km and 

ki-1 {SJ* k1 ki+1 ••• k~. 

(In the special case where k1 ••• km= k1 ... k~, only the second of these 

two productions should be taken.) D 

4. FINAL REMARKS 

(a) The uniqueness condition depends solely on the constructor set. It is 

easy to state, and checking this condition is much simpler than, e.g., that 

for LL(1)-ness. A compiler for an extensible keyword language can 

incrementally check the uniqueness condition as new statement types are 

added. 

(b) The reason for the requirements R1' and R3' in the definition of 

"keyword grammar" is the following: if one of these requirements is not 

met, the grammar would not warrant determined choice, regardless of the 
. * constructor set! (Consider, e.g., S -> {S} k1 ••• kn and S -> k1 ••• kn 

* , {S} {S}.) As for R2, if two expressions were allowed to follow each 

other, this would give problems for expression languages containing, e.g., 

"I", "- 111 and "I - 111 , or "P", "(K + 1)" and "P (K + 1) 11 • 

(c) If some strings is produced by a keyword grammar G satisfying the 

uniqueness condition, then each attempt to re-produce that string by a 

recursive walk over the keyword graph derived from G proceeds by forced 

choice and ends on a sink. From that sink no out-arcs emerge, so no string 

st, with non-empty t, could also be produced by G. This is known as the 

"prefix property". The relevance of this property has already been 

explained in the introduction. We have cheated a little, however, since 

again L(E) intervenes. Indeed, it is quite possible that, e.g., both "X" 

and "X + 1" are expressions. If Eis considered terminal, the prefix 

property holds without more. 



(d) Not all keyword graphs are derived from keyword grammars. Some simple 

transformations are possible on keyword graphs that do not influence the 

strings emitted. We will not go into details, but it should be clear that 

the keyword graph in figure 1 may be obtained in this way from the one in 

figure 2. A simpler parser results, with iteration partially replacing 

recursion. 
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(e) Because of the determined-choice property, errors may be caught at the 

first erroneous symbol (with again some reservation where L(E) is 

concerned). Together with the fact that each transition to a new line marks 

a new statement, this gives superior error detection and recovery. 
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