
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

L.J.M. GEURTS & L.G.L.T. MEERTENS

KEYWORD GRAMMARS

Preprint

~
MC

IW 86/77 AUGUSTUS

2e boerhaavestraat 49 amsterdam

a!Bl.lOTHEEK MATHP.'ATi:;cH Ct:N muM
.i\MS i E flOMJl

PJunted a:t ;the Ma:thema.Uc.a.l Centlr.e, 49, 2e BoeJtha.a.vu.tJuutt, Am6teJtdam.

The Ma:thema.Uc.a.l Centlr.e, 6ou.nded the 11-;th 06 Feb)[,u.aJLy 1946, -l6 a. non
p)[,o6U -<.n6iliu.tlon a.hning a:t the p11.omo:Uon 06 puJLe ma:thema.UC-6 a.nd -i.:t6
a.ppUc.a.:Uon6. It -l6 .&pon6o)[,ed by ;the Nethw.a.nd6 GoveJtnment thlt.ough the
Nethw.a.nd6 OJz.ga.n.iza.Uon 60)[, the Adva.nc.ement 06 PuJLe Re6eMc.h (Z .W.O) •

AMS(MOS) subject classification scheme (1970): 68A36, 68A42, 68A50,

ACM-Computer Review Categories: 4.12, 4.22, 5.23

* Keyword grammars

by

L.J.M. Geurts & L.G.L.T. Meertens

ABSTRACT

A simple condition is derived for the "keyword skeletons" in a

language, guaranteeing that the language may be parsed by a simple no

backup parser that can be generated from the grammar of the language

without preprocessing. It is also shown that this condition is, in some

sense, necessary.

KEY WORDS & PHRASES: deterministic top-down parsing

LL(1) grammar

s-grammar

* This report is a preprint of a paper that will appear in the Proceedings

of the Fifth Annual International Conference on the Implementation and

Design of Algorithmic Languages, Guidel, 16 - 18 May 1977.

0. INTRODUCTION

In [1] an outline is given of a project to design a language, aimed at

the "BASIC market" but equipped with an appropriate arsenal of structured

programming tools. This language has provisionally been called B. In the

same paper, a line of reasoning is given that leads to the following

approach for the syntax of B.

A program is composed of a sequence of statements. Each statement type

is composed of "keywords", statements and expressions. Some possible

statement types are "PUT expression IN expression 11 , "WHILE expression

statement" and "PASS".

For the purpose of the subsequent discussion, a "keyword" may be any

terminal symbol, but in order to understand some issues it may be helpful

to think of a keyword as being a word delimiter, specifically. A statement

always begins with a keyword. An expression, on the other hand, never

begins with a keyword (but it may begin with or even consist of an

identifier that looks the same). Expressions may be thought of as being

conventional formulas, which have a syntax of their own and which can be

parsed by any conventional bottom-up technique. For this paper, however,

only one property of expressions is relevant: if e is an expression and k

is a keyword, then ekz is not an expression for any string z.

We define the "constructor" of a statement type to be the sequence of

keywords used for its composition. So the set of constructors corresponding

to the statement types given above is {PUT IN, WHILE, PASS}. In [1] a

restriction is mentioned on the set of constructors, namely that the first

keyword of each constructor be "unique", i.e., distinct from the remaining

keywords of that constructor and from all keywords of other constructors.

It is claimed there that under this "uniqueness condition" it is possible

to use with great liberty almost any combination of keywords, statements

and express:Lons for a statement type.

The aim of this paper is to investigate this claim more precisely. To

this purpose, the notions of "keyword graph" and "keyword grammar" are

introduced. It will be shown that for a keyword grammar satisfying the

uniqueness eondition a very simple top-down deterministic parser may be

derived in a straightforward way. Not only is the uniqueness condition

sufficient for this, but, as will be shown, if only information present in

2

the set of constructors may be considered, it is also necessary. This is

especially relevant since we are considering the possibility of allowing

user-defined statement types in B. For the admissibility of such a feature,

not only should a condition be imposed to prevent ambiguity, but this

condition should also ensure the applicability of a parsing method chosen

beforehand and be extremely simple for the user to apply.

Finally, :Lt will be shown that the language described by a keyword

grammar satisfying the uniqueness condition has a prefix property. This

property is relevant in view of the treatment of layout in B, where each

statement may start at a new line (which is also obligatory, unless that

statement is the last part of another statement), in conjunction with the

wish to check each line separately for syntactic correctness.

Section 1 surveys some (well known) elements of top-down parsing, as

given in [2]. Mental digestion of this section is not necessary to follow

the remainder of the paper. In section 2 keyword graphs and keyword

grammars are introduced, in order to make the paper more or less self

contained. Section 3 contains the results. Some final remarks are made in

section 4.

Throughout the paper the treatment is informal. For example, we refrain

from defining a keyword grammar as being a 1O-tuple <Q,W,E,R,T,Y,U,I,O,P>,

et cetera. In general, we aim at insight rather than rigour. Readers

familiar with [2] should have no difficulty in giving a formal treatment.

Some elementary familiarity with context-free grammars and parsing is

assumed. The terminology is that of [2].

1. TOP-DOWN PARSING

A deterministic top-down parsing method is a method that allows the

construction of a parse tree for input strings of terminal symbols produced

by some given grammar in the following way: Start with a partial parse tree

consisting only of the top node, which is labelled with the initial symbol

of the grammar. At each step, the leftmost "untreated" node in the parse

tree is taken, and treated as follows. If the node is labelled with a

terminal symbol, it is equal to the first symbol of the input string, and

that symbol is deleted. If, on the other hand, the node is labelled with a

nonterminal symbol, a production for that nonterminal symbol is selected by

inspecting the first k symbols of the input string, and the parse tree is

developed accordingly.

3

If the input string was indeed produced by the given grammar, the

process should terminate with a complete parse tree (all nodes treated) and

an empty input string (all symbols deleted). For this method to work, the

selection of a production should be completely determined by the grammar,

given the nonterminal symbol and the first k symbols of the input string,

and it should guarantee that terminal symbols will indeed be present in the

input string when expected. Formal conditions for this are given in [2],

and a grammar satisfying these conditions is known as an LL(k) grammar.

Since each LL(k) grammar is also an LR(k) grammar, the LL(k) property also

allows the application of a bottom-up parsing technique.

It is not necessary to actually construct a parse tree or, if one is

constructed, to consult its nodes during parsing. Top-down methods may be

easily implemented by a system of mutually recursive routines, one for each

nonterminal symbol. During the parsing process, the untreated part of the

tree is then reflected in the link stack.

In [2], a parsing machine (PM) is defined, and a straightforward way is

given to transcribe a grammar into a PM program. The general PM works with

a system of mutually recursive routines. The difference with the

deterministic method given above is that it does not select a production,

but instead tries the productions one by one, until it finds one that

succeeds. If a production fails, e.g. by the absence of an expected

terminal symbol, the machine "backs up" by reinserting the symbols that

have possibly been deleted and tries the next production. If all

productions for a certain nonterminal symbol fail, then the production from

which the routine for that nonterminal symbol was called also fails in

turn. The transcription of grammars into ALGOL 60 or ALGOL 68 programs

implementing this method is described in [4].

A case of special interest is the restriction of PM by allowing no

back-up. This requires that if the wrong production is tried, failure

occurs within that production on the very first symbol of the input string.

If on failure the PM should already have deleted symbols from the input

string that correspond to the failing production, it simply fails on the

whole input string. It is shown in [2] that under this restriction exactly

those languages may be recognized that are produced by an LL(1) grammar.

4

However, the straightforward transcription of an LL(1) grammar may

yield an incorrect PM program. In general, it is necessary to turn the

grammar first into some standard form. For some grammars this is

unnecessary, provided that the productions are properly arranged, i.e.,

tried in the right order. It is also possible that each arrangement of the

alternative productions is fine and allows a straightforward transcription

into a correct PM program. We shall abuse the notation "LL(1-)" to indicate

such grammars ..

Below a property very similar to LL(1-)-ness will be derived for

keyword grammars satisfying the uniqueness condition. Examples of LL(1-)

grammars are the s-grammars introduced in [3]. It is not necessary to give

a formal definition of LL(1-) grammars here, since we will derive the

necessary properties directly from a specialized version of the no-backup

PM, which is tailored to keyword grammars and performs a recursive walk on

a "keyword graph". However, we mention (without proof) a simple condition

that, in conjunction with the well-known condition for LL(1)-ness, gives

LL(1-)-ness:

An LL(1) grammar is of type LL(1-) iff none of its (reachable)

"nonfalse" nonterminal symbols has two or more productions, where a

nonterminal symbol A is "nonfalse" iff the grammar has a production of the

form

a) A->#, where# denotes the empty string,

orb) A-> x1 ••• Xn, where x1 is a nonfalse nonterminal symbol.

Note that a production of the form A-># in an LL(1-) grammar is

rather silly, since it is the only production with A as a left-hand side,

so that A might as well be deleted throughout the grammar. So, without

substantial loss of expressive power, all #-productions may be removed

(with the trivial exception of a grammar for the language {fl}) • For a

#-free grammar, all nonterminal symbols are easily seen to be nonfalse, so

a fl-free LL (1) grammar is of type LL (1 -) •

2. KEYWORD GRAPHS AND KEYWORD GRAMMARS

A "keyword graph" over a set of "keywords" (terminal symbols) and a set

of "statement types" (nonterminal symbols) is a set of directed graphs, one

for each statement type, each of which has two distinguished (and distinct)

5

vertices: the "source" and the "sink". Each vertex lies on an (oriented)

path from the source to the sink of ohe of the directed graphs. An arc from

a vertex u to a vertex vis called an "out-arc" of u and an "in-arc" of v.

A vertex with at least two out-arcs is a "fork". Each arc is either

labelled with a keyword, or with a statement type, or with the special

symbol E (which may be interpreted as "expression"). In addition, a keyword

graph satisfies the following three restrictions:

(R1) the out-arcs of the source are labelled with keywords only; these

are called "first keywords" of the corresponding statement type;

(R2) no vertex has both an in- and an out-arc labelled with E;

(R3) a sink has no out-arcs, but only in arcs. (A similar condition

might be formulated for sources, but turns out to be irrelevant.)

(The reason for these restrictions will become apparent later on.)

A keyword graph over the set of keywords {BEGIN, END, PUT, IN, CASE,

ELSE} and the set of statement types {S} is shown in figure 1, and one over

Figure 1. A keyword graph with one statement type.

the same set of keywords but over the set of statement types {s1, s2 , s3}

is shown in figure 2.

Given a context-free language L(E) for the expressions, a keyword graph

determines a context-free language for each of the statement types, as

follows. First, each arc labelled with a statement type Sis relabelled

with a new terminal symbol T(S). Eis considered as a terminal symbol.

Then, the subgraph for each statement type is a finite-state automaton that

describes a regular language. Each string of this language corresponds to a

walk through the subgraph from source to sink, and is composed of the

6

ELSE
s1

\sink(sJ Gource(s 33 / •
\. S2 JI

Figure ~- A keyword graph with three statement types.

labels of the arcs traversed. These languages may be described by context

free grammars. Next, change each T(S) back into S. Similarly, reclassify E

as nonterminal and add the productions of its context-free grammar. It

should be clear that each string produced by this grammar may also be

produced by a "recursive walk" over the keyword graph, using an (initially

empty) stack of vertices, as follows: Start at the source of the subgraph

for the statement type for which a string must be produced. Each time,

follow an arc leading from the current vertex. (This is always possible,

unless the current vertex is the sink, since there is a path leading from

it to the sink.) If the arc is labelled with a keyword, emit that keyword.

If it is labelled with E, emit a string from L(E). If it is labelled with a

statement type S, push the vertex to which the arc is leading on the stack

and start a walk on the subgraph for S. On reaching a sink, the stack is

popped and the walk proceeds from the (previous) top vertex. If the stack

is empty, however, the walk is complete.

For later use, we give a more precise definition, which is not

operational but recursive instead:

A recursive walk for a statement type S through a keyword graph is a

finite sequence of arcs u1 w1 ••• un wn, n 1. 1, where

- u1 is an out-arc of the source, and un is an in-arc of the sink, of the

subgraph for S;

- each ui, i = 2, ••• , n, is an out-arc of the vertex of which ui_ 1 is an

in-arc;

7

- each wi, i = 1, ••• , n, is a recursive walk for T if ui is labelled with

a statement type T, and is empty otherwise. (Note that w1 is always

empty.)

The "emission" of a recursive walk w is the string obtained by

replacing each arc of w by

- the keyword kif it is labelled with k;

- empty if it is labelled with a statement type;

- a string from L(E) if it is labelled with E.

Because of the last type of replacements, w may emit several strings. The

definition may be extended in an obvious way to partial walks.

The purpose of introducing this notion of a walk is that we want to use

a keyword graph to parse a given input string by trying to walk the graph,

directed by the input string. This corresponds to the performance of the PM

mentioned in section 1.

A "keyword grammar" is a context-free grammar (whose terminal symbols

are again called keywords and whose nonterminal symbols are called

statement types), having a special symbol E (the classification of which is

- for the moment - left open). However, where a conventional context-free

grammar allows simply one nonterminal symbol at a time in the right-hand

side of a production, we allow a non-empty set of statement types.
* Moreover, letting X stand for such a set of statement types, X may also be

used, indicating zero or more repetitions of X. In addition, a keyword

grammar satisfies the following three restrictions:

(R1') the right-hand side of each_ production begins with a keyword;

(R2') no production contains two consecutive symbols E;
* (R3') each form X is followed by a keyword.

But for the notational extensions and the special symbol E, keyword

grammars would bes-grammars. These extensions can be undone, of course, by

considering each X and x* as new nonterminal symbols and by adding

productions x* -> #, x* -> xx* and X -> S for each Sin X. The result is a

conventional context-free grammar, which in general, however, will no

8

longer be a keyword grammar.

An example of a keyword grammar is given by

* S1 -> BEGIN {S1, S2} {S1, S2} END

S1 -> PUT E IN E

S2 -> CASE E {S1, S2} {S2, S3}

S3 -> ELSE {S1, S2}.

The "constructor set" of a keyword grammar is the set of sequences of

keywords, one for each production, consisting of the keywords occurring in

that production, taken in the same order. (Properly speaking, we should use

the term "multiset" rather than "set", since we have not yet excluded the

possibility of two productions with identical constructors.)

The constructor set of the example grammar is {BEGIN END, PUT IN, CASE,

ELSE}.

It is straightforward to derive a keyword graph from a keyword grammar,

and the keyword graph for the above grammar is that of figure 2. Forks in

such keyword graphs are always of one of three types:

- sources, all of whose out-arcs are labelled with keywords;

- forks corresponding to a set X of statement types, where all out-arcs are

labelled with statement types;

forks corresponding to an x*, where in addition one out-arc is labelled
* with the keyword following X.

The inverse transformation is not so straightforward; in general it is

only possible by structural changes.

3. CONDITIONS FOR DETERMINISM

Let a keyword graph and an input string derived from a recursive walk

over the graph be given, and consider a machine able to walk the graph. To

this purpose the machine has an instruction "read expression", which, as

far as it is concerned, functions as a black box. At any time, it has only

knowledge of the first symbol of the input string, which it may delete.

Rather than forbidding the reinsertion of deleted symbols (as for PM), we

forbid the machine to backtrack in the graph, so it can follow an arc only

if it is sure that its choice is correct (under the assumption of having a

correct input string). Under this restriction, reinsertion is simply no

help, so the same effect is achieved. Similarly, we need not specifically

require that the machine is aware of the out-arcs of the current vertex

only, since information from subsequent arcs is irrelevant when only the

next first input symbol is known.

9

What problems may the machine encounter? As long as there is no fork,

its choice is determined by force. Suppose therefore that a choice between

several arcs presents itself. If one arc is labelled with E, the situation

is hopeless, since the machine has no knowledge of L(E) and therefore no

way to decide between a continuation of the walk over this arc and any

other continuation. Another obviously awkward situation arises if two arcs

are labelled with the same keyword. If several arcs are labelled with

statement types, the machine may only select one that has the current first

input symbol as a first keyword. If the sets of first keywords for these·

types are not disjoint, it will find itself in a quandary if some shared

first keyword happens to be the current input symbol. The same problem may

arise if one arc is labelled with a statement type and another with a first

keyword of that statement type.

We want to prove that this informal examination has given precisely the

situations that must be excluded to guarantee a determined choice for all

input strings and all possible expression languages L(E). In order to show

this, we need a more precise definition of "determined choice":

A keyword graph has the "determined-choice property" iff for all L(E),

for all pairs paw and pa'w' of recursive walks for the same statement type,

where p denotes a partial walk and a and a' denote arcs, and for all

strings xs of aw and x's' of a'w', where x and x' denote symbols, x = x'

implies a= a'.

Note that the determined-choice property is not sufficient to guarantee

by itself that the same walk will be re-produced that emitted the input

string. For the instruction "read expression" might not delete exactly the

same part as was emitted as an element of L(E). Therefore, we simply

postulate that if a is labelled with E, then for any emissions e of a ands

of w, where aw is part of a recursive walk, read expression started on es

will exactly delete e. (This might be an outright impossible requirement

if, e.g., es is genuinely ambiguous. If the natural assumption for a

bottom-up device is made that read expression always deletes a maximal

expression, then a simple sufficient condition on L(E) that excludes such

10

ambiguities is the ekz-condition mentioned in the introduction. The proof

of this statement is omitted.)

THEOREM 1. A keyword graph has the determined-choice property iff it

satisfies the following four conditions:

(i) no out-arc of a fork is labelled with E;

(ii) no two out-arcs of a fork are labelled with the same keyword k;

(iii) no two out-arcs of a fork are labelled with statement types s1 and s2
such that s1 and s2 have a common first keyword k;

(iv) no two out-arcs of a fork are labelled with a statement type Sand a

keyword k such that k is a first keyword of S.

Proof. (If part) Let G be a keyword graph having the determined-choice

property. Consider two recursive walks paw and pa'w' and strings xs and

x's' emitted by aw and a'w', and suppose that x = x'. We will show that a i

a' leads to a contradiction. Obviously, if a i a', a and a' are out-arcs of

a fork. Because of condition (i), their labels are keywords or statement

types. If a is labelled with a keyword k, we find immediately that x = k.

Otherwise, a is labelled with some statement type S. By the definition of

"recursive walk", the first arc of w is an out-arc of the source for S, so

its label is some first keyword k of S. In obtaining a string xs emitted by

aw, a is replaced by empty, and the first arc of w by k. Therefore, x = k.

For a' we find in the same way that x' is equal to some keyword k' that

either labels a' or is a first keyword of the statement type labelling

Since x = x', k = k', so one of the conditions (ii) through (iv) is

immediately violated. Therefore, a= a'.

,
a •

(Only-if part) For each violation of one of the four conditions a keyword

graph does not have the determined-choice property. If condition (i) is

violated, there must be some fork (reachable with a partial walk p) with an

out-arc a labelled with E and at least one other out-arc a'. If a' is

labelled with E too, it is obvious that any pair of continuations aw and

a'w' have emissions xs and x's' with x = x', provided that L(E) is chosen

such as to contain at least one non-empty string. If a' is labelled any

other way, let x's' be the emission of some continuation a'w' and take L(E)

= {x'}. Then each continuation aw has only emissions xs with x = x'. For

each violation of one of the remaining three conditions, it should be clear

from the considerations in the if part that either out-arc of the fork is

the begin of some continuation whose emission starts with the keyword k

mentioned in those conditions. D

11

Now the time has come to apply this result to keyword grammars. First,

we extend the determined-choice property from keyword graphs to keyword

grammars in an obvious way: a keyword grammar has the determined-choice

property iff the keyword graph derived from it has that property.

We are interested in relating this property to the constructor set of

keyword grammars. Therefore, we define the notion "to warrant determined

choice":

A set of constructors C warrants determined choice iff all keyword

grammars having C as their constructor set have the determined-choice

property.

Finally we define a uniqueness condition for sets of constructors,

expressed in terms of such sets themselves, without reference to grammars:

A set of constructors satisfies the uniqueness condition iff the first

keyword of each constructor is distinct from the remaining keywords of that

constructor and from all keywords of other constructors.

THEOREM 2. Let C be a set of constructors. C warrants determined choice iff

C satisfies the uniqueness condition.

Proof. (If part) Let G be a keyword grammar having C as its constructor

set, and consider the keyword graph H derived from G. We have to check the

properties (i) through (iv) of the determined-choice property for H. We

recall from section 2 the three possible types of forks for derived keyword

graphs, and notice that never is an out-arc of a fork labelled with E. This

gives property (i). If two out-arcs are labelled with keywords, then the

fork is a source, so the uniqueness condition implies (ii). If two out-arcs

are labelled with statement types s1 and s2 , the s1 and s2 must be distinct

elements of a set of statement types. So property (iii) follows from the

uniqueness condition too. Finally (iv) is immediate.

(Only-if part) Let C be a set of coristructors violating the uniqueness

condition. This means that the first keywords of Care not distinct, or

that a first keyword of C also occurs at another position. For either case,

we construct a counter-example keyword grammar that shows that C does not

warrant determined choice. As for the first case, this is rather trivial.

Let k 1 k2 km and k1 k2 ... k~ be the constructors of C causing non-

12

uniqueness, and take any grammar G containing the productions

S -> k 1 k2 ••• km and

S -> k 1 k2' k' • • • n •

As for the second case, let the constructors of C causing non-uniqueness be

k1 ••• km and k1 ... k1_1 k1 k1+1 ••• k~, i 1 2. Take any grammar G

containing the productions

km and

ki-1 {SJ* k1 ki+1 ••• k~.

(In the special case where k1 ••• km= k1 ... k~, only the second of these

two productions should be taken.) D

4. FINAL REMARKS

(a) The uniqueness condition depends solely on the constructor set. It is

easy to state, and checking this condition is much simpler than, e.g., that

for LL(1)-ness. A compiler for an extensible keyword language can

incrementally check the uniqueness condition as new statement types are

added.

(b) The reason for the requirements R1' and R3' in the definition of

"keyword grammar" is the following: if one of these requirements is not

met, the grammar would not warrant determined choice, regardless of the
. * constructor set! (Consider, e.g., S -> {S} k1 ••• kn and S -> k1 ••• kn

* , {S} {S}.) As for R2, if two expressions were allowed to follow each

other, this would give problems for expression languages containing, e.g.,

"I", "- 111 and "I - 111 , or "P", "(K + 1)" and "P (K + 1) 11 •

(c) If some strings is produced by a keyword grammar G satisfying the

uniqueness condition, then each attempt to re-produce that string by a

recursive walk over the keyword graph derived from G proceeds by forced

choice and ends on a sink. From that sink no out-arcs emerge, so no string

st, with non-empty t, could also be produced by G. This is known as the

"prefix property". The relevance of this property has already been

explained in the introduction. We have cheated a little, however, since

again L(E) intervenes. Indeed, it is quite possible that, e.g., both "X"

and "X + 1" are expressions. If Eis considered terminal, the prefix

property holds without more.

(d) Not all keyword graphs are derived from keyword grammars. Some simple

transformations are possible on keyword graphs that do not influence the

strings emitted. We will not go into details, but it should be clear that

the keyword graph in figure 1 may be obtained in this way from the one in

figure 2. A simpler parser results, with iteration partially replacing

recursion.

13

(e) Because of the determined-choice property, errors may be caught at the

first erroneous symbol (with again some reservation where L(E) is

concerned). Together with the fact that each transition to a new line marks

a new statement, this gives superior error detection and recovery.

REFERENCES

[1] Leo Geurts & Lambert Meertens,

Designing a beginners' programming language, in

New Directions in Algorithmic Languages - 1975,

S.A. Schuman (ed.), !RIA, Rocquencourt, 1976.

[2] Donald E. Knuth,

Top-Down Syntax Analysis,

Acta Informatica .1 (1971) 79-110.

[3] A.J. Korenjak & J.E. Hopcroft,

Simple deterministic languages,

Proc. IEEE Symp. Switching and Automata Theory 1 (1966) 36-46.

[4] C.H.A. Koster,

Syntax-directed parsing of ALGOL 68 programs, in

Proceedings of Informal Conference of ALGOL 68 Implementation,

U.B.c., Vancouver B.C., August 1969.

