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"Physiological time varies -in rate does it? and if so, in what 

sense?- from one organism to another, and from one stage to another 

in the development of a single one." 

P.B. Medawar. 





Physical tim1~ growth functions associated with developmental models operat­

ing in physiological time*) 

by 

P.M.B. Vitanyi 

ABSTRACT 

The theory of growth functions as developed on the basis of 

Lindenmayer systems (also called developmental models) seems unable to 

account for several phenomena occurring in developmental biology. 

If, however, we drop the assumption that changes (=rewriting of strings) 

in the system occur at unit time intervals, we can describe phenomena 

like progressive dissipation of growth energy, biological rhythms, 

changes in environmental conditions which influence the growth rate etc., 

in the model. Thus we derive a hybrid model by assuming discrete cells and 

instantaneous cell division but continuous time. The number of past re­

writings then corresponds to physiological time and the total time 

consumed to physical time. It is shown how, e.g., exponential growth 1.n 

physiological time may lead to a logistic growth curve in physical time 

and, similarly, linear growth in physiological time to monomolecular 

growth in physical time. Both physical time growth functions are examples 

of sigmoidal growth curves, generally occurring in developmental biology, 

hitherto unattainable in the theory of growth functions of L systems. Some 

extensions of the model are discussed and an interpretation in terms of 

table Lindenmayer systems with a computable control word is given. The 

strength of the results seems to lie in the fact that the model relates 

stereotype elemental (cellular) behavior to emoiricallv observed overall 

growth curves. 

KEYWORDS & PHRASES: Lindenmayer systems, biological development., growth 

functions, physiological time, sigmoidal growth. 

*) This report will be submitted for publication elsewhere. 





I • INTRODUCTION 

In about 1968 Lindenmayer proposed automata theoretic models for 

growth and development of (filamentous) multicellular organisms. 

These mod.els (named L systems after their originator) have caused much 

activity from the side of mathematicians and formal language theorists 

(see e.g. HERMAN and ROZENBERG [ 197 5], ROZENBERG and SALOMA.A [ 1974], 

LINDENMAYER and ROZENBERG [1976] ) but have not yet been adopted to a 

great extend by workers in the field of developmental biology. An excep-.. .. 
tion can be found in LUCK and LUCK [1976], One reason for 

this lack of interest might be that the mathematical questions considered 

in L system theory have no interest, or even int~rpretation, for the 

biologist. A fundamental difficulty may be that the basic assumptions of 

the model are such that it is not adequate at all to model certain biolog­

ical phenomena. This can be remedied by adding features ad hoc, which in 

fact is mostly done in biological applications of the theory. As a conse­

quence, the mathematical fabric which has been woven on the firm fundaments 

of the basic assumptions than comes apart and for a large part does not 

hold for the featured model. 

SZILARD [1971] initiated the study of growth functions of 

Lindenmayer's developmental models. Under the restriction that there is 

no interaction amongst cells this leads to a nice closed form solution 

for growth functions: a combination of exponential and polynomial terms 

(see section 2). However, the model can not account for empirically 

derived growth functions such as the logistic one A/(1+Be-kt) or the 

monomolecular one A(1-Be-kt) (cf. MEDAWAR [1945] ) . Even the introduction 

of cell interaction does not help us out. In the first place we get quite 

unlikely flows of messages through the organism (see e.g. HERMAN and 

ROZENBERG [1975]) which are more suitable to electronic computers and in 

fact give the organism the computing power of one. In the second place, we 

are still not able to obtain growth which, always increasing the size of 

the organism, tends towards stability in the limit. The slowest increasing 

growth we can obtain by allowing cell interaction is logarithmic and thus 

cannot account for the asymptotic behavior of sigmoidal growth func-

tions ·like the logistic and monomolecular ones. 
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Apart from this it can be argued that, for instance, purely expo­

nential growth such as met in the theory of L systems, does not reflect 

biological reality: in a short time the organism would fill the universe! 

However, it has been shown that under continuous culture conditions bacte­

ria and.monocellular algae can easily be kept under exponential growth 

as can filamentous algae, Lilck (private communication). Of course, if the 

culture medium remains unaltered in time, as is eventually the case, there 

will be a sigmoidal growth curve. Mostly, growth curves of higher plants 

show this form. Sometimes, there is also a very long, nearly linear, 

median phase. Lianes grow like that. In any case, that real growth nor­

mally stops somehow is not necessarily related to food constraints but 

can also be the result of higher hierarchical pro~esses such as flowering. 

Actually, in the last decades serious experimental workers seem only to 

consider the first so-called exponential phase. 

Growth functions as occurring in developmental biology have a purely 

empirical origin. The size of an organism is plotted graphically against 

its age. The resulting curve is expressed, as accurately as need be, by 

means of an algebraic equation. No biological,significance is attributed 

to the exact form it takes. The growth function's chief function is to 

facilitate the analysis of the curve of growth (MEDAWAR [1945]). 

In this paper we attempt to clarify what in our view are some of the 

shortcomings of the otherwise quite appealing model of Lindenmayer and how 

to overcome them. As examples we show how to derive logistic and mono­

molecular growth curves. 

In biology, as opposed to the usual automata theoretic approaches, 

we meet the problem of environment. In an organism each cell has an 

environment (apart from the adjacent cells) which is going to influence 

its behavior, c.q. division rate. In algae this is the surrounding water 

from which it draws its food. In larger plants the environment consists of 

the outside world and inside the organism e.g. the vessels which transport 

nutricients. Furthermore, growth inhibitors, temperature and, for all we 

know, the phases of the moon will influence the growth rate of the orga­

nism. Of course, every one of these exogenous influences may occasion 

changes in endogenous parameters. Apart from this, e.g. the following 

empirical generalisations are mentioned by MEDAWAR [1945]. 



(i) Size is a monotonic increasing function of age. 

(ii) Usually, what results from growth is itself capable of growing. 

(iii) Under the actual conditions of development living tissue progres­

sively loses power to reproduce itself at the rate it was formed. 
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In automata theory we are dealing with abstractions which are not 

subject to physical constraints, and identical cells do identical things 

at all times. In actual organisms, differences in environment in space and 

time are going to create differences in cell behavior such as division 

rates etc. So even if we assume that a cell is essentially an autonomous 

unit, changes and divisions do not occur at unit time intervals, but 

division times are governed by environmental parameters, like concentration 

and accessibility of nutricients, growth inhibitors, enzymes, temperature, 

light. It will come as no surprise that this is corroborated by experi­

mental evidence. 

The biologist observed very little real differences in cell types/ 

states (e.g. cells with distinct stereotype behavior). Erickson in his 

experiments with growth in corn cobs essentially distinguishes between 

cells in the core and those in the surrounding tissue only, and insists 

that all cells in one of these areas behave more or less alike. The 

Lucks, experimenting on algae, distinguish between four cell types 

(according to ancestry). Under changing environmental conditions they 

observe changes in size and division times only (private communication). 

To account for differences in cell behavior induced by time or extra­

cellular agents, the automata theorist is inclined to postulate a very 

large number of cell states. In doing so, he makes no distinction between 

the autonomous properties of cells and changes in division times due to 

extracellular agents. We can overcome this difficulty by assuming but a 

few different cell types and taking intervals between changes in the 

model as a variable quantity. We shall call the elapsed time physical 

or real time and the number of times the model has undergone changes 

physiological time. This is in agreement with biological terminology. 

To quote MEDAWAR [I 9451 • 

••• "Growth is more rapid earlier in life than later, and if the time 

intervals are equal in length -are days for example- the approximation 
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will correspondingly be less efficient at the beginning than at the end, 

The length of the choosen interval should evidently bear some relation 

to the work done by the organism in its life span; to the organism's 

'.'physiological age" in fact ••• (Physiological time is biology's claim 

to be considered at least as obscure to the lay mind as theoretical 

physics. The organism it is argued, dispenses a Time of its own making 

by a just measure of the work done •.• ) " 

We want to show that the underlying model of L systems, even without 

cellular interactions, gains in adequacy and explaining power if we treat 

the time intervals between changes of cell states and division as a 

function of elapsed time, environmental parameters, and possibly the num­

ber of previous changes. Hence we consider L syst~ms operating in physio­

logical time and their associated physical or real time growth functions. 

Later on we solve some examples yielding well known growth curves. In the 

last section we formulate some extensions of the model on which the auto­

mata theorist might want to turn lose his bag of tricks, and show some 

relations with so-called table L systems. 

2. LINDENMAYER SYSTEMS AND GROWTH FUNCTIONS 

A deterministic context free Lindenma.yer system (DOL system)is a 

triple G = <W,o,w> where Wis a finite nonempty aZphahet,o- is a homomor­

phism from w* into w* and we ww* is the initial string. 

The alphabet W symbolizes the set of different cell states (cell 

types with distinct stereotype behavior or appearance), o describes the 

transition of a cell from one state to another or the division of a cell 

in a string of cells, and the initial string symbolizes the (filamentous) 

organism we deal with initially. An element (string) of w* symbolizes a 

linear array of cells. 

We define the composition of i copies of o by oO(v) = v and a1 (v) = 

o(oi-l(v)) for each string v e w* and all i > O. The sequence produced 

by G is S(G) = w, o(w), i(w), .•. , i(w), •.• where a1(w) symbolizes the stage 

the organism is in after i string rewritings (or physiological time steps). 

The growth function of G is defined as fG(i) = lg (oi(w)),_i.e., the 

length-of a1"(w) (the number of occurrences of ietters in o1 (w)). 



We can deriv•~ a closed form solution for fG as follows, cf. PAZ and 

SALOMAA [1973],and SALOMAA [1973]. 
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Associate wich each element v of w* its Pa:t'ikh vector v, i.e., the 

row vector (i 1,i2, ..• ,in) where ij denotes the number of occurrences of a. 

in v, I :::;;·j :S: n, for W = {a1,a2, ... ,an}. The growth matrix MG of G is theJ 

n x n matrix of which the j-th row consists of o(a.). It is easy to see 
i - i J 

that o (w) = w MG and 

(I) 

T where n = ( I , I, ... , I) : the n dimensional unit vector. (T denotes trans-

position.) Now fG(i) is the number of cells in the organism after i re­

writings. If we want fG(i) to denote the length or weight of the organism 

after i rewritings, and different cell types have different lengths/ 

weigths we only have to choose n in lR.n OR denotes the set of positive 
+ + 

real numbers) such that the j-th element of n is the length/weight of a 

cell (type) a .• This causes no difficulties with the now following theory 
J 

and was done by POLLUL and SCHDT [1975]. 

According to the Cayley-Hamilton theorem, MG must satisfy its own charac­

teristic equation: p(x) = det(MG-Ix)° = O, where O denotes the n_x n matrix 

with zero entries. For each i;;:: n, after multiplication with MGi-n, left 

multiplication with w and right multiplication with n, the following homo­

geneous linear difference equation with constant coefficients holds 

n 
(2) fG(i) = j!I bj fG (i-j), i ;;:: n, 

_ \n n-J where p(x) - lj=O bj x ,b0 = I, is the characteristic polynomial of MG. 

From known facts concerning such difference equations it follows that the 

closed form :solution of fG is given by 

r 
(3) fG(i) = I p. (i) 1 C.' 

j=l J J 

where the c. 's are the r distinct roots of the characteristic equation 
1 

p(x) = 0 of MG, pj(i) is a polynomial in i of degree one less than the 
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multiplicity of the root c., IS j Sn. The constant coefficients of the 
J 

terms of the polynomials p 1(i),p2(i), ••• ,pr(i) are determined from fG(s), 

fG(s+l), ••• ,fG(n) wheres i~ the multiplicity of the zero root in p(x) = 0. 

(Remember that fG(i) = lg(o 1 (w)) gives us the initial values of fG.) 

For a more leisure introduction to the needed concepts in L system theory 

see e.g. HERMAN and VITANYI [1976]. 

Now imagine that the clock which governs the discrete time rewriting 

of the string of cells does not tick at unit time intervals (keeping 

physiological time) but rather at variable time intervals related with the 

changes in time of the influences exerted by environmental and internal 

parameters and maybe related with the number of previous rewritings, thus 

keeping real time. The time interval between the-occurrences of the i-th 

and the i+I th elements of S(G) is given by t(i+I') - t(i) for some 

function t: JR+ +JR+. Then the size (c.q. weight, number of cells) of the 

organism modeled is given by LG(t(i)) = fG(i), or LG(t) = fG(i(t)) where 

i = t- 1, i.e., i: ll+ +ll+ is the funation inverse oft: JR+ +ll+. (t has an 

inverse since it is strictly increasing.) i(t) gives the number of re­

writings which have occurred op to time t as a function of the real time 

elapsed. It seems reasonable to assume that, e.g., the time delay between 

two consecutive stages (rewritings) of an organism, is connected with the 

concentrations of nutricients it has access to and waste products and 

growth inhibitors it secretes. Such concentrations will be related to the 

organism's size and history in that environment. So the fundamental 

relation is 

(4) 

where i: R + lR is the physiological time as a function of the real time 
+ + 

and t: JR++ll+is the real time as as function of the physiological time. 

The function i is found by describing in e.g. differential equations the 

relations between t, LG(t), the influences of environmental parameters 

which are not influenced by the organism such as temperature, day and 

night cyclus; the influences of environmental parameters which are 

influenced by the organism such as food concentration. To take a simple 

exampl~ where we do not ascribe a physical meaning to t(i): suppose 
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that fG(i) = 2i and t(i) = i 2• Then i(t) = It and LG(t) = 2/t, a real time 

growth function of the so-called subexponential growth type. 

Note that one assumption we have made is that the relative changes 

of time intervals in between the rewriting of a letter does not depend on 

the letter or its position in the string. 

By some examples we show that we can derive by the above method well 

known biological growth functions. The problem of constructing real time 

growth functions for an organism modeled in physiological time by a DOL 

system consists in finding a plausible set of physical constraints (e.g. 

a set of differential equations), solving i(t),and by substituting in 

fG(i) solving LG(t). 

3. REAL TIME GROWTH FUNCTIONS OF LINDENMAYER SYSTEMS OPERATING IN 

PHYSIOLOGICAL TIME 

In this section we investigate some examples of growth behavior we 

are liable to meet according to the theory developed above. We shall be 

concerned with algae-like organisms which (I) reside in a closed environ­

ment containing an initial amount of food stuff, (II) are subject to 

periodic speeding up and slowing down of division rates (i.e., some sort 

of biological rithm), and (III) (I) and (II) together. 

(I) ORGANISMS IN A CLOSED INVIRONMENT CONTAINING AN INITIAL AMOUNT OF 

NUTRICIENTS. 

Suppose we have (fig I) a (filamentous) organism residing in a 

trough filled with water from which it draws its food. We shall assume 

that (i) the organism uses no food to maintain itself but only to grow; 

(ii) it excretes no waste products etc. which inhibit its growth; (iii) 

at all times the concentration of food throughout the trough is uniform; 

(iv). No parameters influence the growth except the concentration of food. 

Let a(t) be the concentration of nutricients at time t. Assume that 

for a(t) ~ aO the environment is optimal and the organism grows according 

to the modeling DOL system, i.e., physiological time and real time are the 

same. ~fter some time, say t O time units, the food level has been depleted 
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to a0 and the growth rate starts slowing down. Since the surface of the 

filamentous organism is proportional to its length (or the amount of cells 

it is made up off), i.e., the value of fG, we choose our differential 

equations as follows. 

(5) 

where c 1 is the nutricient absorbtion constant pro unit of organism. This 

yields 

(6) a(t) 

and substituting a(t0) = a0 yields t 0• From t 0 onwards the division times 

of cells grow larger because there is a food shortage and fort~ t 0 we 

have 

(7) da(t) = - c 1LG(t)a(t) dt 

(8) dt(i) 
= g(a(t)) di 

(9) LG(t) = fG(i(t)) 

for some function g yet to be choosen. Since tis the inverse function of 

i (8) leads to 

(10) 

Considering everything in phase-space (7) and (10) give 

(I 1) 

and hence (with some abuse of notation) 

a(i) 

(I 2) f ag~a) da = 

a=a 
0 

i 

- c 1 J fG(i)di. 

i=t 
0 
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At this point we might wonder whether it is necessary to give a(t) a 

strong and explicit interpretation as food concentration. The fact that 

real growth normally stops somehow is not necessarily connected with ex­

haustive constraints but can also be the result of higher integrated 

processes such as flowering. See LtlCK [1966] for a discussion about largely 

independent levels of organization in a plant's hierarchical make up. 

Therefore, perhaps, it would be better to give a(t) a more mathematical 

purpose than too restricted biological significance. For instance, integra­

tion constants may always enter into a(t). 

EXAMPLE I.: the logistic growth curve. 

Assume that fG(i) = 21 and g(a) = c 2/a 

t ~ t 0 • According to (6). 

J, l) t 
-: 0 c 12dt 

a0 a(O)e 

which yields 

Substituting fG and gin (12) yields 

. to 
1 ( (') ) (21-2 ). I½ a 1 - ao = - cl ln 2 

Substitute a.(i) = c 2 :! and we have to solve i in 

(I 3) 

via separation of i and t 

i t 

(14) f di = f dt 
A+Bi 

i:=t t=t 
0 0 

with 

ln 2 
to 

ao + c1ci 
A = 

c2 ln 2 

B 
-cl 

= ln 2 
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which yields, after substitution of y = 2i 

(IS) 

Solving 

Y. 

j A 

t 

J I d 
B dy J dt. t A y ln 2 y ln 2 (A+By) = 

y=2 0 
to 

·t=t0 y=2 
i in (I 5) we obtain 

t 0 A (t-t0) ln 2 

i(t) = 1~ 2 • ln (i:!B) with G = _Z_e ____ t-0--(I 6) 

-A/B 
= -1 --1--/_B_G 

a0 ln 2 _ 
I +---e 

to c1cz2 

A + B 2 

X which is of the form---,-· the Zogistia or autocatalytic 
l+Ye-kt • 

curve. 

For t=t0 we obtain: 

Fort+ 00 we obtain: LG max 

This yields the growth curve depicted in figure 2 in which for 

t ~ t 0 : LG(t) = f 1(t) = 2t and fort~ t 0 : LG(t) = f 2(t) = the above 

logistic growth function. The only parameters invoiv~d are c 1,c2, a(O) and a0 • 

EXAMPLE 2. Assume that fG(t) = t+l and g(a) = c2/a 

Then, according to (6) we can solve t 0 from 

-Iota cl (t+l )dt 
a0 = a(O)e 
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which yields t 0 = - 1 

d . a(O) . h an since -- is greater tan 
ao 

for t 0 > O, clearly 

and 

From (12) we see that 

S b . . ( .) di u stituting a i = c 2 dt we get 

and 

i t 

J di = J dt 
;=t A-B(i+1) 2 
... t=t 0 0 

with 

which yields 

1 ✓A/B'.t-(tO+l) 1 .. 1 ✓A]ir+(i+l) 
- -- ln ----- + -- n 

2/M ✓A/B!...(tO+1) 2~ ✓A/B!...(i+l) 
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Setting 

1 
t ---

0 2./iE 

✓A/B!i-( t 0 + 1) 
ln-----­

✓A/B~(t0+1) 
to Z 

- 1- to Y•and ✓A/B' to X we h~ve, after some computation 
2/iE 

LG(t) = fG(i(t)) = i(t)+l 

and 

= X (1- 1 -z!y t/Y) 
+e •e 

LG max= lim LG(t) = X 
t-+<» 

The growth curve looks like figure 3: 

t < t . LG(t) = f I (t) = t+l :linear . 
0 

t ~ to: LG(t) = fz(t) = X(l-2(l+e-Z/Y,et/Y)-l) 

t >> t 0 : LG(t) ~ X(l-2e+Z/Ye-t/Y): the monomolecular 

where 

growth curve 

Hence we see that between the two extremes of unbounded DOL growth, viz. 

exponential and linear, the chosen set of differential equations, which 

depict the depletion of food, always yields a sigmoidal growth curve. 

Therefore, all unbounded DOL growth functions yield a sigmoidal growth 

curve under these conditions. 
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(II) ORGANISMS WITH A PERIODICAL CHANGE OF DIVISION RATE. 

In biology we meet a phenomenon called biological rhythms. Examples 

are circadian rhythms, flowerescence etc. Such phenomena might be connected 

with the hierarchical organisation of multicellular organisms, changes from 

daylight to night etc. According to the observations of the Lucks (private 

conununication) the algae they observe show the following growth behavior. 

Under optimal conditions the algae behave in essence like a rather simple 

DOL system, LUCK [1974], where each transition takes place after a unit 

time interval of 48 hours. 

However, each fifth time interval the organism alternatively skips 

the required transition or executes two consecutive transitions in one 

time interval. Thus, after each period of ten time intervals the organism 

reaches the stage we would expect from the DOL model, but in between it 

periodically speeds up and slows down its growth rate. According to the 

discussion in section 2 this means that 

where i(t) is the function inverse of 

t(i) {
i for 

= i+l for 

0 s i mod 10 < 5 

5 s i mod 10 s 9 

Therefore, 

i(t) {
t for 

= t-1 for 

0 st mod 10 < 5 

5 s t mod IO s 9 

Suppose fG(i) = 2i/S then LG(t) = 2i(t)/S and the growth curve is as 

depicted in figure 4. 
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(III) COMBINATION OF (I) AND (II). 

A combination of (I) and (II), i.e., an organism residing in a closed 

environment and showing periodic speed ups and slowing downs of growth rate 

is found by 

where i' is a.function as found in (I) and i' a function as found in (II). 

The resulting growth curve looks like figure 5, where we assmne that the 

periodicity is independent of the organism's interaction with the environ­

ment. 

4. SOME POSSIBLE EXTENSIONS AND AN INTERPRETATION IN TERMS OF TABLE L 

SYSTEMS 

The assumption that the relation between physiological time and real 

time is the same for all cell types in the organism can be relaxed, and we 

obtain in general that a is rewritten as f(t,a) E {a,o(a)}, a E Wand 

t E lN. Then the growth matrix at time tis 

f(t,a) 
n / 

where f(t,a.) will be a. or o(a.) depending on t. (In our previous 
1 1 1 

approach this would mean that MG(t) is either the unity matrix E or MG 

depending on t.) The above approach is useful to express different division 

times of different cell types without having to introduce different cell 

states to account for distinct delays in division rates. We could even go 

farther, and use the DTOL model. A DTOL system (deterministic interaction­

less table L system) is a triple G = <W,{o 1,o 2, ••• ,ok},w> such that for all 
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i, 1 sis k, G. = <W,o.,w> is a DOL system. A aontrolword u is an element 
' l. l. 

of {1,2, ••• ,k}*. A word vis said to derive a word v' in Gunder the 

controlword u = i 1i 2 .•• il if 

Now we define, for A= {MG(t) t € lN} (A is finite) a DTOL system 

where k is the number of elements in A and each table o. corresponds to 
l. 

the distinct elements of A for which it is the associated set of rewriting 

rules, i.e., A= {MGt'MG2, ••• ,MGk} 

M = 
G· l. 

,cSi(al). 

o i (a2) 

o. (a ) 
i. n 

Where W = {a1,a2, ••. ,an}, 1 sis k. Now a computable function 

h:1N ~ {1,2, ••• ,k} is defined which has as its argument the real time t 

and is composed fr~ functions which compute from the relevant parameters 

which table o. ·,is applicable at time t. Then the word sequence 
1 h(t) 

S (G) = w,o. (w),o. o. (w), ••• ,o. o. 
h 1 h(l) 1h(2) 1 h(l) 1 h(t) 1h(t-l) 

o. (w), ••• 
i.h(l) 

gives us the required developmental history of the modeled organism and 

the lengths of the successive elements of Sh(G). give us the real time 

growth function. 

EXAMPLE. Suppose we have G = <{a},o(a) 
.ft 

then LG(t) = 2 

2 
= a ,a> and f (i) If t 

.2 
= l. 

The present approach would model the organism as follows. 
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Hence MG 
I 

= (I) and M = (2) 
G2 

2 
= a },a> 

__ {2
1 

if tis a square 
h(t) 

if tis not a square 

We might note here that the approach taken in section 3 always leads 

to DTOL systems with -two tables: if the physiological L system was 

G = <W,o,w> then the associated DTOL system will be G' = <W,{o 1,o 2},w> 

where o1 is the identify function and o2 = o. The associated function 

r if t = t(i) for some i € ]N 

h(t) = 

if t 'f t ( i) for all i € ]N. 

As a further extension of the ideas presented above we could, e.g., 

make the choice of table, for rewriting a letter at time t, depend on the 

geometric position in the string of that occurrence of the letter. For 

instance, the tip of a root grows while the basal part does not. In this 

case, as in this section in general, not only the derived string sequence 

could be different from that of the underlying DOL system, but als~ the·· 

set of derived strings could differ from that of the underlying D01 system 

which does not happen with the approach in section 3. 

5. FINAL REMARKS 

Although the paper is concerned with L systems, i.e., models for 

filamentous organisms such as algae, the same method should be applicable 

to more-dimensional growth as well. First find a, preferably interaction­

less, model of how the organism grows in physiological time (the essential 

cell ancestry and division pattern) and than try to find the functional 
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relation between physiological time and real time. The advantages of such 

a procedure are that we have both a (qualitative) fundamental physiological 

time model and that the transition from one type of growth to another, 

e.g. from exponential to logistic, does not require changing the model but 

is a cons~quence of the functional relation between physiological and real 

time which governs the quantitative aspects of the matter 

Among experimentalists it is considered that the over-all appro~i­

mations like exponential, logistic etc. growth curves have nothing to do 

with elemental (cellular) behavior. Furthermore, usually only the initial 

exponential stage is studied; the later stages of growth are more or less 

neglected. We have tried to establish a relation between elemental behavior 

and the over-all growth curve and we have introduced as a most significant 

state of a growing organism, or of the history of a growing organism, the 

stage at which the growth ceases to be exponential and becomes sigmoidal: 

at time to· 

The presented ideas should not be of interest solely for people 

working with algae but for every experimentalist who tries to fit theore­

tical growth functions to observed data. 
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