
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

D. GRUNE

IW 89/77

CHOOSING A TAG-LIST ALGORITHM FOR A COMPILER
WITH SPECIAL APPLICATION TO THE ALEPH COMPILER

Preprint

~
MC

OKTOBER

2e boerhaavestraat 49 amsterdam

BH:.H • ..iOTt-i!i:E!<. !'-'iATH::1 ... i:-'\TiSCH ct::r~iK~¥\-t_l,
__ AMSTERDAM _.,.

PJunted a.t :the Ma:thema.Uc.ai. Ce.ntll.e, 49, 2e BoeJr.ha.a.veh.tJr.a.a:t, Amli.teJLdam.

The Ma:thema.Uc.ai. CenttL.e, 6ou.nded :the 11 ::th 06 FebJl.U.all.y 1946, ,l6 a. non­
pll.06.lt ,lni,:ti..tu,t,lon cwn,i,ng a.t .the pJLomo.tlon 06 pUlle ma:thema.Uc.6 a.nd U-6
a.pp.U.c.a.Uon6. I.t ,l6 .&pon6oll.ed by :the Ne:thell.la.nd6 GoveJz.nment .thll.ough :the
Nethel1.i.a.nd6 OJtga.niza.Uon 6oll. :the Adva.nc.ement 06 PU/le Rehea.Jz.c.h (Z. W. 0) •

AMS(MOS) subject classification scheme (1970): 68AIO

ACM-Computer Review-Categories: 4.12

Choosing a Tag-list Algorithm for a Compiler

with Special Application to the ALEPH Compiler

by

D. Grune

ABSTRACT

Requirements for a tag-list algorithm are formulated.

Starting from a very general tag-list algorithm 18 practical

versions are developed and their merits judged. Although the

£inal choice (binary search in~ diluted table) depends on the
details of the application, the main part of this article is

not devoted to that final choice itself but rather to ways of

reaching it.

KEYWORDS & PHRASES: Compiler design, portability,

symbol-table techniques

*)This report will be submitted for publication elsewhere.

O. Introduction.

This article is a report on the considerations that went
into the choosing of a tag-list algorithm for the ALEPH
compiler of the Mathematical Centre, Amsterdam.

1

Since almost half of the symbols in an ALEPH program are
tags (the general pattern being separator, tag, separator, tag,
etc.) the implementation of the tag-list algorithm merits some
thought.

Much has been written on the question of what is the best
tag-list algorithm (see e.g. [1], [2], [3] and [4]). Although
the final choice depends on the details of the application, the
main part of this article is not devoted to that final choice
itself but rather to ways of reaching it.

For the non-ALEPH reader the following is relevant.
ALEPH is a machine-independent language mainly used for

compiler writing. The compiler for it is written in ALEPH and
bootstrapped from older versions. Two consequences of its
machine-independence have influenced this article:

- we do not know the integer values of the characters on the
target machine, which has its bearing on hash functions,

- we have no detailed information about the data structure
used, so that we have no easy way to add a few bits if the
algorithm needs them.
ALEPH has only two built-in data structures, integers and

stacks of integers. Both exist in a read/write and a read-only
variety. The stacks can also be used as arrays, i.e., they
allow direct access through indexing.

Characters are treated as integers. Strings are implemented
on an operational basis:

- There exists a routine 'pack string' which will pack a
sequence of characters on a stack into a (hopefully
smaller) data structure on a second stack~ the precise
structure of such a packed string is unknown to the ALEPH
programmer. The process is reversed by 'unpack string'.

- The maximum length of a packed string is 'max string
length', the exact value of which may change from machine
to machine.

- Two packed strings can be compared lexicographically by
calling 'compare string' which yields a three-way answer
smaller/equal/larger.

- If need be then-th character of a packed string may be
obtained through a call of 'string elem'.

2

!• The requirements.
We shall first make a precise list of requirements and then

evaluate in the light of those requirements various
implementation techniques, some widely published, some of a
more exotic nature.

1.1. Requirement A, the effect.
The algorithm should, when offered a strings, return a

pointer to an information block containing a pointer to a
string that is equal to s, and when offered the strings again,
return this same pointer. This is a slight complication with
respect to the algorithms treated in literature where generally
a pointer to the string itself is supposed to suffice. It
implies that if the algorithm moves entries around, it cannot
incorporate the information block in its data structure and the
extra link-location needed per entry will be charged against
it.

1.2. Requirement B, the nature of the tags.
Tags must be allowed to have sufficient length. Since the

tags will be packed by 'pack string', the natural maximum tag
length is 'max string length'. Since 'pack string' should, in
any reasonable implementation, be able to pack a line of text,
we can be sure that 'max string length' has a value large
enough not to bother us in this case. So we add to the
specifications of the compiler:

- The maximum length of a tag is 'max string length'
characters.

No hard upper limit should be set on the number of tags,
other than those imposed by integer capacity, memory size, etc.
Although the compiler is expected to handle programs with about
1000 tags (order of magnitude), that same compiler should be
able to handle 100000 tags, slower and in much more memory but
without the need to change some internal constants.

Some tag-list algorithms work less efficiently if the tags
are ordered in the first place. Now ordered tags seem unlikely
in a program. However, some programmers place the ALEPH rules
in alphabetic order to facilitate maintenance; and ordered
sequences of tags can occur in sequences of pointer
initializations of objects that are in order. (like /a/: letter
a, /b/: letter b, etc.). We shall therefore take into
consideration the degeneracy caused by ordered input.

We do not take into account the effect of an accidental or
intentional "frustration sequence", i.e., a seemingly random
sequence that conspires with the hash-function or the
randomization scheme so as to give a pathological result.
(Schemes that avoid degeneracy at all costs are generally very

3

expensive).

1.3. Requirement C, efficiency.
As mentioned before, the algorithm will be heavily used. So

its efficiency with respect to time is important. Since the tag
list has to be in core all the time, and since minimum storage
is one of our design goals, its efficiency with respect to
memory is important.

It is tempting (and traditional) to measure the time
efficiency of a tag-list algorithm in terms of number of string
comparisons. It should, however, be pointed out that a simple
trick can reduce the number of string comparisons to one per
entered string. A hash function is designed that maps tags onto
the full range of machine integers~ these integers are called
the representants of the corresponding tags. The chosen
algorithm is then implemented with each string comparison
replaced by a comparison of the representant (which can
generally be done in one or two machine instructions). Only
when the representants are equal, a string comparison is done
[5, p. 231].

This scheme, however, has some drawbacks.

- From a machine-independent point of view there is no gain.
On a machine where integer comparison and string comparison
are equally (in)expensive, we lose. On the CD Cyber the
scheme has its merits, especially if the majority of the
tags is longer than 10 characters. On the IBM 370 the gain
may be marginal.

- The representant has to be calculated, the cost of which
may come close to that of a string comparison.

- The representant needs an additional machine word for each
string.

- Special measures have to be taken for the "one in maxint"
chance that two different tags come up with the same
representant.

We shall measure the time in terms of "major actions":
string comparison and hash function calculation. It will be
assumed that on most machines these will take an order of
magnitude more time than the "minor actions" like "increase by
1" or "follow pointer". Moreover, if the number of minor
actions per major action is more or less constant, the number
of major actions is a good measure of the total amount of work.

Some algorithms need massive amounts of minor actions, not
connected to any major action (e.g. table moves). We shall try
to take these into account.

In order to compare the efficiency we shall have to make
rather explicit assumptions about the input. If we compare the
algorithms for 10 tags, we come up with a different proposal

4

(linear search) from one for 1000000 tags {polyphase tape
sort?), neither of which seems a reasonable answer to our
present needs.

Like most systems programs, ALEPH programs are not small.
Few have less than 400 different tags, none in existence has
more than 1500 different tags. This suggest that 1000 is a
reasonable test datum. Some counting indicates that such a
program contains in total about 4000 tags, many tags occurring
only twice whereas some occur a hundred times.

Although a Zipf-law distribution might be nearer to the
truth, we shall, for the sake of simplicity, assume that each
of the 1000 tags occurs exactly 4 times. We subject the
algorithms to two input sequences:

- the random sequence, an arbitrary permutation of (tagl,
tagl, tagl, tagl, tag2, tag2, tag2, tag2, •.• taglOOO,
taglOOO, taglOOO, taglOOO),

- the ordered sequence, a similar permutation with the
property that the first occurrences of all tags are in
alphabetic order.

Literature is full of formulas for the efficiency of a
tag-list algorithm for a given number of tags; there seems to
be no literature about the influence of the presence of
duplicates on these formulas.

The calculations are simple for those algorithms that keep
the set of tags in such a form that adding tags does not change
the access time of the tags already present: tags are added, in
a sense, to the "periphery". Binary trees and unordered lists
come in this category.

In these cases a tag is entered by successively comparing
it to tags on a path determined by the algorithm until an empty
place is found, into which the tag is then inserted. Let
cost(i) be the average number of comparisons on such a path in
a set of i tags. When this same tag is entered a second time,
it follows the same path at the end of which there is one extra
comparison to verify that it is indeed the same tag. Number of
comparisons: cost{i) + 1.

The total cost of looking up all tags in a set of N
different tags each of which occurs M times is then

C - sigma(i,O,N-1, cost(i) + (M-l)*(cost(i)+l)) =

= M * sigma(i,O,N-1,cost(i)) + (M-l)*N

If the same-path requirement mentioned above is not
fulfilled (e.g., in ordered linear lists) no simple calculation
exists. A solution may be obtained along the following lines:

Solve the recurrency relation

M*(N-V[i))
V[i+l) = V[i) + ------------

M*N - i

5

where V[i) is the expected number of different tags· in the
first i tags of a permutation of M*N tags, N of which are
different. The fraction is the chance that the (i+l)-st tag is
new: there are M*N-i tags after the i-th, N-V[i) of which are
new, each occurring in M copies.

This recurrency relation can be solved and yields a formula
for V[i) which consists of a sum of repeated products. This
gives an estimate of the probability that the i-th tag will be
new, which can in turn be used to calculate the total cost C
for the most probable input sequence.

The above analysis was deemed far too heavy for the simple
use we shall make of its results and a simplified model was
used instead.

In the initial phase of entering the M*N tags (almost) all
tags are new; in the final phase (almost) all tags are old; in
between is an intermediate phase where the cross-over takes
place. In our model the intermediate phase is absent, i.e., N
new tags are entered, whereafter (M-l)*N old tags are entered.

This is indeed the worst possible sequence, but the best
possible sequence (each tag followed directly by its M-1 copes)
is much more unlikely. This view is supported by hand­
calculation of the case N = 2, M = 3 for an ordered linear
list. Out of the 20 permutations 16 need 7 comparisons, 3 need
6 and 1 needs 5.

1.4. Requirement D, the alphabetic listing.
It must be possible to produce an alphabetic listing of the

tags present in the tag list. If the algorithm does not keep
the tags in alphabetic order, a subsequent quicksort can do the
job, at the cost of 11900 major actions (formula 24 in Knuth
[1, p. 121)). Such a scheme will be considered a slight
disadvantage to the algorithm, since

- it makes a lot of additional code necessary, and may
require additional space if the data is not kept in table
form,

- it will prompt the user to request an option to switch the
alphabetic listing off, since obsolete listings are
cheaper.

It is immaterial whether digits are alphabetized before or
after the letters.

1.5. Requirement E, removal of tags.
It will not be necessary to remove arbitrary tags from the

tag list. In view of the way the ALEPH standard postlude is
read, it would be nice if there were a way to withdraw the tag

6

last enten~d.

1.6. Requirement F, code-dependency.
Since the tag list will not be prefilled, its structure may

depend on the actual character code of the machine.·

~. The algorithms.

The tag-search problem can be formulated very generally as
follows:

Find a given tag Tin the universe of all tags and yield
the information appended to it, if present.

In view of the generality of the problem it does not come
as a surprise that most tag-list algorithms have essentially
the same structure:

a. set an abstract variable s equal to the universe of all
tags, each with its information collected so far, and
set M to 1.

b. if s contains only one element, yield the information
attached to it and stop.

c. ask question Q[M] about the given tag T and save its
answer in A.

d. set s to that subset of s that contains all the tags
for which question Q[M] yields answer A, increase M by
1 and return to step b.

Reasonable questions Q about T could be:
- how does T compare to a given tag in S?
- what is the M-th character in T?

The only one not to conform to this scheme is the open
hash-algorithm: closed hashing, linked hashing, etc., all fit
nicely. For a discussion of the discrepancies see 2.5.

In practice the "universe of all tags, each with its
information collected so far" is replaced by a connected set of
those tags that actually have information attached to them.
This slightly complicates the test in step b. In the original
algorithm, if we are left with one tag, it must be it, for they
were originally all there. Now, however, Smay turn out to be
empty, in which case the tag must be inserted, or it may
contain exactly one tag in which case we must check whether it
is the given tag and if not, insert it. This explains why in
most algorithms insertion must be done in more than one place.

There are basically two ways of representing a "connected
set of items" in a computer: in a contiguous piece of memory (a
"table") or in an n-way linked list.

7

I

A table is represented by the address of its first item and
its length; questions can be aiked about any item, e.g~, the
first, middle or last one. Ann-way linked list is represented
by the address of an item (the root) which contains n addresses
of n other n-way linked lists; questions can be asked about the
root only.

A table has the disadvantage that insertion is hard in
terms of CPU time, and n-way linked lists need room for n links
for each item. This is why trade-off is a recurrent word in
discussions about tag-list algorithms.

The exact form of the data structure representing the set
of tags is generally determined by the form of the questions Q
that will be asked.

The simplest schemes keep Q[M] the same for all M. In order
to obtain significant answers all the time, Q will then have to
depend on S, which contains only tags. So it must be of the
form: "How does T compare to a certain tag in S?". The simplest
form of this question is: "Is T equal to the first tag in S?".
Combined with the simplest data structure, the table, this
leads us to the "simplest" tag-list algorithm: sequential
search in an unordered table.

If an algorithm restricts its questions to: "How does one
tag compare to a second tag?", we call it a comparison
algorithm. If it asks other questions we call it a non­
comparison algorithm.

Two types of answers are possible to the question "How does
this tag compare to that?": equal/unequal and
smaller/equal/larger. The latter answer implies an ordering of
the tags which must be supported by the data structure. Since
the ALEPH 'compare string' is of this type, methods using this
information are preferred.

In most algorithms all Q[M] 's are of the same nature
(differ in parameters only). If some of the Q[M] 's are so
different from the others as to require different coding (and
possibly different data structures) we shall call the algorithm
hybrid. We designate the set of questions Q[k], Q[k+l],
Q [k + 2] , • • • by Q [k :] •

The algorithms reviewed will be characterized by the
following five items:

- memory:
the number of memory locations needed. The m1n1mum is 1000
since this number is required for the pointers to the 1000
tags.

8

- random input:
the average number of major actions required to handle a
random permutation of 4000 tags of which 1000 are
different.

- ordered input:
the average number of major actions required to handle the
ordered version of that permutation.

- alphabetic listing:
cost (time and memory} of transforming the data structure
so that the tags can be accessed in alphabetic order by a
simple algorithm.

- removing last item:
the cost of removing the item last entered (desirable to
avoid cluttering up the tag list with unused ALEPH standard
externals}.

All numbers have been rounded to two-digit accuracy.

2.1. Comparison algorithms on tables.

The combination of tag comparison and contiguous tables
leads to the well-known linear, binary and interpolation
searches, in which the tag chosen for comparison is the first,
the middle and the most probable one, respectively. At first
sight these schemes seem doomed to fail since while they work
nicely for existing tags, they have no facility for entering
new tags, except moving half the table which makes them very
expensive. This problem does not occur with unordered tables
which we shall discuss first.

2.1.1. Unordered tables.
The only way to find a tag in an unordered table is by

linear search. This is the only algorithm we shall meet that
requires no overhead in terms of memory locations: the tags are
connected through their contiguousness, the information block
can be incorporated into the table since items do not move and
the table contains no unused entries.

Its characteristics are:

name: linear
memory:
random input:
ordered input:
alph. listing:
removing last item:

search in unordered table
1000

2000000
2000000

12000 (+ 1000 loc }
0

9

2.1.2. Ordered tables.

Insertion in an ordered table is a problem. Several schemes
come to mind:

Push the tail to the right.
- Put newcomers in an auxiliary table.
- Dilute the table with empty entries.

Pus~ing the tail to the right makes the process of the
order N in terms of minor actions, but it does not cause any
overhead for old tags.

Putting newcomers in a separate table and ~ccasionally
merging them into the main table does add an N component to
the algorithm, in terms of both minor and major actions.
Moreover, it needs separate algorithms for searching the main
table, searching the auxiliary table and for merging.

Diluting the table with empty entries increases memory
requirements slightly but reduces the length of the tail to be
pushed aside. When the table becomes too concentrated, more
empt¥ entries are added (and stirred well). This seems to add
an N component to the algorithm, since all tags will be moved
when rediluting takes place.

A more careful analysis, however, shows that this is not
so. There are three sources of minor actions to be
distinguished:

- redilution,
- pushing aside a short tail when entering a new tag,
- hitting an empty entry when comparing strings.

The exact cost of redilution is not easy to assess: an
approximation can be found as follows. We assume that
redilution takes place when the table becomes so concentrated
that only one out of every sentries is empty, and that
afterwards one out of every r entries is empty (this implies
r < s). Now suppose that redilution has just taken place upon
entry of the N-th tag. It started with N*s/(s-1) locations and
ended with N*r/(r-1) locations, so it cost N*r/(r-1) moves.
This means that the previous redilution ended with N*s/(s-1)
locations and consequently cost N*s/(s-1) moves. This shows the
ratio between two consecutive redilutions to be

s r - 1
rho=-----*-----

s - 1 r

We can now calculate the costs of redilutions in a more and
more distant past, and if we sum the resulting geometric series

N*r/(r-1) * (1 +rho+ rho2 + •••)

10

to infinity we get for the total cost of rediluting:

r 1
N * ----- * ------- =

r - 1 1 - rho

r r*(s-1)
N * ----- * ------- .

r - 1 s - r

The average length of the tail to be pushed aside upon
entering a new tag will be about (r+s)/2, and the cost of doing
this N times is

N * (r+s) / 2 •

Likewise the chance of hitting an empty entry when
searching for a string is 2/(r+s). This number has to be
multiplied by the number of comparisons required by the
specific algorithm.

Results of the application of the above to an actual
algorithm can be found in 2.1.2.2.

Redilution is easily done in ALEPH by first extending the
table with the necessary number of blocks and then from the
tail end on moving down 1 empty block followed by r-1 old
blocks. If the language does not allow table extension, a new
area could be requested, and dilution could be done during
copying.

None of these schemes allows the information blocks to be
incorporated in the tag blocks, since the location of the
latter may change when tags are added.

Three search techniques can be used on an ordered table:
- linear search,
- binary search,
- interpolation search.

Linear and binary search will be treated below.

Interpolation search is based on the idea that tags
starting with an A should be sought for at the start of the
table and these with z at the end. The method is suggested by
many authors (Knuth [1], p. 416, Tanenbaum [6], p. 307) and
fully analysed by Yao and Yao [7].· The general result is that
it is only worth while for very large sets of tags. For our
case we can understand this as follows.

Although many variants are known, the following method
lends itself reasonably well for analysis:

- The most likely position p of the tag is determined by
linear interpolation.

11

- The standard deviation in this position is of the order of
sqrt(N). A constant c is chosen and it is determined
whether the wanted tag is inside the region

[p - c*sqrt(N) : p + c*sqrt(N)] ,

or before or after it, at the expense of two comparisons.

If we are lucky, Tis inside the region; this reduces the
table size to 2*c*sqrt(N), which is a considerable improvement
when N is large. If we have bad luck, the range is reduced by
about a factor of 2; we could have had this by binary search
with one comparison.

The average size of this range is

P (c) * 2*c*sqrt (N) + (1-P (c)) * (N - 2*c*sqrt (N)) /2

where P(c) is the probability that we hit the middle region. We
assume P to have ~ormal distribution.

In order to improve our chances we want to increase c;
this, however, reduces the effect. There is an optimum value of
c (which varies slowly with N) which yields the smallest
average range.

Hand calculation shows that for N = 1000 the best value for
c is 1.8 and the range is reduced to 140, for 2 comparisons.
This is slightly better than binary search which would need
almost 3 comparisons to achieve the same effect.

Repeating the procedure for N = 140, we get c = 1.3 and a
new range of 35, which is exactly what binary search would have
done.

We see that with N near 1000 interpolation search is only
useful as Q[l] (Q[2:] being binary search, which makes it
hybrid). It will then save us slightly less than l comparison.
However, it requires code to do linear interpolation on tags,
the execution cost of which is probably higher than that of a
tag comparison, thus consuming all profit.

Now let's see what happens if N is really large, say N =
1000000. Then c = 3.0 and the first step reduces the range to
7300, at the expense of 2 comparisons and one interpolation,
together 3 major actions. This is reduction by a factor of 137,
for which binary search would have needed slightly more than 7
major !ctions. So there is some gain, but it is not impressive:
20 2= log 1000000) major actions for binary search and 16
(= log 7300 + 3) for interpolation as the first step.

12

I

2.1.2.1. Linear search in an ordered table.

Since linear
reason to choose
pushing the rest
characteristics:

2 search is an N process anyway, there is no
anything but the simplest insertion method:
aside. We obtain the following

name: linear
memory:
random input:
ordered input:
alph. listing:
removing last item:

search in ordered table
2000

1750000
2000000

0
0 (+ 500 moves)

2.1.2.2. Binary search on an ordered table.

If we use the simple push-aside technique for insertion we
get:

name: binary
memory:
random input:
ordered input:
alph. listing:
removing last item:

search in ordered table
2000

37000 (+ 250000 moves)
37000

0
0 (+ 500 moves)

The number of comparisons has been obtained by calculating
cost(i) according to:

cost(i) = i is 0 : 0,
i is odd: cost(entier(i/2)) + 1,
i is even: i/2 * cost(i/2-1)/(i+l)+

(i/2+1) * cost(i/2)/(i+l)

and substituting it in formula 1 in 1.3.
We see that for each tag comparison 7 moves must be done.

This may be comparable to the work of one comparison.

If we dilute the table with empty blocks, we have to decide
on values for rands, the parameters that govern the
redilution as explained in 2.1.2. Here N = 1000 and the number
of comparisons is 37000. The following table gives the number
of minor actions for various values of r, at those values of s
where the total number of minor actions reaches a minimum.
Memory requirement goes up by at most 1000/r.

13

r s Redil- Enter- Hitting Total
uting. ing. empty.

2 11 4400 6500 5700 16600
5 14 9000 9500 3900 22500

10 25 17800 17500 2100 37400
15 37 26800 25500 1500 53800

we see that at r=lO, s=25 the increase in run-time and the
increase in memory are both negligible. This yields the
following characteristics:

name: binary search in
memory:
random input:
ordered input:
alph. listing:
removing last item:

diluted table (r=lO, s=25)
2100

37000 + 37000 moves)
37000

0
0 (+ 500 moves)

2.2. Comparison algorithms on n-way linked structures.

In a linked structure the relation between entries is not
through proximity (next address) but through explicit pointers.
These do take room, but obviate the need to move entries
around, which saves us the pointers to the information blocks.

2.2.1. Linked lists, n = 2.

There is no point in having an unordered list since an
unordered table is better. So only the ordered list will be
considered. When used with the simple question Q[M]: "How does
this tag compare to the first one in the list?", its
characteristics are:

name:
memory:

ordered linked
2000

1750000
2000000

random input:
ordered input:
alph. listing:
removing last item:

0
500

list

Memory requirements are equal to those of the linear list.
Although 1000 locations are needed for linkage, the entries do
not move around, thus enabling us to incorporate the
information block in the entries. This saves 1000 pointers.

Matthijssen and Uzgalis [12] explain another linear list
technique in which different questions are asked. Their
questions (tests) recur in groups of length D:

14

The first question in such a group is the familiar "How
does this tag compare to the first in the chain?"

- The other D-1 questions examine D-1 random entries and
check whether any would give a shorter search path than the
first entry in the present chain. If so, it is used
instead.

The algorithm was originally developed for tag lists that
reside on disk and are paged into memory, each page containing
D entries. With small values of D it might be useful for lists
in ordinary memory; e.g., for D = 2 it can be shown that the
number of comparisons is about 2*n*sqrt(n).

We can find a "random" entry by utilizing the fact that the
entries are in a contiguous piece of memory: the direct
neighbour of the given entry will do.

This results in the following characteristics:

name: paged
memory:
random input:
ordered input:
alph. listing:
removing last item:

search in ordered list
2000

260000
260000

0
500

Taking the preceding entry as the "random" entry will avoid
degeneration from ordered input. Better still, use the
preceding entry if the present entry number is odd, and the
next if it is even; this guarantees that no tag will be tested
twice.

2.2.2. Binary trees, n = 3.

Binary trees lend themselves well to be used in conjunction
with three-way comparisons. The question Q[M] to be asked about
all tags is then: "Is this tag smaller than, equal to or larger
than the one in the present root?". First the question is asked
about the tag to be entered; this yields the answer
smaller/equal/larger; then the same question should be asked
about all other tags, to partition them in three groups, but
this operation is made trivial by the data organization which
allows the three groups to be found by following the left link,
looking in the entry, and following the right link
respectively.

The classical binary tree algorithm has the following
characteristics:

name: binary
memory:
random input:
ordered input:
alph. listing:
removing last item:

I

tree search
3000

47000
2000000

0
12

15

The number of comparisons has been obtained by substituting

cost(i) = 2 * sum(k, 1, i+l, 1/k) - 2 * i

in formula 1 in 1.3. The expression for cost(i) is formula 5
derived by Knuth (1, p. 427].

We see that ordered input causes a disproportionate number
of comparisons, resulting from the degeneration of the tree
into a linear list. Many schemes have been brought forward to
remedy this and a comparison of their merits can be found in an
article by Baer and Schwab [4]. They all require additional
information (generally a few bits) in the entry, which in ALEPH
implies allocating another word. This would raise the memory
requirement to the unacceptable level of 4000.

There exists, however, a method for avoiding this
degeneration which does not require additional space. This
method, which has received unfortunately little attention in
literature, consists simply of locally randomizing the tree at
random moments. The randomization is effected by changing the
structure (Ab C) d E into Ab (Cd E), or vice versa, in which
band dare entries and A, C and E are subtrees [8]. The
author, G. Kok, advises to apply this transformation on the
average once per insertion/look-up. It will, in general,
counteract degeneration. It is not resistant to "frustration
sequences", but we did not require that anyway.

The transformation involves changing three pointers and
keeping track of the last entry visited plus whether we went
left or right there. The total cost is estimated at 1 major
action per tag offered.

The scheme has the following characteristics:

name:
memory:

randomized binary
3000

51000
51000

random input:
ordered input:
alph. listing:
removing last item:

0
12

2.2.3. Multi-way trees, n > 3.

tree

Multi-way trees allow immediate partitioning of the tags
into more than 3 groups. Since, however, tag comparison gives
at most 3 different answers, this is of no use to us. They do,

16

however, figure in the hybrid schemes described in 2.4.4.

2.3. Non-comparison algorithms.

Non-comparison questions tend to have many different
answers; this implies partitioning the tags into many different
groups, which in turn must be split again. A table is not very
handy for this, although the following scheme comes to mind:

- Let Q[M] be "What is the M-th character?".
- Let the preceding M - l steps have reduced the pertinent

part of the table to the interval I.
- Then, set C to the M-th character of the tag to be

inserted, find in I the sub-interval J of all tags that
have C for their M-th character, and set I to J. Finding
this sub-interval can be done by a simple modification of
the binary search method.

The actual algorithm is slightly more complicated since it
has to take into account the possibility that a tag has no M-th
character.

It performs its job doing "minor actions" only;
nevertheless it seems to do the same actions as the binary
comparison search, except in a different order. The algorithm
seems more complicated, but this is because part of the action
in binary comparison search is hidden in 1 compare string•.

If 'string elem', needed to answer Q[M], does all the
testing implied, it will on some implementations count as a
"major action 11 • Moreover, only 'compare string' is guaranteed
to produce lexicographic ordering: nothing prevents the
characters in ALEPH from carrying a parity bit, thus wrecking
the alphabetic listing!

The multi-valued answers yielded by non-comparison
questions can be handled very well by n-way trees, but only at
the expense of extensive memory requirement. If we have 26
links at the root of the tree and 36 links in the other nodes,
a tag of length n can be located by n indexing operations, but
the memory cost of such a scheme is prohibitive.

Since most of then links will be nil, it is advantageous
to replace the table of n links by a linked list of those links
that are not nil. This leads us to schemes like 11Patricia 11 as
described by Knuth [l, p. 490].

Comparing memory requirements is non-trivial. Although
these schemes need more linkage space, they do not require the
text of the tags to be stored in a specific area. Rather, those
characters that differentiate a tag from its neighbouring tags
are distributed over the tree, where, in machine language, they

17

can generally be accommodated in open spaces between links. In
ALEPH, however, we need separate words for them.

Now, the number of differentiating characters is less than
the total number of characters in all tags, so there seems to
be an advantage here. But on machines where string& of
characters can be stored much more efficiently than single
characters (e.g. the CD Cyber), the advantage is soon lost.

Coffman and Eve [9] describe a related scheme. A tag is
converted to a unique stream of bits and the question Q[M]
yields bits 2M-l and 2M from this stream. The sub-set
consisting of those tags that have the same 2-bit combination
can then be found by following one of the four links kept in
each entry.

Memory requirement will depend mainly on how soon the bit
streams for different tags will start to differ. Van de Lune
(10] has analysed this and found that instabilities arise.

2.4. Hybrid algorithms.

The hybridity causes three complications.
- we need code for two different algorithms,
- these generally need different data structures,
- we need a test to determine when to switch.

For a hybrid algorithm to be attractive, it must have
advantages which offset these complications.

It is in principle possible to combine any
partitioning/search technique with any other at any moment, but
some combinations are more advantageous than others.

Reasonable combinations can be found by taking a non-hybrid
technique, finding out at what level of splitting up it stops
working satisfactorily and then finding a suitable
continuation.

2.4.1. Linear search.

For linear search there is no such level.

2.4.2. Binary search on tables.

Although binary search is in theory faster than linear
search for all lengths> 1, in practice linear search is faster
than binary search for small lengths, the break-even point
lying near 20.

So we can make a profit by switching to linear search when
the length of the region becomes less than say 10. The test is
easy, the data structure is the same and the second algorithm

18

I

is simple, so this seems a good technique.

2.4.3. Binary search on trees.

The same applies to binary trees. Here we can have a tree
with the usual binary nodes, and with leaves consisting of
tables of fixed length T. If a table overflows it splits into
two tables and a node. This means that the low-level nodes
(which are most numerous and contain many empty links) are
concentrated in (much denser) tables, so that we can hope to
make a profit in terms of memory. On the other hand, the
splitting of the tables causes the entries to move around,
which prevents us from incorporating the information blocks in
the entries and this will cost us another 1000 linkage
locations.

Explicit calculations are required to determine the exact
gain. Let the tree have k nodes and k+l leaves. The tables
being 3/4 filled on the average, such a tree holds

k + 3/4 (k+l) T

tags, which yields for 1000 tags:

k = (4000 - 3T)/(4 + 3T).

The amount of memory required by this data structure is

3k + (k+l)T + 1000,

which, for som values of Tis:

T memory
32 2400
16 2460

8 2570
4 2750
0 4000.

We see that reasonable values of Twill save about 500
locations, compared to the 3000 needed for normal binary trees.

The run-time cost will not differ considerably from that of
the simple binary tree algorithm, as far as random input is
concerned. Ordered input will be handled more efficiently
since the links in the linear chain now contain T/2+1 tags
rather than 1.

Some hand calculation leads us to the following
characteristics:

name:
T:
memory:

broad-leaf
8

2600
47000

400000
random input:
ordered input:
alph. listing:
removing last item:

0

tree
16

2500
47000

240000
0

32
2400

47000
140000

0

19

complicated; it may have caused a table split!

2.4.4. Non-comparison algorithms on n-way trees.

In 2.3 these were declared prohibitively expensive in terms
of memory, mainly because most of the links in the non-root
nodes are empty. This suggests using n-way split for Q[l] and
use a more memory-conserving technique for Q[2:]. If n is
large, questions Q[2:] are applied to a small set only, and the
simplest techniques should suffice. Algorithms of this type are
known as closed-hash algorithms.

Trees can be ruled out as data structures to support the
Q[2:], for three reasons.

of

- They take 1000 locations more for their internal linkage
and these 1000 locations are clearly spent better by
increasing n in then-way split in Q[l].

- They degenerate into linear lists upon ordered input, and
to regain their superiority we are forced to apply
randomization schemes, which is absurd.

- As mentioned before, linear search is better for small
sets, and n should be large enough for the resulting sets
to be small. ·

We obtain the following characteristics for various values
n.

name: closed hash
n: 64 256 1024
memory: 2100 2300 3000
random input: 34000 14000 9000
ordered input: 38000 15000 9000
alph. listing: 12000 12000 12000 (+1000 loc)
removing last item: 0 0 0

These figures are impressive but do indicate a fairly
strong dependence on n: the technique works best if n is not
more than an order of magnitude smaller than the number of
tags. This suggests that with n = 1024 the performance will
begin to deteriorate for programs with more than 10000 (global)

20

tags.

Creating an alphabetic listing is seen to become a major
component in the cost, both in time and in memory. If we are
allowed to change the data structure while sorting,. we can
dispense with the 1000 locations. But it would be nice if we
didn't have to sort in the first place.

Since Q[2:] keep alphabetic order, sorting is avoided if
Q[l] does so too. This restricts Q[l] to "What are the first k
characters/bits of the tag?", resulting in a tag list with
thumb indices.

For an existing program containing 1000 tags (actually 1004
of which 4 were discarded at random) the following
characteristics were obtained.

name: thumb indices of
Q[2:]:
memory:
random input:
ordered input:
alph. listing:
removing last item:

name: thumb indices of
Q[2::]:
memory:
random input:
ordered input:
alph. listing:
removing last item:

one letter,
list
2000

150000
170000

0
0

n = 26
tree
3000

30000
170000

0
0

two letters,
list

n = 702
tree
3700 2700

47000
52000

0
0

19000
52000

0
0

The above figures include the cost of answering Q[l] which
is estimated at 1 major action per tag.

Since the thumb indices are definitely inferior hash
functions, trees are still quite valuable for Q[2:], as is
borne out by the above figures. Again the degeneration for
ordered input can be offset by randomizing the trees.

2.5. Open-hash algorithms.

The open-hash algorithm (as described, e.g., by Knuth [1,
p. 518]) differs fundamentally from the general algorithm given
in the beginning of 2 in that it does not depend on
persistently decreasing the size of the set of tags the sought
tag must be in. The following technique is used instead:

a. set M equal to 1.

b. ask question Q[M] about the given tag T and save the
answer in A.

c. set S to that subset of the universe of all tags that
contains all the tags for which question Q[M] yields
answer A.

d. compare T to the first tag in S that has information
attached to it.

e. if they are equal, yield that information and stop,
otherwise increase M by 1 and return to step b.

21

This algorithm only works if it can be guaranteed that
eventually (as M increases) each tag will in turn be the "first
in subset S". This requires considerable care in the choosing
of the sequence Q[M], sometimes supported by non-trivial proofs
(as is the case with quadratic hashing [13)).

The method derives its power from the fact that Q[l] can be
chosen so that the very first tag we try (at step d and e) has
a high probability of being the right one. This is done by
making the mesh that Q[l] throws over the universe of all tags
so fine that each box in it contains generally only one tag
with information.

This n-way fan-out suggests a table of length n as data
structure for Q[l]. The questions Q[2:] also split up the tags
inn classes but in a different way, i.e., they yield different
answers for the same tag1 they use the same table of length n.

The requirement that each tag eventually be "the first tag
in the selected subset" is then equivalent to the requirement
that the sequence of answers to Q[l:] will, for any tag,
contain all integer from Oto n-1.

The easiest way to achieve this is to take for the answer
to Q[M] the answer to Q[l] plus M-1, modulo n, since this
requires only one calculation of a hash value, the one for
Q[l]. A disadvantage is that for two tags for which Q[l] yields
the same answer, the whole sequence Q[l:] will be identical.
This leads to clusters in the table. Various schemes to avoid
them are described by Knuth [1, p. 512).

Because of its high efficiency the open hash algorithm is
very popular among compiler writers, but in the form described
above it violates requirement Bin 1.2: when N tags have been
entered there is no room anywhere to put tag number N+l. And
requirement B forbids us to present the programmer with an
error message "Identifier table full - Compilation abandoned".

So before considering it seriously we have to convince
ourselves that there is a reasonable way to remove this hard
upper limit to the number of tags.

22

I

Hopgood [11] recommends to double the size of the table
when it becomes too full. Criteria for "too full" are given in
[11] •

Changing the table size implies changing the hash
function(s) which in turn means restructuring the table;
algorithms for this seem to be missing from literature.

The simple approach to restructuring is to allocate a new
table of length 2N, siphon the tags one by one from the old
table to the new and discard the old table. This causes a
(temporary) memory requirement of 3N.

Attempts to restructure a table in situ soon give birth to
unduely complicated algorithms, all of which still need
considerable working space.

A way out might be provided by the use of a scratch file,
but only if all else fails.

Even if we find a solution to the restructuring problem the
algorithm still behaves in a non-uniform way, suddenly
requiring large amounts of memory upon adding a single tag. So,
for the algorithm to be acceptable its other properties must be
very good indeed!

The efficiency in terms of major actions (hash value
calculations and string comparisons, including those that
result from restructuring) depends on the density at which
table extension occurs. Like with the diluted tables in 2.1.2
we can define a dilution ratio r such that on the average 1 out
of every r entries is empty.

Calculations have been made for r = 2, 3 and 4. The results
depend only slightly on the initial table size, the final table
size always being 2048.

name:
r:

open extending hash

memory:
random input:
ordered input:
alph. listing:
removing last item:

2 3
3000 3000

10100 11000
10100 11000
12000 12000

0 0

4
3000

11800
11800
12000

0

The number of major actions has been arrived at by first
calculating the total cost of entering 1000 new tags, using
formula 22 in [1, p. 521] and taking due account of the table
extensions whenever they occur, and adding the cost of entering
3000 old tags, using formula 23 in [1, p. 521].

It should be noticed that the low number of major actions
per tag (2.5) is maintained, regardless of the number of tags.
This is the only algorithm that is perfectly linear in the
number of tags (although sorting ruins this by requiring N

23

ln(N)).

3. Evaluation.

We have examined 18 algorithms, the results of which are
collected in the following table. Deg.fac. stands for the
degeneration factor due to ordered input.

name comparisons deg.fac memory
lin. search in unordered table 2000000 1 1000
lin. search in ordered table 1800000 1 2000
bin. search in ordered table 37000 1 2000
bin. search in diluted table 37000 1 2100
ordered linked list 1800000 1 2000
paged search in ordered list 260000 1 2000
binary tree search 47000 40 3000
randomized binary tree 51000 1 3000
broad-leaf tree 47000 5 2500
closed hash 256 26000 1 2300
closed hash 1024 21000 1 3000
thumb ind., one letter, list 150000 1 2000
thumb ind., two letters, list 47000 1 2700
thumb ind., one letter, tree 30000 6 3000
thumb ind., two letters, tree 19000 3 3700
thumb ind., one letter rand. 34000 1 3000
thumb ind., two letters, rand. 23000 1 3000
open extending hash 19000 1 3700

We see that we can safely discard all methods that require
more than say 100000 comparisons or have a degeneration factor
of more than 3. Binary search in an ordered table needs 250000
moves, so it is not a good candidate either.

This is about as far as science will bring us: choosing
between the remaining candidates is an art. Some support can be
obtained by considering what special facilities are needed by
the various algorithms. This results in the following table.

name comp d.f mem h.f q.s r.s exp order
bin. search. dil. t. 37000 1 2100 + N ln(N)
rand. bin. tree 51000 1 3000 + N 12(N)
cl. hash 256 26000 1 2300 + + N2
cl. hash 1024 21000 1 3000 + + N2
th. ind., 2L, list 47000 1 2700 N
th. ind., 2L, tree 19000 3 3700 N ln(N)
th. ind., lL, rand. 34000 1 3000 + N ln(N)
th. ind., 2L, rand. 23000 1 3700 + N ln(N)
open ext. hash 21000 1 3000 + + + N

where

24

- h.f means hash function required,
- q.s means quick-sort required,
- r.s means randomization scheme required,
- exp means expander required.

We see that a randomized binary tree can be cheaply
improved by adding thumb indices, so we need not consider it
further.

Hash functions are a nuissance in a machine-independent
ALEPH program. They mean inspecting the tag character by
character and doing calculations in double precision to avoid
overflow. It might be thought that the words of the packed
string may serve if we consider them as bit patterns but this
is not true, since these words may contain unused bits which
need not be preset in the same way all the time.

This, together with the need for a sorting routine, is no
recommendation for the hash algorithms.

Since ALEPH has no modularity, there is a tendency among
ALEPH programmers to start tags in the same "conceptual module"
with the same prefix. Examples are GEN ACTUAL, GEN ADDRESS, GEN
AFTERTHOUGHT, etc. in a code generator. This is ruinous to
"thumb indices, 2L, list", but not to "thumb indices, 2L,
tree", which would not perform worse than a normal tree.
However, if he would put them in alphabetic order (and we don't
know he won't), also "thumb indices, 2L, tree" will fail.
Safety can then be found in randomizing.

So

- the fastest acceptable algorithm is "thumb indices, two
letters, tree", which will, however, degenerate rather
badly on some not unlikely input sequences.

- more safety can be found in "thumb indices, two letters,
randomized", which is slightly more expensive.

- absolute safety can be reached with "binary search on
diluted table", which takes half the memory and twice the
time.

4. Conclusion.
- Since our design criteria put frugality of memory use

before speed of compilation;
- since alphabetic sequences are not unlikely in ALEPH

programs;
- since "binary search on a diluted table" needs much less

memory than the others (and progressively so for smaller
programs), is absolutely safe and is easy to program;

25

I

we conclude that for our application "binary search on a
diluted table" is best. It might be useful to switch to linear
search for small tables (see 2.4.2).

The ease of removing items may be important for other
applications.

26

5. References.

[l] Knuth, D.E., Sorting and Searching, Vol. 3 of The Art of
Computer Programming, Addison Wesley, New York~ 1973.

[2] Severance, D.G., Identifier Search Mechanisms, Comp.
Surveys, 6, 3, (Sept. 1974), p. 175.

[3] Nievergelt, J., Binary Search Trees and File Organization,
Comp. Surveys, 6, 3, (Sept. 1974), p. 195.

[4] Baer, J.-L. and-B. Schwab, A Comparison of Tree-Balancing
Algorithms, Comm. ACM, 20, 5 (May 1977), p. 322.

[5] Waite, w., ImplementingSoftware for Non-Numerical
Applications, Prentice Hall, Englewood Cliffs, N.J., 1973.

[6] Tanenbaum, A.S., Structured Compute~ Organization,
Prentice Hall, Englewood Cliffs, N.J., 1976.

[7] Yao, A.C. and F.F. Yao, The Complexity of Searching an
Ordered Random Table, Symp. on Foundations of Comp.
Science, IEEE Comp. Soc., 1976.

[8] Kok, G., Alfabetiseren en andere sorteerwerkzaamheden.
(Collating and other sorting activities), MR 120/70,
Mathematical Centre, Amsterdam (1970), p. 35, (In Dutch).

[9] Coffman, E.G. and J. Eve, File Structures Using Hash
Functions, Comm. ACM, 13, 7, (July 1970), p. 427.

[10] Lune, J. van de, On theAsymptotic Behaviour of a Sequence
Arising in Computer Science, ZW 31/74, Mathematical
Centre, Amsterdam, 1974.

[11] Hopgood, F.R.A., A Solution to the Table Overflow Problem
for Hash Tables, Computer Bulletin, 11, 4 (March 1968), p.
297. -

[12] Matthijssen, R.L. and R.C. Uzgalis, Some Simple Data
Structures in a Paged Environment, The UCLA Comp. Sc.
Dept. Quarterly, 4, 1 (Jan 1976), p. 67.

[13] ARkerman, A.F., Quadratic Search for Hash Tables of Size
p, Comm. ACM, 17, 3 (March 1974), p. 164.

0

