
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

A.P.W. BOHM
ALICE: AN EXERCISE IN PROGRAM PORTABILITY

~
MC

IW 91/77 NOVEMBER

2e boerhaavestraat 49 amsterdam

PJLinte.d at .the. Ma.thema.:Uc.a.l Ce.n;tJte., 49, 2e. Bocvr.haa.ve6.tltaa:t, Am.6.telldam.

The. Mathema.:Uc.a.l Ce.ntll.e., 6ou.nde.d .the. 11-.th 06 Fe.bll.wvr.y 1946, -lh a non
pll.o6U in6.ti.:tu.tlon a,im,i.ng at .the. pll.omoUon 06 pUll.e. mathema.:UC-6 and i:t6
a.ppUc.a.:Uon6. 1.t -lh .6pon6oll.e.d by .the. Ne..the/Lf.a.nd.6 Govcvr.nme.nt .thll.ou.gh .the.
Ne..the/Lf.a.nd.6 OJt.ganiza.:Uon 6oll. .the. Advanc.eme.nt 06 PUite. Re6e.a.ll.c.h (Z.W.0).

AMS(MOS) subject classification scheme (1970): 68A00,68A05

Comp. Review: 4.12 4.21 4.22

ALICE: An Exercise in Program Portability

by

A.P.W. B6hm

ABSTRACT

ALEPH has been designed at the Mathematical Centre as a tool for compiler
writing. In the ALEPH compiler a clear interface between the machine
independent and the machine-dependent part is established. This interface
presents itself as an intermediate code, called ALICE. ALICE can be
implemented easily and efficiently on many machines. This report defines
ALICE, gives installation hints, and' states which design decisions were
taken.

KEY WORDS~. PHRASES: ALEPH, abstract machine, intermediate code,
portability, adaptability, machine-independence

2

INDEX

0 Preface

0.1 Informal and incomplete introduction to ALEPH

The role of ALICE in the compilation of ALEPH programs

1.1 Splitting up the ALEPH compiler
I • 2 Porting an ALEPH program to a new machine -

2 Outline of ALICE

2.1 ALICE grammars
2.2 The format of ALICE statements
2.3 Features needed to translate ALICE
2.4 The character set
2.5 The simple ALICE grammar
2.6 Example

3 Description of the various constructs of ALICE

3.1 Values
3.1.1 The range of integer values
3. 1.2 The character code
3.1.3 The address space
3.1.4 Strings
3. I • 5 Example
3.2 Data
3. 2. I Integer
3.2. I.I Constant source
3.2.1.2 Variable
3.2.2 List
3.2.2.1 List area
3.2.2.2 List administration
3.2.2.3 External table
3.2.3 File
3.2.3.1 File administration

4

5

8

8
9

12

12
13
14
16
18
27

29

29
30
32
33
34
36
39
39
39
42
43
43
45
47
48
48

3.3 Rules
3.3.1 Introduction
3.3.2 The ALICE abstract machine
3.3.3 Outline of an ALICE rule
3.3.4 Rule head
3.3.5 Rule tail
3.3.6 Calling a rule
3.3.7 Parameter passing
3.3.7.1 Actual input parameters
3.3.7.2 Actual output parameters
3.3.8 Primitive rules
3.3.8.1 External rules
3.3.8.2 ALICE primitives
3.4 Program structure
3.5 ALICE grammar

4 References

3

51
51
53
55
55
57
60
62
62
67
71
71
73
78
81

99

4

0 Preface

At the moment this report is written, we have an ALEPH compiler
running happily on a CYBER under SCOPE 3.4.1. This ALEPH compiler
generates COMPASS, the assembly language of the CYBER.

ALEPH was designed by people working on the ALGOL 68 compiler at the
Mathematical Centre. The most important task of the ALEPH compiler is to
compile this MC ALGOL 68 compiler, which is written in ALEPH. The ALGOL 68
group is trying to develop a both portable and adaptable compiler for the
full language ALGOL 68.

A necessary condition for reaching this honourable goal is to have a
portable and adaptable ALEPH compiler as well. The present ALEPH compiler
does not meet this end, and therefore it is being rewritten to establish a
clear interface between its machine-independent and its machine-dependent
part.

Roughly speaking, the machine-independent part of the new compiler
consists of a parser and a semantic analyzer; the machine-dependent part
consists of a code generator. The interface between these two parts
presents itself as an intermediate code. This intermediate code, called
ALICE, can be considered the ultimate machine independent stage in the
translation of ALEPH to machine code.

In a first version of the ALEPH compiler on a new machine, ALICE is
the output of the semantic analyzer, that is, it is written on a file and
read by a translator from ALICE to machine code. In a more progressed
version ALICE is merely a set of calls to fOde-generating routines. More
precisely, the semantic analyzer ends with calls to code generating
routines, which in the first case simply copy the call to a file and in the
second case generate code for a particular machine.

Although this report is primarily meant for installers of the ALEPH
compiler, who must be familiar with ALEPH [I], it is self-contained. A
rather informal and incomplete introduction to ALEPH is given below.
Chapter one of this report describes the role of ALICE in the compilation
process from ALEPH to machine code in detail. Chapter two describes the
format of the ALICE statements and the character set in which ALICE
programs are written. Chapter two also mentions some programming tools
which can be used to to facilitate the translation from ALICE to machine
code. Chapter three contains a complete description of the various
constructions in ALICE.

0.1 Informal and incomplete introduction to ALEPH

For those not intending to implement ALEPH and unfamiliar with it, a
very informal and incomplete introduction into its use now follows.

ALEPH is a simple programming language, based on two features:

I. Decomposition by means of a procedure mechanism. Procedures are called
"rules" in ALEPH.

2. Specification of alternatives within a rule.,

ALEPH originated from the idea that a context-free grammar can be
used as a programming language, such as in the recursive descent parsing
method. For instance, the grammar for strict binary trees in parenthesized
infix notation:

tree

terminal node

non terminal node

terminal node;
open symbol, tree, non terminal node, treer

close symbol.

letter.

letter.

can be considered to have the following meaning:

there is a tree:
either if there is a terminal node

or if there is an open-symbol, followed by a tree, followed by a
non-terminal-node, a tree, and a close-symbol.

5

An ALEPH program is a set of "rule declarations" and "data
declarations". Just as in a context-free grammar, there is one starting
point called the "root" of the program. The root calls one rule, which
calls other rules, and so the ALEPH machine comes into action. A rule
consists of a number of "alternatives". An alternative consists of a number
of "members". A member is either a language primitive, such as an
assignment, or a call to another rule.

The first member of an alternative can be considered as the key to
that alternative: if the key fits the other alternatives are no longer of
interest. To be able to serve as keys, members can fail or succeed. A
member succeeds if the rule it calls or the language primitive it
represents succeeds. A rule succeeds if one of its alternatives applies and
all members of that alternative succeed. A rule fails either if no
alternative applies or if an alternative applies but one of its members
fails. Some rules do not have to be declared, but can be considered as
built in. Their names are known to the ALEPH compiler. These rules are
called external rules. The recursive definition of success or failure of a
member does not loop because of the existence of the external rules and the
language primitives.

6

For some rules in a program there will always be an alternative that
applies: these rules cannot fail. Therefore rules can be divided in two
groups: those that can fail and those that cannot.

There is another criterion that divides rules in two groups: rules
have or have no "side effects". A rule has side effects if it changes the
environment (global data).

The division criteria can be combined, yielding four groups of rules:

can fail, has side effects
can fail, has no side effects
cannot fail, has side effects
cannot fail, has no side effects:

'predicate'
'question'
'action'
'function'

This information about a rule is given by the programmer and checked
by the compiler.

Communication between the members in a rule and between callers and
called rules is done by parameters, called "affixes". Besides "formal"
affixes a rule has "local" affixes for scratch pad purposes. Formal
affixes are either prefilled at call entry (input parameters), or used by
the caller upon return (output parameters), or both (input-output
parameters). Local affixes are uninitialized at call entry. If the rule
fails, the caller will not need the values of the output affixes: they will
not even be passed back at call exit.

As an example, part of a program that reads a sequence of numbers and
prints their sum is showed.

'root' read and print.

'action' read and print - sum:

read+ sum, print+ sum.

'action' read+ res>:

number+ res, rest numbers option+ res.

'action' rest numbers option+ >res> - nmb:

comma symbol, number+ nmb, plus+ nmb +res+ res,
rest numbers option+ res;

+.

'action' number+ res>:

get int+ input file+ res;
error+ bad number, 0 -> res.

7

'action' print+ >number:

put int+ output file+ number.

The pluses connect the affixes to the rules. The minus signals a
local affix. The right arrow in front of "res" in "rest numbers option"
indicates that "res" is an input affix. The value of the actual affix of
the caller will be copied to the formal affix of the called rule. The
right arrow at the back of "res" indicates that at rule exit its value will
be restored to the actual affix of the caller.

The local affix "sum" in "read 'and print" is uninitialized at the
colon. From the declaration of "read" it follows that it will return a
value to "sum". After the call of "read", "sum" is initialized and can be
used by "print".

"get int" is an external predicate. The
think about the exceptional case end of file.
"res", as might have been expected.

Data types.

programmer is forced to
"O -> res" assigns Oto

ALEPH restricts itself to integer data and stacks of these. Global
variables must be initialized upon declaration. Stacks have the usual
property that top elements may be added, inspected and removed. In
addition, they have the following properties:
a. All elements can be reached; thus the stack can act as an array.
b. Bottom elements can be removed; thus the. stack can act as a queue.

8

The role of ALICE in the compilation of ALEPH programs

1.1 Splitting up the ALEPH compiler

The aim is an ALEPH compiler that can run on a variety of machines
(portable) and that can generate code for a variety of machines
(adaptable).

It is clear that the code generator of a compiler belongs to the
machine dependent part of that compiler, provided that all optimizations
that can be done machine independently are not considered as part of the
code generator. In most compilers, however, the code generator is not the
only part that contains machine dependencies. The first ALEPH compiler,
for instance, had this regrettable quality. In the new version of the
ALEPH compiler all machine dependencies are located in the code generator.·
This is necessary to adapt the ALEPH compiler easily to generate code for a
new machine.

The machine dependencies should not only be grouped together in one
module, but this module must be easily separable from the rest of the
compiler as well. This implies that a clear interface between the machine
independent and the machine-dependent part is another necessity for
portability and adaptability.

The ALEPH compiler consists of the following parts:

lexical analyzer and parser,
semantic analyzer and machine-independent code generator,
machine-dependent code generator.

The lexical scanner and the parser make up the first scan, while the
semantic analyzer and the machine-independent code generator form the
second scan of the compiler. These two scans will not have to be changed
when the compiler is moved to another machine. They are written in ALEPH.
This is a vital property, and enables the machine independent part of che
compiler to be moved just as any other machine independent ALEPH program.
The design of the ALEPH compiler will be described elsewhere.

The output of the second scan consists of a machine-independent
intermediate code called "ALICE". This code can be thought of as the.
assembly language of an abstract machine. The machine-dependent code
generator translates ALICE to machine code and must be rewritten for every
new machine. It must therefore be easy to translate ALICE to various kinds
of machine codes. The format of ALICE must be simple enough to be
translated by a macro-processor or macro-assembler.

The ALICE statements must deliver information to the machine
dependent code generator when the machine-dependent code generator needs
that information, so that ALICE macros can be processed one by one.
Unfortunately, this need varies from implementation to implementation.
ALICE is therefore a rather redundant language. ALICE programs must be, on
the other hand, manageable in size and not all the needs for future

9

implementations can be predicted. It is impossible to supply each bit of
information where it might be needed by an implementation. Some trade-offs
are made, whether on purpose or not.

The need for the machine-dependent code generator to be easily
separable from the rest of the compiler lays two obvious requirements on
ALICE. The first one is that ALICE has to serve as a one-way information
carrier from the second scan to the machine-dependent code generator. The
second is that ALICE is the only interface between the second scan and the
machine-dependent code generator.

These two requirements guarantee that no information about the
machine can be used by the second scan and that the machine-dependent code
generator us1=s no global data from the rest of the compiler. This ensures
that the translation from ALEPH to ALICE will not introduce machine
dependencies and that an ALICE text c~n be translated without further
reference to the original ALEPH text.

These requirements have not been easy to fulfil. The evaluation of
expressions, for instance, must be postponed until machine-dependent code
generation, because some values are machine dependent quantities. This, of
course, has its effect on both ALICE and the first two scans of the
compiler,

The alternative, on the other hand, seems even worse. If information
about the machine and the implementation can flow back from the machine
dependent code generator to the second scan, the uniqueness of the ALICE
translation of an ALEPH program is lost. For every different target machine
a different ALICE would have been created. This could cause a discouraging
feedback loop between host machine and target machine. Furthermore, if the
machine-dependent code generator were to use global data from the rest of
the compiler, it would become impossible to put ALICE, the interface
between them, on a file and send it to a new machine.

1.2 Porting an ALEPH program to a new machine.

Suppose that a program written in ALEPH has to be ported to a new
machine which has no ALEPH compiler available. The program is translated
to ALICE and written in a standard format, on some information carrier such
as a magnetic tape. Together with this program, other software to make
the bootstrapping as easy as possible, is ported. To pass this stage of the
porting process smoothly, the character set of ALICE is kept to a bare
minimum (2).

To run the ALICE program on the new machine, a translator from ALICE
to machine code and a suitable run-time system have to be constructed by
the installer. The installer has to make decisions about the evaluation of
expressions, the data-representation, the allocation of tables and stacks,
the calling mechanism and the passing of parameters. These decisions will
be influenced by the architecture of the new machine, the ALEPH program(s)
that have to be run, and the amount of time the installer has available.

10

If the machine is small or the ALEPH programs to be run are going to
need large tables and stacks, the installer may have to provide a means for
allocating tables and stacks on background memory. The installer may decide
to generate very compact code that has to be interpreted by a small driver
which is part of his run-time system, to keep the storage needed for the
code as small as possible.

The first implementation may be inefficient but easily set up. The
installer can, for instance, decide to use the ALICE to FORTRAN translator
written in FORTRAN, which will be part of the software sent along on the
tape. If he does this, a lot of decisions do not have to be bothered about
anymore, and all that has to be done is getting 'a big FORTRAN program
running. The code derived this way will be very inefficient only acceptable
in a first bootstrap.

The first ALICE-to-machine-code translator may be realized by means
of a macro-processor. This will make the translation easy as long as the
installer does not want fancy optimizing, which requires reading of a
number of ALICE statements together, code motion or other tricks.

The I-diagrams below describe the various stages which the
implementation of an ALEPH compiler on a new machine has to go through.

->
ALEPH

ALICE

->
CYBER

CYBER

ALICE
->

ALICE

The translation of the ALEPH compiler on the host machine to get the
ALICE version of it is sketched above. This ALEPH to ALICE compiler in
ALICE will be sent to the target machine.

->
ALICE

ALICE

->
APR

APR
T

T

->
tmc

I I

The above I-diagram exemplifies the translation of the ALEPH compiler
on the target machine by an ALICE processor (APR), to the ALEPH compiler
written in target machine code (tmc). APR might be a macro-processor fed
with appropriate macro-definitions. Together with a suitable run-time
system this will give a first version of the ALEPH compiler:

The first version of the ALEPH compiler will generate ALICE. So for
every ALEPH program to be translated to machine code the ALICE processor is
needed:

ALEPH ALICE
->
T

T

ALICE tmc
->
APR

APR
T

T

This process can be cut short by changing the machine-independent
code generator of the ALEPH compiler (still generating ALICE) into a
machine-dependent one, generating tmc. How this change has to be made is
shown by the ALICE to tmc translator, which is already written and tested.
This will give a final version of the ALEPH compiler on the new machine:

12

2 Outline of ALICE

2. I ALICE grammars

In th•= sequel of this report, context-free rules are used to describe
the format of ALICE statements. The fancy way to describe the format of
these context-free rules is of course by writing a context-free grammar for
them, but let us keep things simple. The context-free rules consist of a
left hand side terminated by a colon and a right hand side terminated by a
period. The alternatives of a right hand side are separated by semicolons
and the not:ions making up an alternative are separated by commas. Notions
consist of letters. Square brackets around a phrase (a piece of an
alternative) are shorthand to indicate two alternatives: one with the
phrase and one without :it, so

a b, [c, d], e.

means

a b, c,, d, e;
b, e ,,

Terminal notions are those ending with "symbol", such as "end
symbol", and the notions:

"character",, "end of line", "string", "integer".

Terminal notions ending with "symbol" are represented by three-letter
tags. A string is a sequence of characters surrounded by quotes; a quote
within the string is represented by a quote-image (two quotes). An integer
is an unsigned sequence of decimal digits. Comments in the grammar are
surrounded by dollar tokens.

There are two context-free grammars describing ALICE. The f:irst one
is a very simple grammar, which defines ALICE as an almost unstructured
sequence of macros. This grammar does not define the order in which the
macros will occur and the language produced by this grammar is therefore a
superset of ALICE. It still is a useful description of ALICE because it may
serve as a guide for the writing of a set of macro-definitions for a
macro-processor that is, in most cases, going to be the first translator
from ALICE to target machine code. In other words, there is a one-to-one
correspondence between the macros of the first grammar and the macro
definitions in the macro-processor version of the ALICE translator.

The SE=cond grammar is more complicated, because it describes the
structure of ALICE and the order in which the macros can occur. This
grammar is written to define ALICE precisely and to make the meaning of the
various macros understandable. Together with the other sub-sections of
section 3, this grammar is the ultimate description of ALICE.

13

2.2 The format of ALICE macros

ALICE statements are sometimes called macros in this report, even
though processors other than macro-processors may be used to translate
ALICE. An ALICE statement consists of a macro name possibly followed by a
space and a number of parameters separated by commas. One macro is written
per line, or card or record. The macros are delimited in a medium dependent
way. In the grammar it says that macros are delimited by 'end of line's,
but for every system this may mean something different.

Examples:

jmp 15
lab 15
str "Ewige Blumenkraft"
erl gtc
efc 10,gtc,2,0,15
chd 1 ,a

This format has been chosen because it is easily adapted to the
format demanded by most macro-assemblers. It is inevitable that some
assemblers will already use macro names of ALICE. Solutions for these
problems must depend on the local circumstances. One could, for instance,
decide to prefix all ALICE macros with some special character or to change
some of the macro names of ALICE by means of an editor.

General-purpose macro-processors, such as ML/1 and STAGE2, also find
this format easy to digest. In ML/1 [3] a macro can be used to describe the
delimiter structure of the parameter part of all macros (the macro called
"params" in section 2.6). This macro definition makes the other macro
definitions look less sloppy. ML/1 does not consider 'end of line' as 'end
of macro'. It is therefore possible to group ALICE macros in one macro
definition in ML/1. In STAGE2 [4] every macro is supposed to be written on
one line. There is no problem with the absence of a special 'end of macro'
character, since STAGE2 accepts 'end of line' for this.

The first ALICE-to-pdpll/45-assembly-language translator was written
in ML/1 without problems. This was done while ALICE was still changing
frequently. ML/1 was chosen, first, because it was available and second,
because it is easy to change the delimiter structures of macro definitions
in ML/1. Once ALICE had been stabilized, an ALICE-to-assembly-language
translator was written in a high-level language, because large ML/1
programs are hardly readable, let alone self documenting and, because ML/1
programs run slowly and demand lots of storage.

14

2.3 Features needed to translate ALICE

It is not enough for the ALICE translator to process single macros
independently, because some of the macros communicate with each other. The
translator has to keep track of this communication. In all cases but one,
a fixed number of macro-time global variables (a macro-time variable is a
variable of the ALICE translator) can serve this purpose. The exception is
the communication between evaluating expressions, declaring constants and
referring to them in executable code. The feature needed to handle this
case, a macro-time symbol table, will be discuss_ed now.

Roughly speaking, an ALICE program consists of three parts:

1: values
2: data
3: rules

In the 'values' part all expressions are evaluated and in-formation to
administrate lists and files is gathered. Both expression evaluation and
the gathering of this information can be done at macro time (when ALICE is
translated) and therefore no assembly code has to be generated for it. The
ALICE processor has to store the values and use them later on when macros
belonging to the 'data' and 'rules' part are translated.

The 'data' part declares all constant sources, variables, lists,
initial list contents (called list filling), and the administration
structures for lists and files. Constant s'ources are constant actual
parameters of calls.

Example:

Consider the following piece of an ALEPH program:

'constant' char distance= /1/ - /0/,
character O = /0/.

'action' print digit+ >digit - int - char:
times+ digit+ char distance+ int,
add+ int+ character 0 + char,
print char+ char.

In the 'values' part of the ALICE equivalent of this program the
expressions "/1/ - /0/" and "/0/" will be evaluated:

chd 1,1
chd 2,0
sub 3,1,2

15

The first two macros are character-denotation macros. They de!lland a
conversion from character to integer of their second parameter. The value
thus obtained will be referred to by their first parameter. The third macro
demands a subtraqtion of the two values just obtained, the result of which
will be referred to by its first parameter.

In the 'data' part two constant sources corresponding to "char
distance" and "letter O" will be declared. These constant sources have
values calculated in the 'values' part. The first parameter of these macros
stands for the name of the datum, while the second refers back to values:

css I, 2
css 2,3

In the 'rules' part the ALICE sode for the constant actual parameter
of the affix form "times+ digit+ char distance+ int" will consist of a
macro referring back to both the 'data' macro "css 2,3" and the 'values'
macro "sub 3,1,2" involved:

lvc ---,2,3,---

One way to translate these macros is to build up a symbol table while
processing the 'value' macros, to generate assembly-language data
declarations for the 'data' macros, and to refer to these declarations in
the code generated for the 'rules' macros. In this scheme the 'rules'
macros cause no problems because the parameters give all information that
is needed. How to handle the communication between the 'value' and 'data'
macros will be shown below for both ML/I and STAGE2.

In ML/I dynamically defined macros have to serve for building the
symbol table. Character-to-integer conversion is not a primitive available
in ML/1, so this has to be done by means of macro definitions, such as:

mcdef chtointO as 48
mcdef chtointl as 49

STAGE2 offers exactly the primitives needed for character conversion
and symbol table manipulation. For the latter the associative addressing
concept of STAGE2 can be used.

An example of an ML/I version and a STAGE2 version of the macro
definitions for the macros with macro-names "chd", "int", "sub" and "css"
is given in section 2.6.

16

2.4 The character set

Suppose a program written in ALEPH, say an ALGOL 68 compiler, has to
be ported to a new machine and that this program contains all sorts of
weird characters like broken backslashes and so on. How should this
program be ported to the new machine?

Not in ALICE but in ALEPH! (section 1.2)

For one thing, when an ALEPH program is translated to ALICE it tends
to become very big and almost unreadable for human beings. So if one can
avoid porting programs in ALICE, one had better avoid it.

There is one program that must be ported in ALICE: the ALEPH
compiler. Apart from the compiler ang test programs for the ALICE system,
all ALEPH programs to be ported will be ported in ALEPH.

The first thing to do is to implement the ALEPH compiler on the new
machine. The ALEPH compiler doesn't contain characters other than the
'worthy' ALEPH characters and newlines. The fifty-six worthy ALEPH
characters are:

A to Z
0 to 9
space
+*,./"'()[)- =<>$ti

This set of worthy ALEPH characters is a proper subset of the worthy
ALGOL 68 characters [5], and also a subset of ASCII and EBCDIC. 'end of
line' is no worthy character because on some installations it isn't even a
character.

If ALEPH programs are to be compiled on the new machine this set of
worthy ALEPH characters is the minimal set needed.

If the new machine can't provide this minimal set or a reasonable
equivalent, special machine dependent arrangements are needed, because the
ALICE version of the compiler contains the characters of the minimal set
and also, because some character code has to be chosen for representing the
worthy characters in the ALEPH programs that will have to be compiled in a
later stage, anyway. These problems are very machine dependent and can
only be solved at the new machine.

The character set needed for ALICE is identical to the character set
needed for ALEPH. Therefore the ALICE version of the ALEPH compiler does
not give rise to additional problems as far as the character set is
concerned.

Now let us suppose that the ALEPH compiler has been installed and the
compiler still generates ALICE. ALICE plays a different role now: it
serves as an interface between two parts of the compiler, running on the
same machine. ALICE might only have survived as a set of calls from the
code-generating routines that have become part of the second scan.

17

At this stage the ALGOL 68 compiler, written in ALEPH, can be ported.
If the weird characters belong to the character set available on the new
machine, they can be transferred via ALICE in exactly the same way the
worthy ALEPH characters will be transferred. If they cannot be read in,
some escape mechanism has to be designed for them.

But this is not a problem on the ALICE level, so in ALICE we shall
not bother about it. It does not help to distribute the problem of the
weird characters over all phases of the compilation process and it is
certainly impossible to solve this problem for all character sets on all
machines.

In the sequel we shall assume that the only characters in ALICE
programs that are to be ported to new machines are the worthy ALEPH
characters and that the characters in the ALICE interface between two
parts of a compiler on one machine are the characters available on that
machine.

18

2.5 The simple ALICE grammar

$Comments such as this one are surrounded by dollar tokens$

$ALICE terminal symbols representation $

$macro names$
add symbol; $
begin file adm symbol; $
call id symbol; $
class begirn symbol; $
class end symbol; $
char denotation symbol; $
constant source symbol; $
communica ti.on symbol; $
copy a reg symbol; $
copy from input gate symbol; $
copy v reg symbol; $
divide symbol; $
end file adm symbol; $
end list symbol; $
end symbol; $
end values symbol; $
exit symbol; $
ext fcall symbol; $
ext scall symbol; $
ext table length symbol; $
ext table d.ecl symbol; $
extcall end symbol; $
ext scall id symbol; $
ext fcall i.d symbol; $
extension call symbol; $
extension copy symbol; $
extension end symbol; $
extension i.d symbol; $
extrule decl symbol; $
fail tail id symbol; $
fallow symbol; $
fcall symbol; $
class box id symbol; $
end class box symbol; $
free w reg symbol; $
indexed input parameter symbol; $
indexed output parameter symbol;$
input gate symbol; $
int symbol; $
int fill symbol; $
jump symbol; $
label symbol; $
link symbol; $

add
bfa
ell
csb
cse
chd
css
cmm
car
cig
cvr
dvd
efa
els
end
eva
ext
efc
esc
etl
etd
ece
esi
efi
etc
exc
exe
exi
erl
fti
flw
fcl
cbi
ebx
frw
iip
iop
igt
int
itf
jmp
lab
lnk

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

19

list adm symbol; $ ldm $
list symbol; $ 1st $
loada global symbol; $ lag $
loada stack var symbol; $ las $
loadv constant symbol; $ lvc $
loadv limit symbol; $ lvl $
loadv list elem symbol; $ lvi $
loadv stack var symbol; $ lvs $
loadv variable symbol; $ lvv $
loadw symbol; $ ldw $
manifest constant symbol; $ men $
multiply symbol; $ mul '$
rule id symbol; $ rli $
numerical symbol; $ num $
output gate symbol; $ ogt $
pointer symbol; $ ptr $
program id symbol; $ pid $
restore to output gate symbol; $ rog $
root symbol; $ rut $
source line symbol; $ srl $
scall symbol; $ scl $
stack frame symbol; $ sfr $
status symbol; $ sts $
storew variable symbol; $ swv $
storew list element symbol; $ swi $
storew stack var symbol; $ sws $
string length symbol; $ sln $
string fill symbol; $ str $
subtract symbol; $ sub $
success tail id symbol; $ sti $
target stack frame symbol; $ tsf $
unstack and return symbol; $ unr $
variable symbol; $ var $
zone bounds symbol; $ znb $
zone value symbol; $ znv $

$delimeters$
space symbol; $ " " $
comma symbol; $

' $
end of line; $medium dependent$

$parameters$
new line symbol; $ nln $
same line symbol; $ sln $
rest line symbol; $ rln $
new page symbol; $ npg $
max char symbol; $ mxc $
word size symbol; $ wsz $
max int symbol; $ mxi $
min int symbol; $ mni $
int size symbol; $ isz $
comma-tag symbol; $ com $
space-tag symbol; $ spc $
min addr symbol; $ mna $
max addr symbol; $ mxa $
virt length symbol; $ vln $

20

nil symbol; $ nil $
false symbol; $ fls $
true symbol; $ tru $

add-tag symbol; $ add $
subtr symbol; $ sub $
mult symbol; $ mul $
divrem symbol; $ div $
plus symbol; $ pls $
minus symbol; $ min $
times symbol; $ tms $
incr symbol; $ inc '$
deer symbol; $ dee $
less symbol; $ les $
lseq symbol; $ lsq $
more symbol; $ mor $
mreq symbol; $ mrq $
equal symbol; $ eql $
noteq symbol; $ ntq $
random symbol; $ rnd $
set random symbol; $ srn $
set real random symbol; $ srr $
sqrt symbol; $ sqr $
pack int symbol; $ pki $
unpack int symbol; $ upi $
bool invert symbol; $ biv $
bool and symbol; $ bnd $
bool or symbol; $ bor $
bool xor symbol; $ xor $
left circ symbol; $ lei, $
right circ symbol; $ rci $
right clear symbol; $ rel $
is elem symbol; $ isl $
is true symbol; $ itr $
is false symbol; $ isf $
set elem symbol; $ stl $
clear elem symbol; $ ell $
extract bits symbol; $ exb $
first true symbol; $ ftr $
pack bool symbol; $ pkb $
unpack bool symbol; $ upb $
to ascii symbol; $ tsc $
from ascii symbol; $ fsc $
pack string symbol; $ pks $
unpack string symbol; $ ups $
string elem symbol; $ ste $
string length symbol; $ stl $
compare string symbol; $ ems $
unstack string symbol; $ uns $
previous string symbol; $ pvs $
was symbol; $ was $
next symbol; $ nxt $
previous symbol; $ prv $
list length symbol; $ lsl $
unstack symbol; $ utk $
unstack to symbol; $ ust $

21

unqueue symbol; $ unq $
scratch symbol; $ scr $
get line syllllbol; $ gln $
put line syllllbol; $ pln $
get char symbol; $ gch $
put char syllllbol; $ pch $
put string :symbol; $ pst $
get int symbol; $ gnt $
put int symbol; $ pnt $
get data symbol; $ gdt $
put data symbol; $ pdt $

$other primitives used as parameters$
string; $character sequence

character;
integer.

ALICE program

Sp
co
el

status information

delimited by quotes
quot~s in the string are represented by
quote images ("") $

$digit sequence$

program id symbol, sp, string, el,
$title string$

status information,

values,
end values symbol, el,
data,

communication area, $ends data declarations$

rules,

end symbol, sp, string, el. $title string$

space symbol.
comma symbol.
end of line.

status symbol, sp,
integer, co, $maximal stack frame$
integer, co, $maximal gate size$
integer, co, $number of locations in value table$
integer, co, $number of variables$
integer, co, $number of files$
integer, co, $number of breathing lists$
integer, co, $number of non-breathing lists$
integer, co, $background:

O: No lists on background
I: Lists on background$

22

values

value

manco

operator

location
valref
repr

data
data item

integer, el. $dump:
0: no dump
1: rule dump
2: global dump
4: member dump$

value, [values].

int symbol, sp, location, co, integer, el;
manifest constant symbol, sp,
location, co, manco, el;
char denotation symbol, sp, location, co,
character, el;
string length symbol, sp, location,
co, intege~, el;
ext table length symbol, sp, location,
co, string, el;
operator, sp, location, co,
valref, co, valref, el.

new line symbol;
same line symbol;
rest line symbol;
new page symbol;
max char symbol;
word size symbol;
max int symbol;
min int symbol;
int size symbol;:.
comma-tag symbol;
space-tag symbol;
min addr symbol;
max addr symbol;
virt length symbol;
nil symbol.

add symbol;
subtract symbol;
multiply symbol;
divide symbol.

integer.
integer.
integer.

data item, [data].
constant source symbol, sp, repr,
co, valref, el;
list symbol, sp, repr, co, list type, co,
valref, el;
end list symbol, sp, repr, co,
list type, co, valref, el;
int fill symbol, sp, valref, el;

list info

file info

communication area

rules

rule

return type

extag

string fill symbol, sp, string, el;
fallow symbol, sp, valref, el;
variable symbol, sp, repr, co, valref, co,
repr, co, string, el;
begin file adm symbol, sp, file info, el;
end file adm symbol, sp, file info, el;
numerical symbol, sp, valref, co, valref, el;
pointer symbol, sp, repr, el;
list adm symbol, sp, list info, el;
external table decl symbol, sp,
list info, co, string, el.

repr, co, integer, co, valref, co,
valref, co, valref, co, valref, co,
valref, co, repr, co, string.

repr, co, integer, co, integer, co,
repr, co, string, el.

communication symbol, sp,
repr, co, repr, co, repr, co, string, el,
status information.

rule, [rules] ;
call, [rules] ;
primitive, [rules];
parameter, [rules].

extrule decl symbol, sp, repr, co, extag, el;
root symbol, sp, string, el;
rule id symbol, sp, repr, co, integer, co
integer, co, string, el;
stack frame symbol, sp, integer,
co, integer, el;
success tail id symbol, sp, repr, co,
integer, co, integer, el;
output gate symbol, sp, integer, el;
unstack and return symbol, sp,
integer, co, integer, co, return type, el;
fail tail id symbol, sp, repr, co,
integer, co, integer, el;
copy from input gate symbol, sp, formal, el;
restore to output gate symbol, sp, formal, el.

true symbol;
false symbol.

add-tag symbol;
subtr symbol;
mult symbol;
divrem symbol;

23

24

plus symbol;
minus symbol;
times symbol;
incr symbol;
deer symbol;
less symbol;
lseq symbol;
more symbol;
mreq symbol;
equal symbol;
noteq symbol;
random symbol;
set random symbol;
set real random symbol;
sqrt symbol;
pack int symbol;
unpack int symbol;
bool invert symbol;
bool and symbol;
bool or symbol;
bool xor symbol;
left circ symbol;
right circ symbol;
right clear symbol;
is elem symbol;
is true symbol;
is false symbol;
set elem symbol;
clear elem symbol;
extract bits symbol;
first true symbol;
pack bool symbol;
unpack bool symbol;
to ascii symbol;
from ascii symbol;
pack string symbol;
unpack string symbol;
string elem symbol;
string length symbol;
compare string symbol;
unstack string symbol;
previous string symbol;
was symbol;
next symbol;
previous symbol;
list length symbol;
unstack symbol;
unstack to symbol;
unqueue symbol;
scratch symbol;
get line symbol;
put line symbol;
get char symbol;
put char symbol;
put string symbol;
get int symbol;

call

primitive

minbound
maxbound
optimize

parameter

put int symbol;
get data symbol;
put data symbol.

call id symbol, sp, repr, co, integer, el;
input gate symbol, sp, integer, el;
target stack frame symbol, sp, integer, co,
integer, el;
scall symbol, sp, repr, el;
fcall symbol, sp, repr, co, repr, el;
link symbol, sp, repr, el;
ext scall id symbol, sp, repr, co, extag, el;
ext fcall id symbol, sp,
repr, co, extag, co, repr, el;
ext scall symbol, sp, repr, co, stag, el;
ext fcall symbol, sp,
repr, co, extag, co, repr, el;
extcall end symbol, co, repr, el.

jump symbol, sp, repr, el;
source line symbol, sp, integer, el;
class box id symbol, el;
class box end symbol, sp, repr, el;
class begin symbol, sp, repr, co,
optimize, el; .
class end symbol~ sp, optimize, el;
zone bounds symbol, sp,
minbound, co, maxbound, co, repr, el;
zone value symbol, sp, repr, co, valref, co,
repr, el;
extension id symbol, el;
extension call symbol, el;
extension copy symbol, sp, formal, el;
extension end symbol, sp, repr, el;
exit symbol, sp, repr, co, valref, el;
label symbol, sp, repr, el.

repr, co, valref.
repr, co, valref.
true symbol;
false symbol.

copy v reg symbol, sp, formal, el;
copy a reg symbol, sp, formal, el;
loadv constant symbol, sp,
repr, co, valref, el;
loadv variable symbol, sp, repr, el;
indexed input parameter symbol, el;
loadv list elem symbol, sp, integer, el;

25

26

loadv limit symbol, sp, integer, el;
loadv stack var symbol, sp, integer, el;
loada global symbol, sp, repr, el;
loada stack var symbol, sp, integer, el;
loadw symbol, sp, formal, el;
storew variable symbol, sp, repr, el;
indexed output parameter symbol, el;
storew list element symbol, sp, select, el;
storew stack var symbol, sp, integer, el;
free w reg symbol, el.

27

2.6 Example: ML/1 and STAGE2 symbol table usage

In th:is example the macro-definitions for the macros with macro names
"chd", "int"', "sub" and "css" (which need a symbol table to communicate
with each other) are given in both ML/1 and STAGE2. In the ML/1 version, a
special macro "eval () " is needed to evaluate pieces of text which are
not a param,eter of a macro call.

mcins !.
mcskip mt, []
mcdef params
as [nl opt , nl or nl all]
mcdef chtintO as 48
mcdef chtintl as 49
mcdef chd params
as [mcdefg sym!al. as chtint!a2.
]
mcdef int params
as [mcdefg sym!al. as !a2.
]
mcdef sub params
as [mcset tl = eval(sym!a2.) - eval(sym!a3.)
mcdefg sym!al. as !tl.
]
mcdef eval with ()
as [mcdef tiemp as ! a 1 •
temp]
mcdef css params
as [c!al.: eval(sym!a2.)
]

If we feed ML/1 with these macro definitions and the following ALICE
macros:

chd 1 , 1
chd 2,0
sub 3, 1 , 2
css I, 2
css 2,3

we get the following result:

C]: 48
c2:

28

The STAGE2 version of the same macro definitions is:

• $$'0 (+-*/)
end$.
'f0$
$
$ •
'10$
$
chd $,$.
under x'IO store '28$
$
sub$,$,$.
under x'lO store eval x'20-x'30$
$
int$,$.
under x'IO store '20$
$
under$ store$.
'f3$
$
under$ store eval $.
under 'JO store '24$
$
css $,$.
xcss 'IO,x'20$
$
XCSS $,$.
c'lO: '21$
$$

To prevent STAGE2 from giving an IOCH message, it has to be halted
explicitly, for instance by means of the ALICE end macro. When running
STAGE2 with these macro definitions and the macros:

chd 1 , 1
chd 2,0
sub 3, I , 2
css 1 , 2
css 2,3
end "program name"

STAGEZ gives the same result as ML/I above.

3 Description of the various constructs of ALICE

3. I Values

The only primitive data types in ALEPH are integer and string.
Expressions can assume only constant integral values. So one could expect
that at the stage of ALICE generation, all expressions have been shrunken
to values and that, for example, in ALICE a constant will be declared as
follows:

con <representation of the constant>, <value of the constant>

29

However, at a closer inspection of constant declarations in ALEPH one
comes upon machine dependent constructions such as:

'constant' two power 32 = 256 * 256 * 256 * 256.

'constant' cap= /A/ - /a/.

'constant' middle= (>>table - <<table) / 2.

'table' messages= ("MEDIUM" mclw).

All four constants declared above (two power 32, cap, middle, mclw),
illustrate a different kind of problem for a machine independent ALEPH
compiler. These problems are:

The range of integer values;

2 The character code;

3 The division of the address space into virtual address spaces;
[ALEPH MAN 4. 1.4]

4 The number of machine words occupied by a string of a certain
length.

ALICE provides the possibility for all expressions to be evaluated at
macro time, for the obvious reason that most programs are more often
executed than compiled, ALICE would have been simpler if the expressions
were evaluated at run time. But then the ALEPH compiler would be
inefficient and would generate inefficient code.

30

3.1.1 The range of integer values.

The host and target environments each have ranges of integer values
that they can handle. Such a range depends on the word size of the machine
and on the number of words the installer decides to allocate for an
integer. These ranges can influence the evaluation of expressions.

One scheme for expression evaluation is:

Do as much calculation as possible on the host machine. When the host
machine can no longer handle the value of the expression because of machine
dependencies, send the intermediate results to the target machine. On the
target machine the final evaluation has to be done.

This is unnecessarily complicated.

Because the host machine cannot do the complete evaluation of the
expressions, no calculation at all will be done at the host machine. The
range of integer values of the host machine no longer plays a role. All
integral denotations are handled on the host machine as strings of digits
that have to be sent to the target machine.

The ALICE processor on the target machine must be able to evaluate
the expressions. To this end a very simple expression language has been
added to ALICE. By means of this expression language the four problems
mentioned above, can be solved.

Syntax:

value

value definition

int denotation

calculation

operator

location
valref

,1,.

value definition;
calculation.

int denotation; ...
manifest constant;
char denotation;
string length;
external table length.

int symbol, sp,
location, co, integer, el.

operator, sp, location, co,
valref, co, valref, el.

add symbol;
subtract symbol;
multiply symbol;
divide symbol.

integer.
integer.

Semantics:

value table:

31

The ALICE processor has a table in which it can store the values
represented by value-definition macros and calculation macros. The values
in this value table will not be redefined. The location parameter of a
value macro indicates where to put a value in this table. The location
parameters form an ascending row of integers. They are the indices in the
value table. A result needed for further calculation is referred to by
means of a valref parameter in one of the operand fields of a calculation
macro. The value table is only needed at macro time.

int denotation:

The sequence of decimal digits is converted to an integer value.
This value is stored in the value table at the location referred to by the
location parameter.

calculation:

The result of the operation on the values referred to by the two
valrefs is stored in the value table at the location referred to by the
location parameter.

The operators add, subtract and multiply do what one would expect.
The divide operator conforms to the ALEPH division. The result of an
integer division n = p / q (q # 0) is a value n such that p > (n * q) and
(p - n * q) is as small as possible. " · -
So, 7 I 3 = 2, 7 / (-3) = -2, (-7) / 3 = -3, (-7) / (-3) = 3.

Example: ALICE for calculation of the value of two power 32:

int 1,256
mul 2, I, I
mul 3,2,2

The degree of optimizing done by the ALICE generator has not quite
been decided yet. Somebody, in this case the author, did a beautiful job
of optimizing here and it is not sure whether the compiler will go this
far.

After these macros have been processed, the ALICE processor has
either stored the value 4294867296 in its table at location 3, or it has
emitted an error message. If the value is stored in the table, it can be
used throughout the further code generation, for example as a literal in a
constant source.

It is not required that the ALICE processor evaluate these expression
macros at compile time. It could also let the assembler do the job or even
generate code to evaluate the expressions at the start of the execution of
the program. The location parameter can be used to create a name.

32

3.1.2 The character code

One way to get rid of the problem of the character code is to demand
a specific internal character code, such as ASCII, inside every ALEPH
program and consequently inside the ALEPH compiler. The standard externals
'getchar' and 'putchar' can perform a conversion between the installation
character code and the internal character code. This gives the compiler
the opportunity to calculate with character codes machine independently.

This at first sight attractive idea has two drawbacks. It becomes
hard to read characters efficiently when they have to be handled one by
one. This argument becomes important if one wants to read lines
efficiently. The problem has not even completely vanished, because there
will always be installations with non-ASCII characters available.

The character code will therefore be chosen by the installer and
character denotations are handed over to the target machine via ALICE by
means of character denotation macros.

Syntax:

value definition

char denotation

Semantics:

char denotation.

char denotation symbol, sp, location,
co, character, el.

The result of the conversion from character to character code is
stored in the value table at the location referred to by the location
parameter.

Special care has to be taken for characters, such as comma and space.
They can make the recognition of parameters difficult for the ALICE
processor, since they mix up with the delimiter structure of the macros.
Therefore these characters will be declared in manifest constant macros.
Manifest constant macros are used as an escape out of these exceptions, and
to declare machine dependent constants.

Syntax:

value definition

manifest constant

manco

manifest constant.

manifest constant symbol, sp,
location, co, manco, el.

new line symbol;
same line symbol;
rest line symbol;
new page symbol;
max char symbol;
word size symbol;
max int symbol;

Semantics:

min int symbol;
int size symbol;
comma-tag symbol;
space-tag symbol;
min addr symbol;
max addr symbol;
virtual length symbol;
nil symbol.

33

The value denoted by the manco parameter is stored in the value table
at the location referred to by the location parameter.

Example: ALI.CE code to calculate the value of cap:

chd 4,A
chd 5,a
sub 6,4,5

3.1.3 The address space

The data types in an ALEPH program are integer, string, and lists of
these. The storage unit containing an integer is called a "virtual machine
word", A virtual machine word is mapped on an (implementation dependent)
number of machine words.

ALEPH programs assume the existence of a "virtual address space" for
each list declared. Items in a list are identified by unique addresses,
which are represented by integral values. These integral values are called
"virtual addresses" and are the elements of the virtual address space
associated with the list. A virtual address identifies one virtual machine
word. The virtual address spaces of all lists form the "address space".

The ALEPH programmer can influence the distribution of the virtual
address spaces over the address space by means of size estimates. But he
cannot influence the range of integers available for the address space.
This can only be done by the installer of ALICE.

Because virtual addresses are represented by integers, the range of
integer values must be a superset of the address space. The size of the
address space appears to be the most important measure for the range of
integer values in an implementation.

The association of virtual addresses with lists is done by the
compiler and it must be done in such a way that every list gets enough
virtual addresses associated with it, that is, at least as many virtual
addresses as it will ever have items. It is of course impossible to
predict the needs of a list because the amount of virtual addresses needed
for a list depends on the dynamic behaviour of the program. To help the

34

compiler in making a reasonable guess, the ALEPH programmer writes "size
estimates" in the declaration of his lists.

The virtual address space of a list consists of a contiguous set of
integers. The address space consists of a contiguous set of integers, too.
Because the virtual address spaces of the lists form a partition of the'
address space, a virtual address uniquely identifies a list and it may
identify an item of that list. The question whether a virtual address
points into a certain list can easily be answered by checking whether the
virtual address lies between the min limit and the max limit of the list.

For stacks with an absolute size estimate and tables it is known at
compile time how many virtual addresses they need. Stacks with a relative
size estimate get a virtual address space proportional to their size
estimate. The bounds of the address space can be declared in ALICE by
means of manifest constants (min addr, max addr).

The ALEPH external table does not fit into this scheme, because the
size of an external table can only be derived by inspection of the
machine-dependent string that defines its contents. This must be done by
the ALICE processor when an external table length macro is encountered.

Syntax:

external table length

Semantics:

ext table length symbol, sp, location,
co, string, el.

The string is an exact copy of the string written in the ALEPH
external table declaration. The number of virtual machine words occupied
by the external table is derived by inspection of the string. The value
thus obtained is stored in the value table.at the location referred to by
the location parameter.

It is clear that programs containing external table declarations are
far from portable. The ALEPH compiler itself will therefore not contain
external table declarations.

3.1.4 Strings

The way strings are handled varies from installation to installation,
so it is clumsy to make strict assumptions about the way characters are
packed into machine words. To define a manifest constant giving the number
of characters fitting in a machine word is to assume too much about the way
strings are allocated, because the number of words occupied by a string is
not always the quotient of the string length and that constant.

35

It is, on the other hand, impossible to make no assumptions at all
about the allocation of strings, for one thing because the allocation of a
string influences the range of virtual addresses needed for the list the
string belongs to. It is assumed that all strings of a certain length
occupy the same number of words, no matter which characters they contaiµ or
how strings are allocated. This assumption can bother an installer but it
has to be made, because of the dependence of address calculation and string
length mentioned earlier. The value of mclw (in the example in section
3.1) can be calculated as the sum of the min limit of the table messages
and the number of words occupied by the string "MEDIUM".

Syntax:

value definition

string length

Semantics:

string length.

string len~th symbol, sp,
location, co, integer, el.

The number of virtual machine words occupied by a string containing a
number of characters specified by the second parameter is derived. This
value is stored in the value table at the location referred to by the
location parameter.

36

3.1.5 Example

Suppose the following list declarations occur in an ALEPH program:

'table' powers= ("one" :one,
"ten" : ten,
"hundred" :hundred,
"thousand" :thousand

) .
'stack' [= 5 =] digits,

[30] anonymous operands,
[50] rationals.

The information characterizing a list consists of:

its min limit, (:<)

its left pointer, (<<)
its calibre, (<>)

its right pointer, (>>)

its max limit. (>:)

The following value macros may be generated to divide the address space and
to gather other necessary information.

xxx this is a comment macro to be ignored by the ALICE processor

men I ,mna
xxx :<powers= mna

int 3,1
XXX <>powers =

add 2, I ,3
XXX <<powers = :<powers+ <>powers

stl 25,3
XXX string length("one")

add 21,1,25
xxx one= :<powers+ string length("one")

stl 26,3
xxx string length("ten")

add 22,21,26
xxx ten= one+ string length("ten")

stl 27,7
xxx string length("hundred")

add 23,22,27
xxx hundred= ten+ string length("hundred")

stl 28,8
xxx string length("thousand")

add 24,23,28
xxx thousand= hundred+ string length("thousand")

XXX >>powers = thousand
XXX >:powers = thousand
XXX : <digits = thousand
XXX »digits = thousand

int 8,1
XXX <>digits =

add 7,24,8
XXX «digits = :<digits+ <>digits

int 29,5
XXX length(digits)

add 10,24,29
XXX >:digits = :<digits+ length(digits)

XXX :<anonymous operands = >:digits
XXX >>anonymous operands = >:digits

int 13, I
XXX <>anonymous operands =

add 12, 10, 13
xxx <<anonymous operands
xxx = :<anonymous operands+ <>anonymous operands

men 35,mxa
xxx max addr

sub 36,35,10
xxx virtual left over= max addr - >:digits

int 37,0
xxx initialize sum relative size estimates

int 30,30
xxx relative size estimate anonymous operands

add 38,37,30
xxx sum= sum+ relative size anonymous operands

int 32,50
xxx relative size estimate rationals

add 39,38,32
xxx sum= sum+ relative size rationals
xxx last calculation for sum

dvd 31,36,39

37

38

xxx unit virtual addresses=
xxx virtual left over/ sum size estimates

mul 41,31,30
xxx virtual size anonymous operands
xxx = size estimate* unit virtual addresses

add 15,10,41
XXX >:anonymous operands
XXX = :<anonymous operands + virtual size anonymous

xxx :<rationals = >:anonymous operands
XXX >>rationals = >:anonymous operands

int 18, 1
XXX <>rationals

add 17,15,18
XXX <<rationals = :<rationals + <>rationals

XXX >>rationals = mxa
XXX end of ALICE macros

RESULT:

:<
<<
<>
>>
>:

one
ten
hundred
thousand

powers

1
2
3
24
24

digits

24
7
8
24
10

21
22
23
24

anonymous rationals
operands

10 15
12 17
13 18
10 15
15 35

operands

The entries in these tables indicate the location of the various values.

3.2 Data

After the values have been calculated, the data initialized with
these values can be declared. ALICE contains the following data
declarations:

3.2.1
3.2.1.1
3.2.1.2

3.2.2
3.2.2.1
3.2.2.1.1
3.2.2.2
3.2.2.3

3.2.3
3.2.3.1

Integer
Constant source
Variable

List
List area
List fillings

List administration
External table

File
File administration

39

For all sorts of objects in an ALICE program, such as data objects, a
unique translation-time representation is needed for reference purposes.
This representation ("repr" in the grammar) is an unsigned integer.
Representations can serve the ALICE processor in various ways. It is easy
to make unique names (labels) from them and they serve at macro time for
communication between macros. One set of integers is used to give
representations to both data objects and objects in the rules part.

3. 2. I Integer

3.2.1.1 Constant source

The values calculated in the values part of the ALICE program are
used for various purposes. Some are intermediate results and are no longer
of interest in the data and rules part. Some are used in list and file
administrations and in variable declarations. Others are used to declare
constant sources.

Syntax:

constant source

repr

valref

constant source symbol, sp, repr,
co, valref, el.

integer.

integer.

40

Semantics:

A constant source declares a constant actual parameter of a call,
before it is going to be used as such in the rules part of ALICE. The
value of the constant source is in the value table at the location referred
to by the valref parameter.

Installation hints:

Depending on the implementation and the facilities the assembler has
to offer, the ALICE processor may act in various ways:

hint 1.
If the implementation views constant sources just as variables that

happen not to change their value, the ALICE processor will generate
assembly data declarations from the constant sources. The representation
will then serve to generate a unique label for the constant. When code for
picking up the constant actual parameter has to be generated, this can be
done easily because the ALICE macro for doing this contains the
representation of the constant source again.

hint 2.
If the assembler offers a suitable literal mechanism, no code need be

generated from the constant source macros. When the code to pick up the
constant actual parameter is generated, the valref also supplied in the
macro for doing this will serve to refer to the value in the value table.
From this value a literal can be generated.

hint 3.
In most cases the assembler provides a literal mechanism for numbers

up to a certain maximum value, for instance because both opcode and literal
have to fit in one machine word. A mixture of 1. and 2. will then do the
job.

Example:

ALEPH: 0 -> counter

ALICE

values part

int 5,0

data part

css 21 , 5

rules part

lvc 21,5

macro time action

hint 1. and 2.
store value O in symbol table at location 5

hint 1.
generate label from representation
get value from symbol table location 5
generate data declaration

hint 2.
do nothing

hint 1.
use repr to refer to data declaration

hint 2.
get value from symbol table at location 5
use value to generate a literal

41

42

3.2.1.2 Variable

From a variable macro the ALICE processor will generate an assembler
data declaration. The value used to initializing the variable has bee~
calculated in the values part.

Syntax:

variable declaration

Semantics:

variable symbol, sp, repr, cq,
valref, co, repr, string, el.

A variable declaration causes the allocation of one virtual machine
word represented by the first parameter and initialized with the value in
the value table at the location referred to by the second parameter. The
third parameter is the representation of the next variable to be declared.
The fourth parameter contains the ALEPH variable-tag in string··quotes. If
the third parameter is equal to zero, there is no next variable
declaration.

Installation hints:

The first parameter will be used to generate a label, the second to
generate a data declaration. If a global dump is requested (see section
3.4 status macro), the third parameter serves to generate a pointer to the
next variable and the fourth parameter serves to generate a string
containing the ALEPH variable-tag.

Example:

ALEPH: 'variable' counter= O.

ALICE

values part

int 5,0

macro time action

store value O in value table
at location 5

data part

var 39,5,40,"counter"

3.2.2 List

3.2.2.1 List area

generate label from representation 39
get value from symbol table location 5
and generate data declaration
if global dump is requested generate
pointer to next variable and
string with the name of this variable

43

The list areas are used to set up the physical address space in which
the lists are floating, and to initialize these lists with their initial
list filling. For each ALEPH list a list area will be declared giving the
initial fillings consisting of integer values already calculated in the
values part, or of strings. Information about the list type and the size
of the virtual address space is supplied at the beginning and end of the
area. A list is called "breathing" if its size can change at run time,
that is if it is a stack with a relative size estimate. When and how the
physical address space is actually set up depends on the implementation.

Syntax:

list areas

list area

list fillings

list filling

list area,
[list areas].

list symbol, sp, repr, co,
list type, co,
valref, el,
[list fillings],
end list symbol, sp, repr, co,
list type, co, valref, el.

list filling, [list fillings].

int fill symbol, sp, valref, el;

string fill symbol, sp, string, el;

fallow symbol, sp, valref, el.

44

Semantics:

The parameters of the first macro of a list area, a list macro, have
the following meaning:

First parameter, repr: the representation of the list.

Second parameter, list type: an integer
0: not breathing, no background
1: not breathing, background
2: breathing, no background
3: breathing, background

If background is specified there is a background pragmat identifying
the list in the ALEPH program.

An int fill macro causes the allocation of a virtual machine word,
initialized with the value in the value table at the location referred to
by the valref parameter.

A string fill macro causes the allocation of a number of virtual
machine words, initialized with a string value denoted by the string
parameter.

A fallow macro causes the allocation of a number of uninitialized
virtual machine words. This number is found in the value table at the
location referred to by the valref parameter.

The three parameters of the last macro of a list area, an end list
macro, have the same meaning as those of J list macro.

Installation hints:

Depending on the target machine, the operating system, and the rest
of the ALICE implementation, the physical address space can be implemented
in various ways:

hint I.
Allocate a contiguous chunk of storage for the lists. Put all initial

list fillings of the lists right behind each other in the chunk of storage.
Let a run-time routine shuffle the lists.

hint 2.
Allocate one chunk of storage as in hint 1. A non breathing list

gets a piece of that chunk just fitting its needs, while a breathing list
gets a number of extra uninitialized storage locations. This can be either
a constant number or a number proportional to the number of virtual
addresses associated with the list. The list shuffling is done by the
same run-time routine as in hint 1.

45

hint 3.
Implement a paging scheme for the lists. Every list gets one (or

more) page(s) in core, while a complete virtual address space is allocated
on disk.

hint 4.
If the operating system provides a suitable virtual addressing

mechanism, map the virtual ALEPH addresses on the virtual machine
addresses. In this case the physical address space is equal to the virtual
address space.

hint 5.
How to deal with the background information depends heavily on the

implementation. It is formally correct to ignore it completely. If, for
instance, the physical address space is implemented according to hint 3,
the background information has no meaning. Only in cases where lists can
both be allocated in core and on background, the background information
could be of use.

hint 6.
Most implementers will have to deal with machines having a von

Neumann store, whether they like it or not. In that case all lists will
probably be allocated in one contiguous physical address space. A list
shuffling routine is then needed as part of the run-time system to prevent
the breathing lists from bumping into each other. Because this problem is
very likely to arise for a lot of machines, such a list-shuffling routine
is available in ALEPH (and consequently in ALICE).

3.2.2.2 List administration

A list administration macro is used to generate the administration
information of a list. The correspondence between a virtual address and a
physical address must be derived from this information, no matter how the
lists are allocated. The limits must be available in the administration,
because they can be used as actual parameters at run time. The type, the
limits and the maximal virtual address are inspected when a list is
extended. The limits are updated when the size of the list is changed.

Syntax:

list administration

list info

list adm symbol, sp,
list info, el.

repr, co, list type, co,
valref, co,
valref, co,
valref, co,
valref, co,
valref, co,
repr, co,
string.

46

Semantics:

The first parameter of a list administration is the representation of
the list.

A list administration macro causes the allocation of a data structure
called "list administration" such that at least the following information
can be kept in it:

The list type, specified by the list type parameter. This parameter has the
same meaning as the list type parameter of a list macro.

The lowest virtual address associated with the list: called "virtual min
limit". This value is found in the value table at the position referred to
by the third parameter.

The highest virtual address associated with the list: called "virtual max
limit". This value is found in the value table at the position referred to
by the fourth parameter.

The virtual address of the left most block in the list: called "virtual
left". This value is found in the value table at the position referred to
by the fifth parameter.

The virtual address of the right most block in the list: called "virtual
right". This value is found in the value table at the position referred to
by the sixth parameter.

The calibre of the list, that is: the number of elements in one block of
the list. This value is found in the value table at the position referred
to by the seventh parameter.

Information to convert a virtual address associated with the list to the
corresponding physical address.

The address of the next list administration. The eighth parameter contains
the representation of the next list administration or zero.

The ALEPH list-tag. The ninth parameter contains the ALEPH list-tag in
string quotes.

Installation hints:

hint 1.
The representation of the list can be used to generate a label of the

list administration, and to make the address of the list area (same
representation) available in the list administration.

hint 2.
The ALEPH list-tag is needed for the implementation of data files

(see installation hints of file administration).

47

hint 3.
In most implementations not the whole virtual address space is mapped

in core. In those cases in comes handy to have two extra limits, for
instance called "bumpmin" and "bumpmax", in the list administration,
indicating which portion of the virtual space of the list is mapped in
core. If, for instance, an implementation according to hint 3. in section
3.2.2.1 is chosen, bumpmin and bumpmax are the virtual addresses of the
beginning and end of the core page.

Example:

Suppose the lists are allocated in one chunk of contiguous storage.
A list is labeled: l<repr of list>
That means: the virtual machine word following the virtual machine word
labeled l<repr> is the left most element of the left most block of the
(initial) list. The virtual address of the left most block of a list is the
virtual left of the list. To convert a virtual address to a physical
address, the mixed expression:

l<repr> - virtual left+ calibre

is added to that virtual address. This mixed expression is also kept in the
list administration.

3.2.2.3 External table

An external table is declared by one'macro, very much alike a list
administration macro. The external table macro has one more parameter: the
ALEPH string containing information about the filling of the table. What,
exactly, is in the string depends on the particular implementation and
cannot be described machine independently. It could be a number of data
declarations in assembly language, or an external reference to be satisfied
by the local loader, or an access routine. The ALICE processor must
generate an administration, whose layout does not differ from the
administration of a normal table, because external tables and tables can
both be passed as actual parameters to the same formal table parameter.

Syntax:

external table decl

Semantics:

external table decl symbol, sp,
list info, co,
string, el.

An external table macro causes the allocation of a list
administration and a list area. The first nine parameters (list info), have
the same meaning as the parameters of a list administration macro. The
last parameter is an exact copy of the ALEPH string of the external table.
From this parameter a list area must be generated.

48

Installation hints:

A portable ALICE program, such as the ALEPH compiler, will not
contain external table declarations. The implementation of this macro is
therefore not needed.

3.2.3 File

3.2.3.1 File administration

A file administration macro serves to generate book keeping
information and buffers for a file. The file administrations are chained,
just like the list administrations, so that they can be easily initialized
or post processed.

Syntax:

file administrations

file administration

file info

file type

numerical area

pointer area

file administration,
[file administrations].

begin file adm symbol, sp, file info, el,
[pointer area],
[numerical area],
end file adm symbol, sp, file info, el.

repr, co,
file type, co,
repr, co,
string.

integer.

numerical symbol, sp,
valref, co,
valref, el,
[numerical area].

pointer symbol, sp, repr, el,
[pointer area].

Semantics:

The parameters of the first macro of a file administration, a begin
file administration macro, have the following meaning:

First parameter, repr: the representation of the file.

Second para.meter, file type: an integer
0: scratch charfile
1: scratch datafile
2: input charfile
3: input datafile
4: output charfile
5: output datafile
6: input/output charfile
7: input/output datafile

If input is specified, the only permitted action is reading.
If output is specified, the only permitted action is writing.
If input/output is specified, both reading and writing are permitted.

49

If scratch is specified, the file is an input/output file which will not be
available after the execution of the program.

If charfile is specified, the items to be read or written are characters,
represented by (small) integers according to the character code chosen by
the installer.

If datafile is specified, the items to be i-·ead or written consist of an
integer value and an indication about its meaning. This indication is
either "numerical" in which case the integer value stands for itself, or it
is the ALEPH name of a list in which case the integer value is an offset
from the left of the list.

Third parameter, repr: the representation of the next file administration
or zero.

Fourth parameter, string: the ALEPH string from the file declaration.

Pointer macros and numerical macros specify a number of "zone"s. A
zone is a contiguous set of integers.
A numerical macro specifies a zone by supplying two valrefs. The first
valref refers to the minimum of the zone, while the second refers to the
maximum of the zone.
A pointer macro specifies a zone by supplying the representation of a list.
The zone is the virtual address space of the list.

When a file is used for reading, each item delivered will belong in one of
the zones.

When a file is used for writing, each item offered must belong in one of
the zones.

50

If the file type specifies charfile, there will be no pointer macros.

The parameters of the last macro of a file administration, an end file
administration macro, have the same meaning as those of a begin file
administration macro.

Installation hints:

hint 1.
If the operating system provides a way to handle character files

efficiently, for instance by packing a number of characters in one word,
this facility can be used for the implementation of charfiles.

hint 2.
The data item of a datafile can be implemented in two ways.

a) The data item can consist of an integer value and a Boolean value
indicating that the integer must be considered as a virtual address. In
that case the file will begin with heading information consisting of
triples:

file name virtual min limit virtual max limit.

b) The data item can consist of two integer,values. The first integer value
is a stripped virtual address, that is a virtual address minus the min
limit of the list it pointed in. The second integer indicates in which
list the virtual address pointed. Here the the file will begin with heading
information consisting of file names.

When a data item is read, the following actions have to be performed:

1. Find out whether the data item is a pointer (The Boolean is~
or the second integer is positive) or not.

2. If it is a pointer, identify the list name.
In the first case this is done by comparing the virtual address with
the virtual min limits and max limits of the heading information. In
the second case it is done by selecting the right file name from the
heading information.

3. Find the identical list name in the list administrations.
If the list name from the file is not identical to one of the list
names in the program, the situation is erroneous.

4. Relocate the pointer.
In the first case this is done by subtracting the old virtual min
limit available in the file heading and adding the virtual min limit
of the identified list. In the second case this is done by adding
the virtual min limit of the identified list.

51

3.3 Rules

3.3.1 Introduction

In order to indicate the reasons behind the various ALICE constructs,
the semantics of a call in ALEPH will be discussed first. The ALEPH
version of a subroutine call differs from calls in most programming
languages in that the result of a call influences the flow of control. An
affix form (subroutine call) identifies a rule (subroutine) to be executed
and describes the actual parameters. The execution of the rule starts with
copying the actual input parameters of the affix form to the private stack
frame of the rule. Then the actual rule is executed. The execution of the
actual rule can succeed or fail. If it succeeds the output parameters are
restored to the output parameters of the affix form. If it fails the output
parameters will not be restored. The affix form succeeds or fails if the
rule called succeeds or fails, respectively.

The basic building blocks of an ALEPH rule are called "member"s. The
term member covers affix forms as well as language primitives such as
assignment. Primitives obey the same laws in terms of flow of control as
affix forms. Every member is connected to two positions in the rule: a
position for a successful execution of the member and a position for a
failing execution. Such a position in a rule can either be a member or the
end of a rule body. In the latter case the execution of the rule has come
to an end, and the result is passed to its caller. If the position is a
member, the success or failure of the member is of no further interest;
control simply continues. A member calling an action or a function needs
only be connected to one position, because actions and functions never
fail.

Compound members have not been taken into account yet. In the
semantics of ALEPH a compound member is merely a call to an implicitly
defined rule,. This does not mean that compound members are translated as
such. There are no compound statements in ALICE. An ALEPH compiler must
use other facilities to translate them. Consider, for example, the ALEPH
rule

'predicate' p: qi, al, a2;
(q2; q3), a3, q4, :p;
q5.

where the qi's stand for members that can fail and the ai's for members
that cannot fail. The table below states the connections between the
various members of this rule.

&ilBL!OTH!:EK \':,.~: .. ,, ::i
ftl·,A,..1 l i: :-UJ/\Nl

52

true false
address address

ql al q2
q2 a3 q3
q3 a3 q5
q4 :p
q5
al a2
a2
a3 q4
:p ql

The dot "." means the end of the rule body.

ALEPH rules are translated to ALICE rules. An ALICE rule consists of
a rule head, a rule body, and a rule tail. The rule head identifies the
rule and copies input parameters to the private stack frame of the rule.
The rule body consists of a sequence of statements with explicit flow of
control using labels, jumps, and true and false-addresses in calls. Rules
and labels have unique integer representations, like all ALICE objects.
The rule tail either restores output parameters from the private stack
frame of the rule and returns success to the caller or it returns failure
to the caller.

The following is a sketch of the translation of the ALEPH 'predicate'
p above. The macros for rule identification, call, and rule termination
have not been worked out in detail. They represent groups of ALICE macros.
A group of ALICE macros describing a call has been written down
symbolically as:

call <rule called>, <true address>, <false address>

where the false address is omitted if the call cannot fail and the
representation of the address of the next sequential instruction is zero.

rule <p>
label 1
call <ql>,0,4
call <al>,O
call <a2>,2
label 4
call <q2>,5,0
call <q3>,0,6
label 5
call <a3>,0
call <q4>,0,3
jump 1
label 6
call <q5>,0,3
success-tail 2
fail-tail 3

53

3.3.2 The ALICE abstract machine

The s1:!mantics of ALICE will be described in terms of an abstract
machine, the ALICE ABSTRACT MACHINE (A.A.M.). The parts of the A.A.M. will
be introduced now.

The A.A.M. has a memory in which machine code and the data structures
described in section 3.2 are allocated. These data structures are addressed
via their representation.

Furthermore, the A.A.M. has a stack, called the "run-time stack". On
this run-time stack the formal and local parameters of the rules in
execution, and the return addresses to their callers are kept. Formals and
locals are addressed by means of integers, called "stack position".

A sequence of machine words is used to pass parameters to and from
the run-time stack. In real machines this can be a contiguous sequence of
memory locations, or a number of registers, or the run-time stack itself.
In the A.A.M. a special device is used for this purpose. It is called the
"gate", and it is manipulated in stack fashion. Elements on the gate have
integer addresses starting from one. These addresses are, strictly spoken,
superfluous because the gate is treated like a stack, but when the gate is
mapped on a real machine these integers can be practical. When the gate is
used to pass parameters to the run-time stack, it is called the "input
gate". When it is used to pass parameters back to the caller, the gate is
called the "output gate".

To load the actual parameters from memory and to stack them on
contiguous positions of the gate, two abstract machine registers are used.
One register, the "v-register" can hold an .integer value. The other one,
called "a-register", can hold the address of an administration. The
description of an input parameter consists of one or more statements to
load the a-register or v-register, followed by one statement to store the
contents of the a-register or v-register on a specific position of the
gate.

During the execution of a call, one position on the gate corresponds
to one position on the run-time stack. For some implementations it may
well be that the position on the run-time stack must be known by the
caller, for instance because the actual parameters are pushed directly on
the run-time stack. Therefore, both gate position and run-time stack
position are given in the statements to store the contents of the a
register or v-register on the gate. Gate position and stack position form
a pair of integers, which are always supplied together. This pair of
integers is called a "formal".

To unstack an output parameter from the gate another abstract machine
register is needed. This register, called the "w-register" can hold an
integer value. The description of an output parameter consists of one or
more statements to load thew-register, eventually with the aid of the a
register or v-register, followed by one statement to store the contents of
thew-register into memory.

54

M a-reg +-+ r
u

E v-reg n

M t
w-reg i

0 m
e

R
s

y t
a
C

k

The ALICE abstract machine

3.3.3 Outline of an ALICE rule

Syntax:

rule decl

rule head

rule body

statements

statement

rule tail

rule head, rule body, rule t-ail.

rule id,
stack frame,
[copies from input gate].

statements.

statement,
[statements].

call;
extcall;
primitive.

success tail,
[fail tail] •

55

The ALICE macros making up a rule are divided in three groups: rule
head macros, rule body macros, and rule tail macros. The rule head macros
identify the rule, supply debugging information and describe the
correspondence between the input gate and the run-time stack frame of the
rule. The rule body consists of a sequence of statements. A statements is
either a call to another ALICE rule, or a call to an external rule, or an
ALICE primitive. If the rule cannot fail, the rule tail consists of one
section: a success tail. If the rule can fail, the rule tail consists of a
success tail and a fail tail. In the success tail the correspondence
between run-time stack frame and output gate, unstacking, and returning
success is described. In the fail tail unstacking and returning failure is
described.

3.3.4 Rule head

Syntax:

rule id

rule type

recursion

stack frame

copies from input gate

rule id symbol, sp, repr, co,
rule type, co, recursion, co, string, el.

integer.

integer.

stack frame symbol, sp,
integer, co, integer, el.

copy from input gate,
[copies from input gate].

56

copy from input gate

formal

Semantics:

copy from input gate symbol, sp,
formal, el.

integer, co, integer.

The parameters of a rule id macro have the following meaning:
First parameter, repr: the representation of the rule.
Second parameter, rule type: an integer:

0: the rule cannot fail
1: the rule can fail

Third parameter, recursion: an integer:
0: non recursive rule
1: recursive rule

Fourth parameter, string: The ALEPH rule tag and formal affix sequence in
quotes.

A stack frame macro declares the number of formals and locals to be
allocated on the run-time stack. The first parameter denotes the number of
formals, the second denotes the number of locals.

For every input parameter there will be one copy from input gate
macro. A copy from input macro causes popping of one value from the gate
and copying it to a position of the run-time stack. The first parameter
denotes the position one the gate, the second parameter denotes the
position one the run-time stack. The position on gate parameters form a
descending row, from the number of input parameters to one.

Installation hints:

hint 1.
The representation of the rule serves to generate a label. The string

of a rule id macro is needed when debugging information must be generated,
because a global dump is requested (see section 3.4 status macro).

How the stack frame and copy from input gate macros are used depends
on the implementation of the calling mechanism. Throughout this section two
models for the implementation of the calling mechanism will be described:
In the first model the role of the gate is played by registers rl, r2, •••
In the second model the parameters are passed directly on the run-time
stack, that is, the way from v-register (or a-register), via gate, to run
time stack is cut short.

hint 2.
If the parameters are passed in registers, the stack frame macro

causes the allocation of a number of machine words for the formals and
locals on the run-time stack, and the pushing of the return address, passed
by the caller, on the run-time stack.

A copy from input gate macro causes a move from the register
indicated by the first parameter to the run-time stack position addressed
by the second parameter.

hint 3.
If the parameters are passed directly on the run-time stack, the

caller will do that. The only thing that may be done in the rule head is
pushing the return address on the run-time stack.

3.3.5 Rule tail

Syntax:

rule tail

success tail

success tail id

output gate creation

restores to output gate

restore to output gate

unstack and return true

fail tail

fail tail id

success tail,
[fail tail].

success tail id,
output gate creation,
[restores to output gate],
unstack and return true.

success tail id symbol, sp, repr, co,
rule type, co, recursion, el.

output gate symbol, sp, integer, el.

restore to output gate,
[restores to output gate].

restore to output gate symbol, sp,
formal, el.

unstack and return symbol, sp,
integer, co, integer, co, true symbol, el.

fail tail id,
unstack and return false.

fail tail id symbol, sp, repr, co,
rule type, co, recursion, el.

unstack and return false: unstack and return symbol, sp,
integer, co, integer, co, false symbol, el.

Semantics:

The parameters of a success tail macro have the following meaning:
First parameter, repr: the representation of the success tail.
Second parameter, rule type: see rule id macro.
Third parameter, recursion: see rule id macro.

An output gate macro declares the number of output parameters, and
consequently the size of the output gate.

57

For every output parameter there will be one restore to output gate
macro. A restore to output gate macro causes stacking of one formal output
parameter on the ga_te. The first parameter denotes the position on the
gate, the second parameter denotes the position on the run-time stack.

58

The parameters of an unstack and return macro, have the following
meaning:
First parameter, integer: the number of formals on the run-time stack.
Second parameter, integer: the number of locals on the run-time stack.
Third parameter, true or false: result of the execution of the rule.

The parameters of a fail tail macro have the following meaning:
First parameter, representation of the fail tail.
Second parameter, rule type: see rule id macro.
Third parameter, recursion: see rule id macro.

Installation hints:

hint 1.
The representations of success tail and fail tail serve to generate

labels. In the code generated by jump macros and call macros there will be
jumps to these labels.

hint 2.
If the parameters are passed in registers, the create output gate

macro informs how many registers will be needed for that. A restore to
output gate macro causes a move from the run time stack position addressed
by the second parameter to register r<first parameter>.

hint 3.
If the parameters are passed on the run-time stack, the caller will

restore the output parameters.

hint 4.
The result of the execution of a rule (success or failure) can be

reported to the caller in two ways:
a) There is a register or memory location allocated for this purpose. The
rule tail assigns true or false to it, and the caller tests it.
b) Depending on success or failure the rule returns to a different address.
For instance, in the fail tail a jump to the return address is generated,
while in the success tail a return to the next instruction is generated.

hint 5.
The tricks in hint 4 are only needed if the rule can fail (rule

type).

Example:

ALEPH:

'predicate' p + >i + o> + >io> - 1:

pis a recursive rule.

The table below shows the corresponding ALICE rule head and tail.
Instead of the three-letter representations for the macro names, more
readable tags are used.

rule-id 1000,1, 1,"p+>i+o>+>io>"
stack-frame 3,1
copy-from-gate 2,3
copy-from-gate 1,1

succ-tail-id 1015,1,1
output-gate 2
restore-to-gate 1,3
restore-to-gate 2,2
unstack-return 3,1,true
fail-tail-id 1016
unstack-return 3,1,false

59

60

3.3.6. Calling a rule

Calling a rule proceeds as follows:

1. Identification of the rule to be called.
2. Stacking the actual input parameters on the (input)' gate.
3. (subroutine) jumping to the rule.
4. Upon return:

if the rule has failed
continuing at the false address

else
unstacking the output parameters from the output gate
continuing at the true address

The macros concerning parameter passing will be discussed in detail
in the next section.

Syntax:

call

call id

input gate creation

target stack frame

scall or £call

link

Semantics:

call id,
input gate creation,
target stack frame,
[copies to input gate],
scall or £call,
[restores from output gate],
link.

call id symbol, sp, repr, co, rule type, co,
recursion, el.

input gate symbol, sp, integer, el.

target stack frame symbol, sp,
integer, co, integer, el.

scall symbol, sp, repr, el;
£call symbol, sp, repr, co, repr, el.

link symbol, sp, repr, el.

The parameters of a call id macro have the following meaning:

First parameter, repr: representation of the rule to be called. Second
parameter, rule type: an integer:

0: the rule to be called cannot fail
1: the rule to be called can fail

Third parameter, recursion: an integer:
0: the rule to be called is not recursive
I: the rule.to be called is recursive

An input gate macro declares the number of input parameters, and
consequently the size of the input gate.

61

A target stack frame macro declares the number of formals and locals
of the rule to be called. The first parameter denotes the number of
formals, the second denotes the number of locals.

If there is a scall macro, the rule to be called cannot fail (rule
type = 0). If there is a fcall macro the rule to be called can fail (rule
type= 1). The first parameter of a scall macro or fcall macro is the
representation of the rule to be called. The second parameter of a fcall
macro is the representation of the false address of the call.

The parameter of a link macro is the true address of the call.

Installation hints:

hint 1.
If the parameters are passed in registers, the input gate macro

informs how many registers will be needed for that.

hint 2.
If the parameters are passed directly on the run-time stack, the

target stack frame macro supplies the necessary information to build up the
stack frame of the rule to be called.

hint 3.
The scall macro will generate code to pass the return address to the

rule to be called, and to jump to the rule.

hint 4.
The fcall macro will generate code to pass the return address to the

rule to be called, and to jump to the rule. The code on the return address
depends on how the result (success or failure) of the execution of the
called rule is returned to the caller. If it is returned in a register or
memory location (hint 4 a in the previous section), there will be a test
and a conditional jump to the false address. In the other case (hint 4 b
in the previous section) there will be just a jump to the false address.

62

3.3.7 Parameter passing

3.3.7.1 Actual input parameters

To stack the actual input parameters on the gate, the v-register and
a-register are used.

Syntax:

copies to input gate

copy to input gate

copy val to input gate

load val in v reg

load simple in v reg

copy to input gate,
[copies to input gate].

copy val to input gate;
copy addr to input gate.

load val in v reg,
copy v reg to input gate.

load simple in v reg;
load indexed element in v reg.

load constant in v reg;
load variable in v reg;
load stack var in v reg;
load limit in v reg.

copy v reg to input gate: copy v reg symbol, sp, formal, el.

copy addr to input gate: load addr in a reg,

load addr in a reg

copy a reg to input gate.

load global addr in a reg;
load stack var in a reg.

copy a reg to input gate: copy a reg symbol, sp, formal, el.

formal

load constant in v reg

load variable in v reg

load stack var in v reg

position on stack

integer, co, integer.

loadv constant symbol,

loadv variable symbol,

loadv stack var symbol,
position on stack, el.
integer.

load addr in a reg,

sp, repr, co,

sp, repr, el.

sp,

val ref,

load limit in v reg

limit type
loadv limit symbol, sp, limit type, el.
integer.

el.

load indexed element
in v reg

load list element in
v reg sequence

load list element
in v reg

load global addr
in a reg

load stack var
in a reg

Semantics:

indexed input parameter symbol, el,
load simple in v reg,
load list element in v reg sequence.

load list element in v reg,
[load list element in v reg sequence].

load addr in a reg,
loadv list elem symbol, sp, integer, el.

loada global symbol, sp, repr, el.

loada stack var symbol, sp,
position on stack, el.

A loadv constant macro causes the value of the constant source,
described by the parameters of the macro, to be loaded in the v-register.
The valref in the loadv constant macro refers to a location in the value
table. The repr in the loadv constant macro is the representation of the
constant source.

63

A loadv variable macro causes the value of the variable, represented
by the repr parameter of the macro, to be loaded in the v-register.

A loadv stack var macro causes the value of the stack variable
(formal or local parameter) of the caller, addressed by the position on
stack parameter of the macro, to be loaded in the v-register.

A loada global macro causes the address of the administration of a
list or file, represented by the repr parameter of the macro, to be loaded
in the a-register.

A loada stack var macro causes the value of the stack variable
(formal or local parameter) of the caller, addressed by the position on
stack parameter of the macro, to be loaded in the a-register.

A loadv limit macro causes the value of a limit to be loaded in the
v-register. The a-register contains the address of the list administration
from which this value must be retrieved. The limit type parameter indicates
which limit has to be retrieved:

0: left
I: right
2: calibre

An indexed input parameter macro has no effect on the ALICE abstract
machine. It announ~es that an list element is going to be loaded in the v
register.

64

A loadv list elem macro causes the v-register to be loaded with a
list element. The a-register contains the address of the list
administration. The v-register contains the virtual address of the block
containing the list element. The integer parameter indicates which element
of the block has to be selected:

0: right most element
i: (i-1)-th right most element

A copy v reg to input gate macro causes the contents of the v
register to be stacked on the gate. The first integer parameter of this
macro denotes on which gate position the v-register must be stacked. The
second integer parameter denotes on which run-time stack position the
contents of the v-register will be copied.

A copy a reg to input gate macro causes the contents of the a
register to be stacked on the gate. The first integer parameter of this
macro denotes on which gate position the a-register must be stacked. The
second integer parameter denotes on which run-time stack position the
contents of the a-register will be copied.

The value of the a-register and v-register can not be used more than
once.

Installation hints:

hint I.
If the parameters are passed in registers use can be made of the

stack wise treatment of the gate. The register allocated for the v-register
or a-register can be the same as the one ,that will be allocated for the
next position of the gate, so that a copy to gate macro will generate no
code at all. In that case it is necessary to know which register will be
copied to the gate before the copy to gate macro is read. Because of the
simple structure of ALICE this can indeed be known. The figures below shows
which registers have to be allocated for the a-register and v-register when
the first parameter is stacked on the gate.

loada
global

rl
loadv 1--------1 copy
constant v-reg

loadv
var

to gate

rl
1------~ copy
i-----=-~v-reg .__ ___ to gate

loadv
stack
var

rl

rl
1--------1 copy
1------=-~v-reg

to gate

rl

rl

rl

rl

lo adv copy 1----------,
limit v-reg

to gate

65

rl

66

rl
rl E; loada a-re loadv copy

stack limit v-reg rl
var to gate

rl

load simple v-reg loadv rl rl
copy

list v-reg v-reg rl
to gate

B
element

loada a-re
global

r2

rl

load simple loadv rl rl
copy

list v-reg . v-reg v-reg rl
to gate

9
element

loada a-reg
stack
var r2

hint 2.
If the parameters are passed directly on the run-time stack and the

machine provides moves from memory to memory, no registers at all have to
be allocated for the a-register and v-register. for instance, from the
macros:

loadv-var 11
copy-v-reg 1,3

an ALICE translator could generate:

move vll,stackpointer-3

hint 3.

67

Because the values of the a-register and v-register do not have to be
remembered, efficient code can be generated. For instance when a limit has
to be retrieved, the register playing the role of the a-register firstly,
can be used to play the role of the v-register later on (see hint 1).

3.3.7.2 Actual output parameters

To store an output gate element in an indexed element first the
address of that indexed element must be calculated. This is described by
the same macros as for an indexed input parameter. From the above it is
clear that both a-register and v-register are needed for this purpose.
This is why a special output register, thew-register, is needed in the
abstract machine.

Syntax:

restores from
output gate restore from output gate,

[restores from output gate].

restore from output gate: copy gate elem tow reg,
store w reg sequence,
free w reg.

store w reg sequence store w reg, [store w reg sequence].

copy gate elem tow reg loadw symbol, sp, formal, el.

store w reg store w reg in variable;
store w reg in list element;
store w reg in stack var.

store w reg in variable storew variable symbol, sp, repr, el.

68

store w reg in
list element

store w reg in
stack var

free w reg

Semantics:

indexed output parameter symbol, el,
load simple in v reg,
[load list element in v reg sequence],
load addr in a reg,
storew list element symbol, sp, integer, el.

storew stack var symbol, sp,
position on stack, el.

free w reg symbol, el.

A copy gate elem tow reg macro causes the top element of the gate to
be popped from the gate and to be loaded in thew-register. The first
integer parameter denotes the position of the output parameter on the gate,
the second integer parameter denotes the position on the run-time stack.

A storew variable macro causes thew-register to be stored in the
variable, represented by the repr parameter of the macro.

A storew stack var macro causes thew-register to be stored in a
stack variable (formal or local parameter of the caller), addressed by the
position on stack parameter of the macro.

An indexed output parameter has no effect on the ALICE abstract
machine.

A storew list element macro causes thew-register to be stored in a
list element. The a-register contains the address of the administration of
the list. The v-register contains the virtual address of the block
containing the list element. The integer parameter of the macro indicates
which element of the block has to be selected just as the integer parameter
of a loadv list elem macro.

69

Installation hint:

hint 1.
If the parameters are passed in registers, the register allocated for

thew-register can the same as the register allocated for the top of the
gate. If there are, e.g., two output parameters, the gate consists of rl
and r2. When restoring the first output parameter, which is located in r2,
the role of thew-register is played by r2, too. The figure below shows
the register allocation in case of a list element as actual output
parameter.

r2
copy
gate w-reg store free

r3 w-reg w-reg

load v-re in
simple r4

list
loada a-reg
global elem

70

Example:

ALEPH: 'predicate' p + >i + o> + >io> - 1:

'stack' [l](sl,s2)st.

'variable' res= O.

The table below shows the ALICE call macros corresponding to the
ALEPH affix form "p +<<st+ res+ sl*st[>>st]". Instead of the three
letter ALICE symbols, more readable tags are used.

call-id
input-gate
target-st-frame
loada-global
loadv-limit

1000, 1, 1
2
3, 1
50
0

copy-v-reg 1,1
indexed-input-parameter
loada-global 50
loadv-limit 1
loada-global 50
loadv-list-el 0
copy-v-reg
fcall
copy-gt-to-w
storew-var

2,3
1000,510
2,2
100

freew
indexed-output-parameter
copy-gt-to-w 1,3
loada-global 50
loadv-limit 1
loada-global 50
storew-list-el 0
freew
link 0

71

3.3.8 Primitive rules

ALICE has "externals" and "primitives". They can be considered as the
operations of ALICE. Primitives are not declared, externals are. The
ALICE-primitives are the operations that have parameters that cannot be
described as the parameters of ALICE calls. The externals have exactly the
same parameter descriptors as the ALICE calls.

The parameter mechanism for externals can be implemented the same as
for rules, although that is not likely to happen. Externals do not need a
stack frame in most implementations, so their parameters can be kept in,
for instance, registers.

3.3.8.1 External rules

ALICE externals are declared to make it easy to implement them as
subroutines. In most implementations however in-line code will be generated
for them. Standard external rules are identified by both an integer
representation and an ALICE symbol. User externals are identified by an
integer representation and a string. What is in the string depends on the
implementation of user externals. User externals will therefore not appear
in portable ALICE programs.

Syntax:

extrule decls

extrule decl

stag

extag

extcall

extrule decl, [extrule decls].

extrule decl symbol, sp, repr, co, stag, el.

string;
extag.

subtr symbol;
mult symbol;
get char symbol;

put char symbol;
put string symbol;
get int symbol;
put int symbol;
get data symbol;
put data symbol.

extcall id,
[copies to input gate],
ext scall or ext fcall,
[restores from output gate],
extcall end.

72

extcall id

ext seal! id
ext fcall id

ext seal! or ext fcall

extcall end

Semantics:

ext seal! id;
ext fcall id.
ext seal! id symbol, sp, repr, co, stag,- el.
ext fcall id symbol, sp,
repr, co, stag, co, false address, el.

ext seal! symbol, sp, repr," co, stag, el;
ext fcall symbol, sp,
repr, co, stag, co, false address, el.

extcall end symbol, co, repr, el.

An extrule declaration macro declares an external represented by the
repr parameter of the macro. If the second parameter is a string, the
external is a user external with implementation dependent semantics. If
the second parameter is an ALICE symbol, the external is a standard
external. The semantics of such a standard external are defined in the
ALEPH manual. The name of the ALICE symbol is equal to the name of the
ALEPH external (e.g. the ALICE "get char symbol" stands for the ALEPH
standard external "get char").

A group of extcall macros causes a standard external to be executed
with actual parameters as described by the copies to input gate macros and
the copies to output gate macros.

The parameters of a scall id and a scall macro have the same meaning
as those of a extrule decl macro.

The first two parameters of a fcall id and a fcall macro have the
same meaning as those of an extcall decl macro. The third parameter is the
false address of the fcall.

The parameter of an extcall end macro is the true address of the
extcall.

Installation hints:

hint 1.
The false address and true address of the external call are supplied

in the first macro such that, if in-line code instead of a subroutine call
is generated, this information is available in time. Gate and stack macros
are left out, because the information they carry is already available by
means of the ALICE symbol.

hint 2.
Implement the gate in registers. Don't use the run-time stack for an

external but let it transform the input gate into the output gate.

hint 3.
A smart ALICE processor could read all macros for an external call

before generating ~ny code for it. It could also parse the parameter
descriptors to handle simple cases (such as constant parameters) specially.

73

3.3.8.2 ALICE primitives

ALICE primitives can be divided in two classes. In the first place
there are low level operations such as jumping to a label or halting. In
the second place there are high level operations such as building a jump
table and extending a stack, that cannot be described in terms of an ALICE
external, because the parameters of such an operation are of a different
nature.

3.3.8.2.1 Low level primitives

Syntax:

primitive

jump

label definition

source line

exit

Semantics:

jump;
label definition;
source line;
exit;
class box;
class;
extension.

jump symbol, sp, repr, el.

label symbol, sp, repr, el.

source line sympol, sp,
integer, el.

exit symbol, sp, repr, co, valref, el.

A label macro causes the generation of a label, uniquely represented
by the repr parameter of the macro.

A jump macro causes the generation of a jump to the label,
represented by the repr parameter of the macro. This label can by generated
by means of a label macro, a success tail macro, or a fail tail macro.

A source line macro causes the generation of code, such that the
integer parameter of the macro is stored in a memory location, especially
allocated for this purpose.

An exit macro causes the generation of code that halts execution and
passes the constant, described by the parameters of the macro to the
operating system.

74

Installation hints:

hint 1.
The source line macro serves the run-time system to provide the

source line number of the original ALEPH program in error messages. The
simplest implementation is to generate a move to a register or memory
location. This is of course a time consuming business. Another way is to
build from all source line macros a table giving the correspondence between
machine addresses and source line numbers.

3.3.8.2.2 Classification primitives

Class box and class macros occur in ALICE as the translation of the
ALEPH classifier box respectively the ALEPH areas of a classification.

The ALEPH classifier box is translated to a class box.

The ALEPH areas prefixing the alternatives of the classification are
gathered. The alternatives are translated as usual. After the translation
of the alternatives the ALEPH areas are translated to a class. A class
consists of a class begin macro, a number of zone macros, and a class end
macro.

Syntax:

class box

class

zones

zone bounds

minbound
maxbound

class box id symbol, el,
load val in v reg,
class box end symbol, sp, representation, el.

class begin symbol, sp, repr, co,
optimize, el,

zones,

class end symbol, sp, optimize, el.

zone bounds, (zones);
zone value, (zones).

zone bounds symbol, sp,
minbound, co, maxbound, co,
representation, el.

repr, co, valref.
repr, co, valref.

zone value

optimize

Semantics:

zone value symbol, sp,
repr, co, valref, co,
representation, el.

true symbol;
false symbol.

A class box macro has no effect on the ALICE machine. It announces
that macros to load the v-register will follow.

A class box end macro causes the generation jump to the label
generated by a class begin macro.

75

A class begin macro causes generation of a label, represented by the
repr parameter of the macro. The optimize parameter has the following
meaning:

true: the value in the v-register will always fit in one of the
zones that follow.

false: it is not guaranteed that the value in the v-register will
fit :in one of the zones. If not an error handling run-time routine
has to be executed.

A zone value macro causes the generation of code to test whether the
contents of the v-register equals the constant source referred to in that
macro. If the test succeeds flow of control resumes at the address,
represented by the repr paiameter of"the macro.

A zone bounds macro causes the generation of a test whether the
contents of the v-register lies between the min bound a the max bound
(bounds included). These bounds are constant sources. If the test
succeeds flow of control resumes at the address, represented by the repr
parameter of the macro.

The optimize parameter of a class end macro has the same meaning as
the one of a class beg:in macro.

Installation hints:

hint 1.
If it is known that the value in the v-register will always fit in

one of the zones, efficient code can be generated such that few tests
really have to be done. Consider for example a class with three zone
bounds macros with the following bounds and reprs

min bound

-32
0

512

max bound

128
256

1024

repr

121
121
133

76

The ALICE processor could generate the following code if optimization
is allowed:

if v-reg < 257 goto 1121 else goto 1133

The ALICE processor is allowed to generate this kind of optimized
code if the optimize parameter in the class begin and class end macro is
true. If the optimize parameter in these macros is false, a (jump to an)
error routine must be generated at the end of the tests. In that case from
the same three zone bounds macros as above the following code could be
generated:

if (v-reg > -33 and v-reg < 257) goto 1121
else if (v-reg > 511 and v-reg < 1025) goto 1133

else goto classerror

3.3.8.2.3 Extension primitives

Extension macros are the translation of an ALEPH extension. The
sources are put on the gate as input parameters. The a-register is loaded
with the address of the administration of the stack that must be extended.
Then the ad.ministration of the stack can -be updated. The formals in the
extension copy macros indicate the position of the new elements.

Syntax:

extension

extension id

extension call

extension copies

extension copy

extension end

extension id,
input gate creation,
copies to input gate,
load addr in a reg,
extension call,
extension copies,
extension end.

extension id symbol, el.

extension call symbol, el.

extension copy, [extension copies].

extension copy symbol, sp,
integer, co, integer, el.

extension end symbol, sp, representation, el.

77

Semantics:

An extension id macro has no effect on the ALICE abstract machine. It
announces that the gate will be filled with sources to extend a list.

An extension call macro causes the generation of code for the
initiation of an extension: room is made to push a new block on the list.
The gate contains the sources to extend the list with. The a-register
contains the address of the administration of the list that will be
extended.

An extension copy macro causes the copying of a gate element to a
position in the new block of the list. The first integer parameter of the
macro denotes the position on the gate. The second integer parameter
indicates which element of the block has to be selected just as the integer
parameter of a loadv list elem macro.

The repr parameter of an extension end macro is the representation of
the true address of the extension.

Installation hint:

hint I.
An extension consists of:

1. Stacking the sources on the gate.
2. Ensuring the extension.
3. Updating the list administration.
4. Transporting the sources to the selected positions.

ad 2. If not all virtual addresses are mapped in the physical address
space, check whether the extension is still possible in the physical
address space. If not, re-allot the lists or swap in a new page, depending
on the list allocation.

ad 3. Update the right limit and implementation dependent core limits, if
any.

ad 4. The gate is not used stackwise here. One gate element can be copied
to more stack positions.

78

3.4. Program structure

This section is concerned with macros other than value, data, and
rule macros. Their purpose is to provide global information and to separate
groups of macros, such as data and rule macros, from each other.

Syntax:

ALICE program

status information

communication area

rules

rules and root

root

affix form

program id symbol, sp, string, el,
status information,
values option,
end values symbol, el,
data,
communication area,
rules,
end symbol, sp, string, el.

status symbol, sp,
integer, co,
integer, co,
integer, co,
integer, co,
integer, co,
integer, co,
integer, co,
integer, co,
integer, el.

communication symbol, sp,
repr, co,
repr, co,
repr, co,
string, el,

status information.

extrule decls,
rules and root.

[rule decls], root, [rule decls].

root symbol, sp, string, el,
affix form,
exit.

call;
extcall.

79

Semantics:

The parameters of a status macro have the following meaning:
First parameter, integer: maximal number of parameters of a call (formals+
locals).
Second parameter, integer: maximal number of input or output parameters to
be put on the gate.
Third parameter, integer: number of locations needed in the value table.
Fourth para.meter, integer: number of variables to be declared.
Fifth parameter, integer: number of files to be declared.
Sixth parameter, integer: number of breathing lists to be declared.
Seventh parameter, integer: number of non-breathing lists to be declared.
Eighth parameter, integer: background:

0: the original ALEPH program contains no background pragmats.
I: the original ALEPH program contains background pragmats.

Ninth parameter, integer: dump:
0: no dump is requested
I: a rule dump is requested
2: a global dump is requested
3: a member dump is requested

The meaning of the dump parameter is explained in detail in the ALEPH
manual (dump pragmat).

The string parameters of the program id macro, the communication
macro, the root macro, and the end macro of an ALICE program are identical.
They contain the "title" of the program.

The parameters of the communication'macro have the following meaning:
First parameter, repr: representation of the first list in the chain of
list administrations.
Second parameter, repr: representation of the first file in the chain of
file administrations.
Third parameter, repr: representation of the first variable in the chain of
variable declarations.
Fourth parameter, string: the title of the program.

The execution of an ALICE program starts at the affix form (call or
extcall) following the root macro.

80

Installation hints:

hint 1.
The title string parameter in the root macro can serve to generate an

entry point. The first thing to do in most implementations will be
initialization of file administrations and maybe of list administrations.
Code for this can be generated from the communication macro. In that case a
call to that code will be generated from the root macro.

hint 2.
The status macro informs the ALICE processor what kind of ALICE

program it is going to have to translate. If, for example, parameters are
passed in registers and the maximal gate is greater than the number of
registers available for parameter passing, the ALICE processor is warned in
advance so that it can take appropriate action.

3.5 ALICE grammar

$

$

ALICE grammar october 77
ALICE consists of a set of macros,
comment lines, and pragmat lines.

A comment line starts with "xxx" and should be ignored.

A pragmat line has the format:

pragmat symbol, sp, string, el.

The string will be passed on to the assembler

A portable program contains no pragmat lines

A macro has the form:

macro
mac name
parameters
parameter

mac name, [sp, parameters], el.
ALICE terminal symbol.
parameter, [co, parameters].
string;
integer;
character;
ALICE terminal symbol.

81

82

$ ALICE terminal symbols representation

$ macro names$
add symbol; $
begin file adm symbol; $
call id symbol; $
class begin symbol; $
class end symbol; $
char denotation symbol; $
constant source symbol; $
communication symbol; $
copy a reg symbol; $
copy from input gate symbol; $
copy v reg symbol; $
divide symbol; $
end file adm symbol; $
end list symbol; $
end symbol; $
end values symbol; $
exit symbol; $
ext £call symbol; $
ext scall symbol; $
ext table length symbol; $
ext table decl symbol; $
extcall end symbol; $
ext scall id symbol; $
ext £call id symbol; $
extension call symbol; $
extension copy symbol; $
extension end symbol; $
extension id symbol; $
extrule decl symbol; $
fail tail id symbol; $
fallow symbol; $
£call symbol; $
class box id symbol; $
end class box symbol; $
free w reg symbol; $
indexed input parameter symbol; $
indexed output parameter symbol; $
input gate symbol; $
int symbol; $
int fill symbol; $
jump symbol; $
label symbol; $
link symbol; $
list adm symbol; $
list symbol; $
loada global symbol; $
loada stack var symbol; $
loadv constant symbol; $
loadv limit symbol; $
loadv list elem symbol; $
loadv stack var symbol; $
loadv variable symbol; $

add
bfa
ell
csb
cse
chd
css
cmm
car
cig
cvr
dvd
efa
els
end
eva
ext
efc
esc
etl
etd
ece
esi
efi
etc
exc
exe
exi
erl
fti
flw
fcl
cbi
ebx
frw
iip
iop
igt
int
itf
jmp
lab
lnk
ldm
1st
lag
las
lvc
bl
bi
lvs
lvv

$

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

loadw symbol;
manifest constant symbol;
multiply symbol;
rule id symbol;
numerical symbol;
output gate symbol;
pointer symbol;
program id symbol;
restore to output gate symbol;
root symbol;
source line symbol;
scall symbol;
stack frame symbol;
status symbol;
storew variable symbol;
storew list element symbol;
storew stack var symbol;
string length symbol;
string fill symbol;
subtract symbol;
success tail id symbol;
target stack frame symbol;
unstack and return symbol;
variable symbol;
zone bounds symbol;
zone value symbol;

$ delimiters $
space symbol;
comma symbol;
end of line;,

$parameters$
new line symbol;
same line symbol;
rest line symbol;
new page symbol;
max char symbol;
word size symbol;
max int symbol;
min int symbol;
int size symbol;
comma-tag symbol;
space-tag symbol;
min addr symbol;
max addr symbol;
virt length symbol;
nil symbol;
false symbol;
true symbol;

add-tag symbol;
subtr symbol;
mult symbol;
divrem symbol;
plus symbol;
minus symbol;

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

ldw
men
mul
rli
num
ogt
ptr
pid
rog
rut
srl
scl
sfr
sts
swv
swi
sws
sln
str
sub
sti
tsf
unr
var
znb
znv

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

$ "" $
$ • $
$ medium dependent$

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

$
$
$
$
$
$

nln
sln
rln
npg
mxc
wsz
mxi
mni
isz
com
spc
mna
mxa
vln
nil
fls
tru

add
sub
mul
div
pls
min

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

$
$
$
$
$
$

83

84

times symbol; $ tms $
incr symbol; $ inc $
deer symbol; $ dee $
less symbol; $ les $
lseq symbol; $ lsq $
more symbol; $ mor $
mreq symbol; $ mrq $
equal symbol; $ eql $
noteq symbol; $ ntq $
random symbol; $ rnd $
set random symbol; $ srn $
set real random symbol; $ srr $
sqrt symbol; $ sqr $
pack int symbol; $ pki $
unpack int symbol; $ upi $
bool invert symbol; $ biv $
bool and symbol; $ bnd $
bool or symbol; $ bor $
bool xor symbol; $ xor $
left circ symbol; $ lei $
right circ symbol; $ rci $
right clear symbol; $ rel $
is elel'l symbol; $ isl $
is true symbol; $ itr $
is false symbol; $ isf $
set elem symbol; $ sel $
clear elem symbol; $ ell $
extract bits symbol; $ exb $
first true symbol; $ ftr $
pack bool symbol; $ pkb $
unpack bool symbol; $ upb $
to ascii symbol; $ tsc $
from ascii symbol; $ fsc $
pack string symbol; $ pks $
unpack string symbol; $ ups $
string elem symbol; $ ste $
string length-tag symbol; $ stl $
compare string symbol; $ ems $
unstack string symbol; $ uns $
previous string symbol; $ pvs $
was symbol; $ was $
next symbol; $ nxt $
previous symbol; $ prv $
list length symbol; $ lsl $
unstack symbol; $ utk $
unstack to symbol; $ ust $
unqueue symbol; $ unq $
scratch symbol; $ scr $
get line symbol; $ gln $
put line symbol; $ pln $
get char symbol; $ gch $
put char symbol; $ pch $
put string symbol; $ pst $
get int symbol; $ gnt $
put int symbol; $ pnt $
get data symbol; $ gdt $
put data symbol; $ pdt $

$ other primitives$
string;

character;

integer.

$ character sequence
delimited by quotes
quotes in the string are represented by
quote images [1111]

$

$ unsigned digit sequence$

85

86

ALICE program

data

lists

files

rules

sp
co
el

status information

program id symbol, sp, string, el,

status information,

values,
end values symbol, el,

data,

communication area,

rules,

end symbol, sp, string, el.

[constant sources],
[variable decls],
[lists] ,
[files].

[list areas],
[external table decls],
[list administrations].

file administrations.

extrule decls,
rules and root.

space symbol.
comma symbol.
end of line.

status symbol, sp,
integer, co, $ maximal stack frame$
integer, co,$ maximal gate size$
integer, co, $ number of expressions$
integer, co, $ number of variables$
integer, co, $ number of files$
integer, co, $ number of breathing lists$
integer, co, $ number of non-breathing lists$
integer, co, $ background:

0: No lists on background
I: Lists on background$

integer, el. $ dump:
0: no dump
1: rule dump
2: global dump
4: member dump$

values

value

value definition

int denotation

manifest constant

manco

char denotation

string length

external table length

value, [values] •

value definition;
calculation.

int denotation;
manifest constant;
char denotation;
string length;
external table length.

int symbol, sp, location, co, integer, el.

manifest constant symbol, sp,
location, co, manco, el.

new line symbol;
same line symbol;
rest line symbol;
new page symbol;
max char symbol;
word size symbol;
max int symbol;
min int symbol;
int size symbol;
comma-tag symbol;
space-tag symbol;
min addr symbol;
max addr symbol;
virt length symbol;
nil symbol.

char denotation symbol, sp, location, co,
character, el.

string length symbol, sp,
location, co, integer, el.

ext table length symbol, sp, location,
co, string, el.

$ The string is an exact copy of the ALEPH string including
the surrounding quotes$

calculation

operator

operator, sp, location, co,
valref, co, valref, el.

add symbol;
subtract symbol;
multiply symbol;
divide symbol.

87

88

location : integer.
$ This integer denotes where to put a certain value in the

table the ALICE processor is building.
The location will be referred to by valrefs $

valref : integer.
$ A valref references the location of an already defined

value in the table the ALICE processor is building up$

constant sources

constant source

repr

constant source,
[constant sources].

constant source symbol, sp, repr, co, valref, el.

: integer.

$ a repr either represents an ALICE object uniquely (>0)
or it indicates the non-presence of an ALICE object (=O)

$

list areas

list area

list fillings
list filling

variable decls

variable dee!

list area,
[list areas] •

list symbol, sp, repr, co, $ of list$
list type, co,
valref, el, $ number of virtual addresses$
[list fillings],
end list symbol, sp, repr, co,
list type, co, val.ref, el.

$ The parameters of end list are the same as those
of list $

list filling, [list fillings].
int fill symbol, sp, valref, el;
string fill symbol, sp, string, el;
fallow symbol, sp, valref, el.

$ fallow stands for uninitialized space
to be grabbed for a stack
with an absolute size estimate$

variable dee!, [variable decls].

variable symbol, sp, repr, co, valref, co,
repr, co, $ of next variable$
string, el. $ ALEPH variable tag in quotes$

file administrations

file administration

file info

file type

numerical area

pointer area

file administration, [file administrations].

begin file adm symbol, sp, file info, el,
[pointer area],
[numerical area],
end file adm symbol, sp, file info, el.

repr, co,
file type, co,
$ an integer:

$

0: scratch charfile
1: scratch datafile
2: input charfile
3: input charfile
4: output charfile
5: output datafile
6: input-output charfile
7: input-output datafile

repr, co,
string.

$ next file administration$
$filename$

integer, co, integer.

numerical symbol, sp,
valref, co, $,lower bound$
valref, el, $ upper bound$
[numerical area].

pointer symbol, sp, repr, el, $ of a list$
[pointer area] •

89

90

list administrations

list administration

list info

list type

$ 0: not breathing,
1: not breathing,
2: breathing,
3: breathing,

$

external table decls

external table decl

communication area

no

no

list administration, [list administrations].

list adm symbol, sp,
list info, el.

repr, co, $ of the list$
list type, co,
valref, co, $ virtual min $
valref, co, $ virtual max $
valref, co, $ virtual left$
valref, co, $ virtual right $
valref, co, $ calibre $
repr, co, $ next list adm $
string.

integer.

background pragmat
background pragmat
background pragmat
background pragmat

$ name of the list$

external table decl, [external table decls].

ext table decl symbol, sp,
list info, co,
string, el. $ ALEPH string$

communication symbol, sp,
repr, co, $ first list$
repr, co, $ first file$
repr, co, $ first variable$
string, el,

status information.

extrule decls

extrule decl

stag

extrule decl, [extrule decls].

extrule decl symbol, sp, repr, co, stag, el.

string;
extag.

$ If the external is a standard external, the stag is an extag;
The externals of a portable program must be standard externals$

extag add-tag symbol;
subtr symbol;
mult symbol;
divrem symbol;
plus symbol;
minus symbol;
times symbol;
incr symbol;
deer symbol;
less symbol;
lseq symbol;
more symbol;
mreq symbol;
equal symbol;
noteq symbol;
random symbol;
set random symbol;
set real random symbol;
sqrt symbol;
pack int symbol;
unpack int symbol;
bool invert symbol;
bool and symbol;
bool or symbol;
bool xor symbol;
left circ symbol;
right circ symbol;
right clear symbol;
is elem symbol;
is true symbol;
is false symbol;
set elem symbol;
clear elem symbol;
extract bits symbol;
first true symbol;
pack bool symbol;
unpack bool symbol;
to ascii symbol;
from ascii symbol;
pack string symbol;
unpack string symbol;
string elem symbol;
string length-tag symbol;
compare string symbol;
unstack string symbol;

91

92

rules and root

rule decls

root

affix form

rule decl
rule head

rule id

rule type

recursion

previous string symbol;
was symbol;
next symbol;
previous symbol;
list length symbol;
unstack symbol;
unstack to symbol;
unqueue symbol;
scratch symbol;
get line symbol;
put line symbol;
get char symbol;
put char symbol;
put string symbol;
get int symbol;
put int symbol;
get data symbol;
put data symbol.

[rule decls], root, [rule decls].

rule decl, [rule decls].

root symbol, sp, string, el,
source line,
affix form,
exit.

call;
extcall.

rule head, rule body, rule tail.
rule id,
stack frame,
[copies from input gate].

$title$

rule id symbol, sp, repr, co, rule type, co,
recursion, co, string, el.

integer.
$ 0: cannot fail

1: can fail
$

integer.
$ 0: not recursive

1: recursive
$

stack frame

rule tail

success tail

success tail id

output gate creation
size of output gate

unstack and return true

fail tail

fail tail id

stack frame symbol, sp, number of parameters,
co, number of locals, el.

success tail,
[fail tail] •

success tail id,
[output gate creation],
[restores to output gate],
unstack and return true.

success tail id symbol, sp, repr, co,
rule type, co, recursion, el.

93

output gate symbol, sp, size of output gate, el.
integer.

unstack and return symbol, sp,
number of parameters, co, number of locals, co,
true symbol, el.

fail tail id,
unstack and return false.

fail tail id symbol, sp, repr, co,
rule type, co,
recursion, el.

unstack and return false: unstack and return symbol, sp,

copies from input gate
copy from input gate
formal
position on gate
position on stack

restores to output gate

restore to output gate

rule body
statements
statement

number of parameters, co, number of locals, co,
false symbol, el.

copy from input gate, [copies from input gate].
copy from input gate symbol, sp, formal, el.
position on gate, co,_position on stack.
integer.
integer.

restore to output gate,
[restores to output gate].
restore to output gate symbol, sp, formal, el.

statements.
statement, [statements].
call;
extcall;
primitive.

94

primitive

call

call id

input gate creation
size of input gate

target stack frame

number of parameters
number of locals

scall or fc:all

false address

link

true address

extcall

extcall id

ext scall id

ext fcall id

jump;
source line;
class box;
class;
extension;
exit;
label definition.

call id,
input gate creation,
target stack frame,
[copies to input gate],
scall or fcall,
[restores from output gate],
link.

call id symbol, sp, repr, co,
rule type, co, recursion, el.

input gate symbol, sp, size of input gate, el.
integer.

target stack frame symbol, sp,
number of parameters, co,
number of locals, el.
integer.
integer.

scall symbol, sp, ,repr, el;

fcall symbol, sp, repr, co,
false address, el.

repr.
$ of a label$

link symbol, sp, true address, el.

repr.

extcall id,
[copies to input gate],
ext scall or ext fcall,
[restores from output gate],
extcall end.

ext scall id;
ext fcall id.
ext scall id symbol, sp, repr,

ext fcall id symbol, sp,

co,

repr, co, stag, co, false address,

stag, el.

el.

ext scall or ext £call

extcall end

jump

source line
line number

class box

class

zones

zone bounds

minbound
maxbound

zone value

optimize

extension

extension

extension

extension
extension

extension

id

call

copies
copy

end

ext scall symbol, sp, repr, co, stag, el;
ext £call symbol, sp,
repr, co, stag, co, false address, el.

extcall end symbol, co, true address, el.

jump symbol, sp, repr, el.

source line symbol, sp, line number, el.
integer.

class box id symbol, el,
load val in v reg,
end class box symbol, sp, true address, el.
$ true address= repr of class$

class begin symbol, sp, repr, co,
optimize, el,
zones,
class end symbol, sp, optimize, el.
zone bounds, [zones];
zone value, [zones].

zone bounds symbol, sp,
minbound, co, maxbound, co,
true address, el.

repr, co, valref. ,:
repr, co, valref.

zone value symbol, sp, repr, co, valref, co,
true address, el.

true symbol;
false symbol.

extension id,
input gate creation,
copies to input gate,
load addr in a reg, $ stack adm $
extension call,
extension copies,
extension end.

extension id symbol, el.

extension call symbol, el.
at

extension copy, [extension copies].
extension copy symbol, sp, formal, el.

extension end symbol, sp, true address, el.

95

96

exit

label definition

copies to input gate

copy to input gate

copy val to input gate

load val in v reg

load simple in v reg

exit symbol, sp, valref, el.

label symbol, sp, repr, el.

copy to input gate,
[copies to input gate].

copy val to input gate;
copy addr to input gate.

load val in v reg,
copy v reg to input gate.

load simple in v reg;
load indexed element in v reg.

load constant in v reg;
load variable in v reg;
load limit in v reg;
load stack var in v reg.

copy v reg to input gate: copy v reg symbol, sp, formal, el.

copy addr to input gate: load addr in a reg,

load addr in a reg

copy a reg to input gate.

load global addr in a reg;
load stack var in a reg.

copy a reg to input gate: copy a reg symbol, sp, formal, el.

load constant in v reg

load variable in v reg

load limit in v reg

limit. type

load stack var in v reg

loadv constant symbol, sp, repr, co, valref, el.

loadv variable symbol, sp, repr, el.

load addr in a reg,
loadv limit symbol, sp, limit type, el.
integer.
$
O: left
I: right
2: calibre
$

loadv stack var symbol, sp,
position on stack, el.

load indexed element
in v reg

load list element in
v reg sequence

load list element
in v reg

load global addr
in a reg

load stack var
in a reg

restores from
output gate

indexed input parameter symbol, el,
load simple in v reg,
load list element in v reg sequence.

load list element in v reg,
[load list element in v reg sequence].

load addr in a reg,
loadv list elem symbol, sp, integer, el.
$ 0: right most element of indexed block

i: (i-1)-th right most element$

loada global symbol, sp, repr, el.

loada stack var symbol, sp,
position on stack, el.

restore from output gate,
[restores from output gate].

restore from output gate: copy gate elem tow reg,
store w reg sequence,
free w reg.

97

98

store w reg sequence

copy gate elem tow reg

store w reg

store w reg in variable

store w reg in
list element

store w reg in
stack var

free w reg

store w reg, [store w reg sequence].

loadw symbol, sp, formal, el.

store w reg in variable;
store w reg in list element;
store w reg in stack var.

storew variable symbol, sp, repr, el.

indexed output parameter symbol, el,
load simple in v reg,
[load list element in v reg sequence],
load addr in a reg,
storew list element symbol, sp, integer, el.

storew stack var symbol, sp,
position on stack, el.

free w reg symbol, el.

4 References

D. Grune, R. Bosch & L.G.L.T. Meertens
ALEPH Manual, Report IW 17/75
Mathematisch Centrum Amsterdam 1975

2 Waite, w. M.
Hints on distributing Portable Software
Software - Practice and Experience, vol. 5, 295-308 (1975)

3 P.J. Brown
ML/1 user's manual (fourth edition)
University of Kent at Canterbury, 1970

4 Waite, W.M.
The mobile programming system: STAGE2
Comm. ACM 13,7, PP• 415-421 (1973)

5 W.J. Hansen & H. Boom
The report on the standard hardware representation for ALGOL 68
SIGPLAN Notices, Vol 12, Number 5, 80-87 (1977)

6 Poole, P.c. & Waite, W.M.
Portability and Adaptability, in
F.L. Bauer (Ed.), Advanced course on Software Engineering,
Springer-Verlag, Berlin, 183-277 (1973)

7 Waite, W.M.
Implementing Software for non-numeric applications
Prentice-Hall~ Englewood Cliffs, N.J., 1973

8 P.J. Brown
Macro processors and techniques for Portable Software
John Wiley 1974

9 P.J. Brown (Ed.)
Software Portability An advanced Course
Cambridge University Press 1977

10 A.S. Tanenbaum, P. Klint & W. Bohm
Guidelines for Program Portability, Report IW 88/77
Mathematisch Centrum Amsterdam 1977

99

