
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

E. DE JONG

A PROPOSAL FOR THE TRANSLATION OF JANUS
INTO STANDARD FORTRAN

Preprint

~
MC

IW 93/77 NOVEMBER

2e boerhaavestraat 49 amsterdam

11111111111111111il'111~'1ml1l11~~ili11111111111111111
3 0054 00077 1890

PJunted a..t .the Ma..thema..Uc.al. Ce.ntJie., 49, 2e. BoeJc.haa.ve-6.tJr.a.a..t, A.m.6.teJc.dam.

The Ma..thema.ti.c.al. CentJie., 6ounded .the. 11-.th 06 Febll.u.aJL!:f 1946, -l6 a. non
pll.o6U ..i.no.tU.:u,tlon cum..i.ng a..t .the pll.omo.t.i..on 06 pull.e ma..thema..UC-6 a.nd ..i..t-6
a.ppUc.a..t..i.ono. 1.t -l6 .6ponooll.ed by the. Ne.:t.heJl.la.ndo GoveJl.nment thll.ough the.
Ne.:t.heJL.f.a.ndo Oll.ga.n..i.za..Uon 6oll. the. Adva.nc.ement 06 Pull.e. Rebe.Mc.h (Z.W.O).

AMS (MOS) subject classification scheme (1970): 68Al 5

ACM-Computing Reviews-categories: 4.12, 4.22

A proposal for the translation of Janus into Standard Fortran*)

by

E. de Jong

ABSTRACT

To investigate the possibility of the mechanical translation of
programs written in the intermediate code Janus into Standard Fortran,
some aspects of Janus are examined. Suggestions for solving the problems
involved are formulated.

KEY WORDS & PHRASES: Janus, Standard Fortran, machine-independence,
intermediate code, portability

*) This report will be submitted for publication elsewhere.

INTRODUCTION

Janus [11 is one of the languages that can be chosen as intermediate
code for the translation of some high level language into a machine
independent language. The problems which may arise during the compilation
of Janus give an impression of its usefulness in comparison with other
such intermediate languages. Although Janus was intended to be translated
into assembly language, it may be made more portable by distributing a
translator from Janus to some generally available machine-independent
language to enable a quick and dirty first bootstrap. Standard Fortran [2]
is chosen as machine-independent language, since on almost every computer
in the world there exists at least one implementation of Fortran. A
compiler which produces Standard Fortran as final code can certainly be
considered a portable one. It is reasonable to make a distinction between
the global and the detailed proposals which are made in this paper. The
global ones primarily concern the organization of the memory, the
construction of activation records, etc.; the detailed ones define the
translation of such things as conditional jump instructions and arithmetic
operations. Although I originally tried to translate the Janus program by
a one pass compiler, it gradually became clear that it is necessary to do
the compilation in two passes. For example, it is impossib~e to translate
a jump out of a Janus procedure by a one pass compiler. The translation of
other Janus concepts such as global declarations and constant definitions
will be easier. Fortran code is generated during the first pass while such
things as the addresses within the operand stack and the number of entry
points are filled in during the second pass.

DEVIATIONS FROM STANDARD FORTRAN

Occasionally, for the translation of some Janus instruction it is
necessary to deviate from Standard Fortran. For example, some Janus
instructions require values of unknown type to be copied. In such cases I
interpret this variable as being a real one; although it is not Standard
Fortran, on most implementations it is possible to copy integer and
logical values as if they were reals. Such use of real numbers has been
limited to specific run-time routines which can easily be replaced if
necessary for a specific installation.

ASSUMPTIONS MADE ABOUT JANUS

Although the intermediate code Janus is defined in [I], I must
emphasize that it is a preliminary definition. In many places in this
document it is not clear what is meant and thus I had to guess to the
intentions of the authors. The usefulness of some concepts in the Janus
definition is at least questionable. For example, I am not completely
certain of the interpretation of the ARVND-line; I have interpreted this
line like the ELMV-line. The occurrence of symbol in this line seems
useless to me. I have been forced to make assumptions as to the meaning of

2

Janus in many dark corners.

ORGANIZATION OF MEMORY

The memory available for the translation of the Janus program is
divided in three parts: the space needed for constants, which is known
before execution of the program, the activation record stack and the heap
(dynamic storage). It is clear that these three categories must not
overlap. The Janus memory is implemented as a Fortran one-dimensional
array. Equivalence statements enable each element of this array to be
occupied by an integer, a real or a logical value; it is therefore
required that integer, real and logical values be represented by equal
numbers of storage units. For this reason it is impossible to implement
double precision constants in the same array. This implementation method
implies that the fields of a Janus record and the elements of a Janus
array occupy consecutive storage units in this Fortran array. The array
is split as follows: the constants first, the stack and operand stack
next, and the heap last. Because the total amount of memory needed by
constants is known when execution of the program begins, the starting
address of the stack is pointed to by an integer variable. When there are
local declarations or procedure calls, this variable is increased or
changed. Recursive procedure calling is possible in Janus, -but not in
Fortran. Janus procedures cannot be implemented as Fortran subroutines in
a straightforward way. It does not seem sensible to solve this problem by
implementing Janus procedures as so-called "open code" (the Janus program
- including all Janus procedures - is translated into a Fortran program
without subroutines). It is quite imaginable that there are Fortran
compilers that cannot compile very large Fortran programs. It is better to
translate each Janus procedure into a Fortran subroutine. This requires
some special information within the activation record of each procedure to
make recursive calling possible.

THE ACTIVATION RECORD

Each Janus procedure (and so each Fortran subroutine) requires an
activation record. Within this record the available space is divided into
four parts: I. parameters (if any), 2. administration, 3. local variables
and 4. space for operands and unnamed temporaries. If there are
parameters, they are placed in the activation record first; I prefer this
method to doing the administration first and the parameters later; for
recursive calls this saves space, since no administration is needed before
the procedure is actually called. The administration requires four integer
storage units; I will discuss this part of the activation record in the
following section. In the third component of the activation record space
is reserved for the local variables and named temporaries as explicitly
declared in the Janus program. Finally, the activation record contains the
storage used for operands, unnamed temporaries, intermediate results, etc.
One must carefully prevent overlap between the operand stack and the rest
of the activation record. This may happen when intermediate results have
to be stored, for example in newly declared (named) temporaries. If the
operand stack and the stack touch each other in such a situation, overlap

3

may occur .. This can be avoided by reserving all explicitly declared
storage of an activation record before determining where the operand stack
begins. During the first pass the total number of storage units needed
for explicitly declared variables is calculated; during the second pass
the starting address of the operand stack is determined.

CALLING AND RETURNING FROM A PROCEDURE

The translation of a Janus program implies the creation of a
"supervising" Fortran (main) program. It is not possible to call or to
return from any subroutine without the intervention of the supervising
program. Only one Fortran subroutine is active at the same time. A call
causes the creation of the activation record of the subroutine to be
called. As already mentioned, this activation record contains an
administration part. This part consists of 4 integer storage units; the
first integer indicates the starting address of the addressing environment
in which the procedure to be called is declared (the static link); the
second integer is the "procedure number". The supervising program uses
this value to select the procedure to be called; therefore, all Fortran
subroutineis that are translations of Janus procedures must be numbered.
The third integer indicates the starting address of the addressing
environment of the calling procedure (the dynamic link). The last integer
value determines the entry-point of the subroutine; when a subroutine is
called, this value corresponds to the first executable statement; this
integer value equals 1.
When a call is made the administration part of the subroutine to be called
is filled in by the calling subroutine. Before control is given to the
supervising program by the calling subroutine, the entry-point number in
the administration part of the calling subroutine must be changed. This
number must agree with the statement immediately following the call, so
that upon return this statement is the first one to be executed. This
statement must be labeled to enable it to be jumped to. I will discuss
this in more detail at the translation of the RCEND-instruction. After
all these values are determined, the supervising program calls the
subroutine indicated by the second value within the new administration
part; the fourth value (equal to 1) forces the first statement of the
subroutine to be executed.

Returning from a subroutine means returning to the supervising
program using the dynamic link to find the activation record of the
caller. The supervisor gives control to the calling subroutine (determined
by the second value in the administration part) and the first statement to
be executed now is determined by the fourth value of the administration
part. The code generated for this is discussed at the translation of the
RETURN-instruction. It is worthwhile to note that a procedure which
includes N calls to other (possibly different) procedures has at least N+l
entry-points. If a procedure includes a label which is jumped to from
outside that procedure, such a label corresponds to an entry-point also.
In the foregoing I have not mentioned the elaboration of parameters, the
further internal structure of the activation record stack, etc. These

4

subjects are discussed in a later section.

RECURSIVE AND NONRECURSIVE PROCEDURES

In my implementation no distinction is made between Janus recursive
and nonrecursive procedures. Both are called as if they were recursive. It
would have been possible to implement nonrecursive Janus procedures
directly as Fortran procedures, that is to say a call to a nonrecursive
procedure causes no intervention of the supervising program, but is called
directly by the calling subroutine. However, this method is possible only
when no nonrecursive Janus procedure includes a call to a recursive
procedure. Such a call would have required a return to the supervising
program. This problem could be solved by implementing a nonrecursive
procedure as a "supervising subprogram". This solution would not have been
more efficient than to consider each procedure to be recursive, and severe
problems would arise in implementing external labels.

CONVENTIONS

Until now I have only described the global outline and architecture
of the Fortran program as a result of the compilation of the equivalent
Janus program. The next part of this paper describes how the various Janus
instructions are translated. The following Fortran execution-time
variables are used:

MEM a Fortran one-dimensional array of type integer, which is
equivalent to the Janus memory.

BM,RM one-dimensional Fortran logical and real arrays, respectively,
which are "equivalenced" with MEM by the statement:
EQUIVALENCE(MEM(l), BM(I), RM(l)).

IND an integer variable, which stands for the Janus index register.
IBS an integer variable that implements the Janus base register.
MP an integer variable, which marks the beginning of the activation

record of the current active subroutine. This variable is
initialized when all constant definitions in the Janus program

I,J,K

X

are processed.
integer variables, which have no special meaning; they are used
only in complicated calculations such as the transport of large
parts of memory.
a real variable used to store intermediate results.

N an integer variable used in the translation of Janus
instructions that set the condition-code; it occurs as left
operand of a relational expression.

Moreover,
Tl

LA

EP

the following compile-time variables are used:
an integer variable counting the number of Janus procedures
including the main program (initial value= 1) •
a one-dimensional array of type integer; for a Janus procedure
with number N the array element LA(N) counts the number of
entry-points of the equivalent Fortran subroutine.
a two-dimensional array of type integer; in a Janus procedure
with number N, EP(N,K) contains the value of the Fortran label

s

IT
number corresponding to the K-th entry-point of this procedure.
a one-dimensional integer array; the element IT(N) counts the
number of storage units occupied by administration and variables

MDS

PD

DL

LC

ID

TP

PT

LM,MS

MX,CC

Al ,A2,A3:

N,K,T
BL

GC

that are explicitly declared in the Janus procedure with number
N; during the second pass this variable is used to determine the
starting address of the operand stack in the equivalent Fortran
subroutine.
an integer variable indicating the maximum number of storage
units needed for declared variables in a Janus procedure.
an integer variable used to determine the addresses of
explicitly declared variables.
an integer variable indicating the display level of the current
procedure.
an integer label counter; for each Fortran subroutine the value
of this variable is used when a Fortran label is generated.
an integer variable indicating the integral displacement from
the beginning of the activation record.
an integer array; the element TP(N) indicates the number of
storage units occupied by the parameters of the procedure with
number N.
the array-element PT(N) contains symbol of the Janus procedure
with number N.
one-dimensional integer arrays used at the transl.ation of
record-mode definitions.
integer variables used at the translation of record-mode
definitions.
one-dimensional integer arrays used at the translation of
composed values (APPENDIX 1).
integer variables used at the translation of composed values.
one-dimensional integer array used as compile-time stack at the
translation of BLOCK- and BLEND-instructions.
an integer variable used at the translation of COMM.ON DSECT
lines.

SIZE an integer variable indicating the length of the Fortran memory
available for the translated Janus program; the value of this
variable is determined by the programmer of the Janus program.

C an integer variable counting the number of storage units
occupied by constants (initial value= 1).

Expressions enclosed by 11 "are elaborated at compile-time, and the
resulting value is put out. The variables occurring in such expressions
are compile-time variables and do not appear in the code that is
generated.

Words included within [and] are optional.
Words which are underlined represent more general Janus concepts, e.g.

the notation mode is used when I want to discuss objects, whose mode is
arbitrarily chosen. It is used primarily to indicate nonterminal symbols
which occur in the Janus grammar.

Words which are underlined and enclosed by' 'stand for the
corresponding values that are stored in the symbol or identifier table.

Most Janus instructions cause Fortran code to be generated; in many
cases the values of compile-time variables must be changed also; these
compile-time changes are described in terms of Fortran statements preceded
by Cl for changes during the first pass and by CZ for changes during the

6

second pass of the compilation.
In the description of the translation of the Janus instructions a

compile-time identifier and symbol table are used. It is not meant that
these tables are separated strictly; the only difference between these
tables is that the data in the identifier table are accessible during the
compilation of the whole Janus program; all data in the symbol table are
lost each time a Janus FINISH-statement is encountered; these data can
only be reached at the compilation of a Janus module.

OPERANDS

Most Janus instructions are composed of an operator and an operand.
In the next sections each operator will be discussed separately; however,
the handling of operands is the same for many operators. There·fore,
attention is first paid to such things as targets, cells, data-locations
etc. All these objects can be classified in five categories.

1. code-location
2. temporary
3. data-constant
4. CONST reference
5. variable

I will now define a translation for each of these classes.

Code-location.

In a Janus program, code-locations may occur in three cases:
a. jumps
b. calls
c. case selections

Three kinds of code-locations are possible:
1. R symbol
2. X xsymb
3. Y xsymb

Firstly, I will discuss code-locations of the form: R symbol.
ad a. Since code-locations of this kind are within the current

procedure, symbol and an integer value indicating the Fortran statement
number are stored in the symbol table. Forward reference of labels will be
discussed at the translation of the jump instruction.

ad b. When a procedure is called or referenced (when a PROC-mode
object is created), the number of this subroutine must be known. The
symbol which occurs in the procedure heading is identical to the label of
the code-location. This symbol and the number of the procedure have been
stored in the symbol table.

ad c. Since a case-selection is translated into a row of conditional
jumps, the same method of storing is used as in case a.

X xsymb is interpreted as an entry-point of another Janus module. It
is not possible to jump to another module, since the addressing
environment is not known. Therefore code-locations of this kind are not

implemented. I feel the Janus definition must be revised on this point.
The occurrence of Y xsymb implies some "system" action to be

performed. The implementation of such a code-location is left to the
individual implementer, since it is not possible to decide for a
particular machine what to do when a system symbol is encountered.

Temporary.

Since the lifetime of a temporary cannot exceed a basic block, the
address of a named temporary is always within the current activation
record. This means that only a displacement need be stored in the symbol
table. For example, referring to an integer temporary is done by:
MEM(MP+"DI"), where DI is the displacement as stored in the symbol table
and MP marks the beginning of the activation record currently active.

Data-constant.

Three kinds of data-constants occur in the Janus program:
I • E expression
2. denotation
3. M identifier

7

ad I. It is possible to include compile-time integer expressions in
the Janus program; they are preceded by the letter E; in these expressions
only (signed) integer values and int-variables occur. Although nothing is
said in the Janus document about these int-variables, I must assume that
their values are known in one way or another at compile-time (e.g. stored
in the identifier table). It is most reasonable to generate a copy of the
Janus expression in Fortran, in which the int-variables are replaced by
the values represented by them.

ad 2. In Janus there are four kinds of denotations:

I. ACHAR character

2. CINI character

Since there are no constants of type character in Fortran, these two
kinds of denotations are transformed into integer values. I have not
chosen for an implementation by means of Hollerith constants, since in
this way the comparison of two characters could fail because of the
possibility of overflow when two Hollerith constants are compared. It is
preferred to transform characters into integer values and back by two
functions similar to the Pascal 'ord'- and 'chr'-functions. No distinction
is made between ACHAR- and CINI-denotations.

3. AINI (-] digit-sequence

It will be clear that the optional sign and the digit-sequence are
copied into an equivalent Fortran integer constant.

8

4. AREAL (-] digit-sequence E (-] digit-sequence

The equivalent Fortran constant can easily be determined; if DSl
denotes the first digit-sequence and DS2 the second then this constant is:
(-]."DSI" E [·-] "DS2". For example, AREAL lE-2 is transformed into .lE-2.

ad 3. The value of a manifest is easily found, since the data
constant is stored in the compile-time manifest table when the manifest
definition is encountered. By means of an index in this table the value
involved is generated.

CONST reference.

All constants declared in the Janus program are stored in the
constant part of the Fortran memory. The address of the constant is
computed by adding the values of base and field- selector (if present) and
the value of index, which is the value of expression multiplied by the
value of mode that is stored in the symbol table; If a* is present, this
value is increased by the value of IND multiplied by the value of mode; If
a+ is present this value is increased by the value of IND only.

Variable.

There are several kinds of variables in Janus; one kind is of the
form: STATICICOM reference.
The space declarations within a global declaration and the static
declarations are interpreted as storage allocation in the constant part of
the (Fortran) memory. Therefore, reference refers to an address in the
constant part. All values contained within reference are interpreted in
the same way as CONST reference.
Another possibility of a variable is: DISP'i'ILOCALIPARA11 reference. To
reach variables declared in outer blocks, the prefix DISP'i' is used. To
compute the address of the variable involved, the display level of the
current activation record (DL) need be known. The following code is
generated:

if i = DL I = HP

if i DL-1 I = MEM(MP)

if i < DL-2 I = HEM(MP) -
L = "DL "-' i' - l

Cl LC = LC+l
DO "LC II M = I ,L

"LC II I = MEM(I)

The integer variable I contains the value of the beginning of the
activation record in which the variable is declared. By means of data
stored in the symbol table, the displacement of the variable as denoted by
reference is computed. The address of the variable is: I+"DI", where DI is
the integral displacement within the activation record.

LOCAL reference.

A special case of DISP'i' variables are those that are local to the
current activation record; this means that their addresses are within the
address space of this activation record. If DI denotes the displacement
corresponding to reference computed from the beginning of the activation
record, the address of the variable is: MP+"DI". Note that DI is negative
if the variable is a parameter of a recursive procedure.

PARAM reference.

The address of the parameter is calculated. As mentioned before, in
our implementation the parameters are placed before the beginning of the
activation record. So all parameters are reached by means of negative
displacements. The value of this displacement is known when the PAREND
instruction is encountered. Clearly, this displacement has to be computed
from the start of the current activation-record; so the address of a
parameter is: MP-"TP(Tl)-DI". The base PARAM is only used for parameters
of NONREC procedures.

BASED [reference].

9

The integer variable IBS corresponds to the Janus base register. If
reference is absent, then the value of IBS is the address·needed. If,
however, reference is present, then the values of index and field-selector
are added to the value of IBS. The address is denoted by IBS+"DI", where
DI corresponds to the value of reference.

VALUES

Apart from the data-constants already discussed, it is possible to
specify initial values at constant definitions or at static or common
declarations. This initialization is implemented by DATA statements. There
are two categories of composed values: record-values and array-values. A
detailed description of the translation of FLDV-, ELMV-, RCVND- and
ARVND-lines is given in APPENDIX I.

FLDV mode STATIC I CONST ICSECT symbol [(expression) I [expression] J [value].

Since only array element names (and not array names) are allowed
within a Fortran DATA statement, for each elementary value a DATA
statement is generated. If no value is given, no DATA statement is
generated. C is increased by the product of the value of mode and the
value of expression, if any, and otherwise by I. If value is not a
data-constant and thus begins with a+, subsequent lines specify the
value(s) of this field. If an expression is given, the field is an array
of mode elements. The value is assigned to a number of elements determined
by the value of expression. If value is a data-constant, then a Fortran
DATA statement is generated; C is increased by the value of expression, if
any, and otherwise by I.
For example:

FLDV INT CONST Al(S) AINT 2.

10

is translated into:
DATA MEM(7), MEM(8), MEM(9), MEM(IO), MEM(ll)/5*2/ ,

assuming that the value of C is 7. The fields of a Janus record are
implemented as successive elements in the Fortran array.

RCVND mode CONSTISTATICICSECT [symbol].

This Janus statement closes a record-value.

ELMV mode STATIC I CONST I CSECT [expression] I (expression) [value].

This Janus instruction is handled in nearly the same way as the
FLDV-instruction. If value is a data-constant, then a DATA statement is
generated. The length of the list of array element names depends on the
value of expression. I refer to the example given at the FLDV
instruction. If value is a composed value (indicated by a+) subsequent
lines specify the values for a number of elements determined by the value
of expression. If no value is given, C is increased by the product of the
value of mode and the value of expression. The elements of a Janus array
are implemented as successive elements in the Fortran array. No
distinction is made between packed and aligned Janus arrays.

ARVND mode CONST I STATIC I CSECT [symbol] [expression] I (expression)
[value] •

This line indicates the end of an array-value; otherwise this
statement is handled in the same way as the ELMV-instruction.

TRANSLATION OF INSTRUCTIONS

A Janus program is composed of Janus modules. However, the difference
between a program and a module is not clear to me. No definition of
program or module is given in the Janus document. It could be that a
program and a module are the same things; in the description of several
other Janus concepts these two words are freely interchanged.

Module.

START identifier.

This Janus instruction indicates the beginning of a Janus module.
When a constant definition is encountered, the value(s) within that
definition is (are) translated into (a) DATA statement(s) that are put out
on a separate constant file; this constant file is built up during the
first pass of compilation; it is compiled separately from the program
file; at execution-time these two files are joined. All DATA statements
are contained in a BLOCK DATA subprogram; when the first START-instruction
is encountered the following code is generated:

BLOCK DATA
LOGICAL BM("SIZE") 2

FINISH.

REAL RM ("SIZE II)
COMMON/Hf MP, MEM("SIZE")
EQUIVALENCE(MEM(I), BM(I), RM(I))

3
4
5

I I

This instruction marks the end of a Janus module. The symbol table is
cleared; only the data stored in the identifier table are saved. If it is
the last instruction of the program, the number of Janus procedures is
known; then it is possible to generate code for the supervising program.
The following code is then generated:

C PROGRAM SPV(OUTPUT,TAPE6 = OUTPUT)
LOGICAL BM("SIZE")
REAL RM("SIZE")
COMMON/Hf MP,MEM("SIZE")
EQUIVALENCE (MEM (I) ,BM (1) ,RM (1))
MEM(MP-3)=1
MEM(MP) = MP-4
MEM(MP+l) = 2
MEM(MP+2) = MP-4
MEM(MP+3) = 1
I = MEM(MP+l)
GO TO (11 , I 2, 13, ••• , "I O+T I 11) , I

12 CALL P2
GO TO 1

13 CALL P3
GO TO 1

"1 O+T I" CALL P"T 1"
GO TO 1

11 STOP
END

1
2
3
4
5
6
7
8
9

I 0
11
12
1 3
14
15
16

17
18
19
20

The beginning letter Con line I may be omitted on some
implementations, such as the Cyber 73 of Control Data Corporation. Lines
2-5 declare the Fortran array which corresponds to the Janus memory. Line
6 tells us indirectly what to do when execution is finished. The integer 1
will eventually cause line 12 to jump to line 19. Lines 7-10 specify the
contents of the administration of the activation record of the main
program. Line 7 fills in the static link, line 8 tells us, that it is the
main program which must be called, line 9 fills in the dynamic link and
line 10 specifies the entry-point within the main program. When the last
FINISH-instruction is encountered storage has been reserved for all
constant definitions. A DATA statement to initialize MP is generated when
all constant definitions, static and global declarations have been
processed. Dynamic allocated storage is placed at the end of the Fortran
array; two pointers are initialized. On the constant file the following
code is generated:

DATA MP/"C+4"/ 6

12

DATA MEM("SIZE")/"SIZE-1 "/ ,MEM("SIZE-1 ")/0/ 7
~D 8

Note that 4 storage units remain unused; they are considered to be
needed for the activation record of the supervising program.

Declarations.

GLOBAL xsymb ENTRY symbol.

There is no visible Fortran translation for this instruction. Only
some administration is done. As symbol is the name of a Janus procedure,
this symbol refers to an entry in the compile-time symbol table. This
entry will now be referred to by the identifier xsymb. In other words, the
entry pointed to by symbol is associated with xsymb; since xsymb is stored
in the identifier table, this entry is known outside the module.

GLOBAL [xsymb] CSECT symbol.

This instruction begins a COMMON block. This means that the space
declarations which follow are treated as if they were constant
definitions. Storage for these global variables is allocated within the
constant part of memory. The current value of C is associated with xsymb
and symbol; this value and xsymb are stored in the identifier table;
symbol and the value of Care stored in the symbol table.

GLOBAL [xsymb] DSECT symbol.

If xsymb is in the identifier table, the value of xsymb is assigned
to GC and to symbol, which is stored in the symbol table; GC is used to
determine the addresses of the symbols occurring in the following SPACE
lines.
If xsymb is not in the identifier table, all Janus lines up to and
including the corresponding ENDBLK-instruction are ignored. The
translation of these lines is performed during the second pass.

SPACE mode CSECT declarator[value].

This global variable declaration effectively causes the reservation
of space. The amount depends on the mode which is specified; symbol (of
declarator) and the value of Care stored in the symbol table; if no value
is given, C is increased by the product of the value of mode and the value
of expression (of declarator), if any. If value is present and begins with
a+, the new value of C is determined during the translation of FLDV- or
ELMV-instructions. The following variables are initialized:

Cl T=I
Cl K=O
Cl N=O

If value is a data-constant (and thus mode is a primitive-mode), a DATA
statement is generated (on a separate file for constants); the number of

13

array element names depends on the value of expression. C is increased by
the value of expression, if any, and otherwise by 1.

SPACE mode DSECT declarator.

If this statement is not ignored, symbol (of declarator) and the
value of GC are stored in the symbol table; GC is increased by the product
of the value of mode and the value of expression, if any.

ENDBLK CSECTIDSECT symbol.

This instruction marks the end of a Janus COMMON block. No code is
generated and no administration takes place.

BEGIN [primitive-mode] DISP'i'IMAININONREC symbol.

This instruction is the first of a Janus procedure declaration. If
primitive-mode is present, the procedure delivers a value of that type,
that is to say an integer, real, boolean, character, procedure or address
value. Nonrecursive procedures do not have local declarations; only
temporary and static declarations are possible. The addressing environment
of a recursive procedure is determined by the integer 'i' as occurring in
DISP'i'. 'i' indicates the number of display pointers needed for accessing
nonlocal variables. The display level must be recorded, since it is used
in the computation of the addresses of the variables in the procedure. The
value of Tl and symbol are stored in the symbol table. The following code
is generated:

CZ Tl = T1+1
Cl Tl = T1+1
Cl MDS = 4
Cl PD = 4
Cl DL = 'i'IOIDL+l
Cl LC= 1
C 1 LA(T 1) = 1
C 1 PT (T 1) = "symbol"
C I EP (T 1 , 1) = 1
C 1 TP(T 1) = 0

SUBROUTINE P"T1"

PARAM mode DISP'i'IMAININONREC symbol [(expression)! [expression]].

No Fortran code need be generated by this Janus instruction. symbol
and the value of TP(Tl) are stored in the symbol table; TP(Tl) is
increased by the product of the value of mode and the value of expression,
if any, and 1 otherwise.

PAREND [primitive-mode] DISP'i'IMAININONREC symbol.

This instruction marks the end of the parameter list; so at this
moment the total number of parameters and the number of storage cells
needed for them are known. This implies that the addresses of all
parameters can now be computed; each parameter now corresponds with a

14

unique address recorded in the symbol table. As mentioned before, the
parameters are accessible by a negative displacement with respect to the
beginning of the activation record. For that reason the address of each
parameter cannot be computed before the total number of storage units
needed is known; the current value of TP(Tl) is used ·at parameter
references. The following code is generated:

LOGICAL BM("SIZE")
REAL RM("SIZE")
COMMON /H/MP, MEM ("SIZE")
EQUIVALENCE(MEM(I), BM(I), RM(!)).
I= MEM(MP+3)
GO TO ("EP (TI , I) 11 , ••• , "EP (T 1 , LA (TI)) 11) , I

I CONTINUE
C2 ID = IT(TI)-1

The total number of statement numbers depends on the number of calls
and the number of labels jumped to from outside this procedure; EP(Tl,K)
is the value of the Fortran statement label corresponding to the K-th
entry-point of the current procedure.

END [primitive-mode] DISP'i'INONRECIMAIN symbol.

The following code is generated:

END
Cl IT(TI) = MAXO(MDS,PD)

SPACE mode DISP'i' symbol [(expression)! [expression)].

The effect of this "local declaration" is to allocate storage within
the activation record of the current procedure. The number of storage
units depends on mode and expression. symbol and the value of PD are
recorded in the symbol table. PD is increased by the product of the value
of mode and the value of expression. No code is generated.

BLOCK 'i' DISP'j'.

This Janus instruction indicates a local block within the activation
record of the current DISP'j' procedure. Therefore, a compile-time pointer
is set, so that by encountering the corresponding BLEND-statement, the
storage reserved for local variables declared within this local block can
be freed again. It is necessary to have a compile-time stack for this
purpose. The following Fortran code is generated:

Cl BL('i') = PD

BLEND 'i' DISP'j'.

As already mentioned, the pointer which has been set at the
corresponding BLOCK-statement indicates which storage units are freed now.

Cl MDS = MAXO(MDS,PD)

15

C I PD = BL (' i')

TEMP primitive-mode DISP'i'INONRECIMAIN symbol.

If this instruction is contained within a NONREC-procedure then this
declaration is treated as if it were:

SPACE primitive-mode STATIC symbol.
Otherwise it is handled as:

SPACE primitive-mode DISP'i' !MAIN symbol.

RELEASE primitive-mode DISP'i'IMAININONREC symbol.

The Janus RELEASE-statement is ignored.

LOC symbol.

The value of LC and symbol are stored in the symbol table.

Cl LC = LC+I
"LC" CONTINUE

C2 ID= IT(Tl)-1

SPACE mode STATIC declarator [value].

The translation of static declarations is the same as the translation
of the SPACE declarations within global declarations, except that no
external symbol is defined. In other words, storage for these variables
will also be allocated within the constant part of memory. The translation
of this static declaration is the same as the translation of:

SPACE mode CSECT declarator [value].

Definitions.

DEF primitive-mode M identifier data-constant.

In the Janus program, identifiers can be associated with data
constants by manifest definitions. An applied occurrence of such an
identifier is replaced by the data-constant. All these identifiers with
the associated data-constants are stored in a compile-time manifest table
and are accessible during the compilation of the whole Janus program.

SPACE mode CONST declarator value.

Depending on mode and value, storage is allocated within the constant
part of memory: a row of DATA statements is generated, one for each
primitive component of value. This value can be a data-constant (a
character, integer or real value, or a compile-time expression), or an
array-value or a record-value. The elements of the array and the fields of
the record specify the DATA statements which are generated. symbol (of
declarator) and the value of C a~e stored in the symbol table. It is
worthwhile to note that global declarations, static declarations and

16

constant definitions cause the same code to be produced.

ARRAY model (PACKIALIGN) mode2 ((expression) I [expression]).

All modes that are defined are recorded in the symbol table. Each
mode is associated with an integer value, which indicates the number of
storage units needed. As mentioned already, no distinction is made between
packed and aligned arrays. The product of the value of expression and the
value of model is associated with mode2 and is stored in the symbol table.

RECORD model.

The first line of a Janus record-mode definition only serves to
indicate that the next lines will contain a full specification of this
mode. A compile-time counter CC is initialized to O; this counter contains
the number of storage units needed for a variable of model. When the
RECEND-statement is encountered, the number of storage units effectively
needed is assigned to model. Until that time the maximum storage to be
reserved is stored in a compile-time variable MX. This variable is also
initialized to zero. Two compile-time integer arrays are used; an array LM
in which local maxima are stored and an array MS which is considered a
compile-time stack to store the starting addresses of the variant-parts.
The following code is generated:

Cl CC= 0
Cl MX = 0

FIELD mode2 (PACKIALIGN) symbol [(expression)! [expression]].

symbol is recorded in the symbol table. The value of the counter CC
(as mentioned in the description of RECORD) is associated with symbol. So
symbol contains the displacement computed from the starting address of the
record (as recorded in the variable involved). The counter CC is now
increased by a number as designated by mode2.

Cl CC= CC+ 'mode2' [* 'expression']

MARK , . ,
1 •

This line begins a variant-part with at least one variant of level
'i'. As several variants occupy the same amount of storage it is
necessary to reserve the largest amount of space needed by any specific
variant of the given level. So it is necessary to save the current value
of the counter CC to make it possible to pick up this value when the
corresponding BACK line is encountered. These counter values must be saved
on a compile-time stack since variants may be nested. This means that the
following compile-time assignations take place:

C I LM (' i') = 0
Cl MS('i') = CC

17

BACK 'i' variant-id.

This Janus statement marks the end of a variant. I do not see any
sense in the use of this variant-id symbol, since the Janus definition
provides no meaning for it, but it may be that this symbol is used by
Pascal Jin the translation of a call to the Pascal 'new' function [3].
The total number of storage units reserved (as stored in the counter CC)
will therefore be recorded in the symbol variant-id. This symbol is to be
stored in the symbol table. If the first value is greater than MX, this
value is assigned to MX. The value of the counter CC is compared with the
value of MX. Moreover, the value stored the previous MARK line is assigned
to the counter CC. I summarize all these compile-time actions in the
following list:

C 1 MX = t1AXO (MX, CC)
Cl LM('i') = MAXO(LM('i'),CC)
Cl "variant-id" = LM(' i')
Cl IF ('i'.GT.I) LM('i'-1) = MAXO(LM('i'),LM('i'-1))
Cl CC= MS('i')

RECEND mode I.

This Janus line closes a record definition. The maximum of the
compile-time variable MX and the counter CC is associated with the symbol
model, which is recorded in the symbol table.

RANGE INT'i' constant! constant2.

As mentioned before, logical, real and integer entities occupy one
storage unit in Fortran. Therefore, I ignore the constants. The mode
INT'i' is equivalenced to the Janus mode INT. This interpretation is quite
sensible, since range checking is not provided in Janus, and no machine
independent ANSI Fortran interpretation of the constants is possible.
This specification could only be meaningful with a view to storage
allocation.

PRECSN REAL'i' constant! [constant2].

As I have mentioned before, I do not implement variables of type
DOUBLE PRECISION, because they need two storage units in contrast with
variables of type INTEGER, REAL or LOGICAL. Therefore, the interpretation
of a PRECSN line is nearly the same as of a RANGE line. All types REAL'i'
which are declared in the Janus program are equivalenced to the Janus mode
REAL.

TRANSMISSION statements.

In this section Janus operations are discussed that move operands
from and to the operand stack. These operations are composed of an
operator and an optional operand. This operand is a data-constant, a
reference to a constant, a variable or a temporary. If it is not a
denotation, it is necessary to search the symbol, identifier or manifest

18

table for the address or value of the operand. The operand is moved from
or to the top of the operand stack; the address of this top element is
determined by two integers: MP, which points to the beginning of the
current activation record (an execution-time variable), and a displacement
expressed in a compile-time variable ID. The address of the top element of
the operand stack is always denoted as: MP+"ID"; MP+"ID" points to the
storage unit last occupied.
The push operations LOAD, SETLOC and TEST cause ID to be increased by 1
(C2 ID= ID+l); if, however, the LOAD-instruction is encountered and
primitive-mode is PROC, ID is increased by 2; the pop operations BASE and
INDEX cause ID to be decreased by 1 (C2 ID~ ID-1); push operations cause
ID to be changed before Fortran code is generated; pop instructions change
the value of ID after code is generated. Generating code for these
instructions is done during the first pass of cpmpilation; however, during
the first pass the addresses within the operand stack are not known since
not all explicitly declared variables have already been seen; they are
filled in during the second pass.
The CMPM-instruction sets the Janus condition-code. This instruction is
implemented by storing the two operands in two character strings after the
addresses of these operands are calculated. When the condition-code is
tested (by conditional jumpltrap or test instructions) these operands are
used to compose a Fortran relational expression. This expression consists
of the two operands and a relational operator that is derived from the
condition-code occurring in the testing instruction.
The MOVE-instruction copies a mode object from one place in the Janus
memory to another. A Janus mode is only used to determine the number of
storage units to be copied, but not the type of them. I prefer a run-time
routine that copies these storage units to a process that copies all these
values as if they were of type real. Such a routine needs three
parameters: the source address, the destination address and the number of
storage units to be copied. In some sense the same holds for the CMPM
instruction; two mode objects are compared and the condition-code is set;
the implementation can best be done by a run-time routine with three
parameters.
The INDEX- and BASE-instructions may be provided with the (R)-flag. This
flag indicates that not the top element, but the subtop element of the
operand stack is the operand of the Janus operation. The type of the top
element of the operand stack is unknown; my implementation does not allow
this element to be a PROC-mode object, since these objects require two
storage units instead of one; variables of type CHAR, INT, ADDR, BOOL and
REAL occupy only one storage unit. This top element is moved to the
position below the top. As the type of this element is unknown, the type
of this variable is considered to be real. On most Fortran implementations
the real assignment causes no problems.
The STORE-, CMPM- and MOVE-instructions may be provided with the (N)-flag.
If so, ID is decreased by I (C2 ID= ID-I); if, however, the STORE
instruction is encountered and primitive-mode is PROC, ID is decreased by
2.
I will now give a detailed description for each Janus instruction; the
following conventions are used:

MEMIBMIRM: depending on the type of primitive-mode MEM, BM or RM is
generated;
type is INT, ADDR or CHAR: MEM

AD
OP
MOVE,CMPM

type is BOOL: BM
type is REAL: RM
If type is PROC, code is generated on a different way.
address of the variable, temporary or CONST reference.
value of the operand of the operation.
run-time routines that implement the MOVE- and CMPM
instructions, respectively; they need 3 parameters: the
source address, the destination address and the number 9f
storage units to be copied or compared; the CMPM-routine
delivers two character strings: "N" and "O"; in the
execution-time variable N the value -1, 0 or 1 is stored
indicating that the condition-code is set on LT, EQ or GT,
respectively.

19

OPD1 ,OPD2 two character strings in which the operands are stored by a
condition-code setting instruction.

LOAD primitive-mode operand.

MEMIBMIRM(MP+"ID") = "OP"

If primitive-mode is PROC:

MEM(MP+"ID-1 ") = MEM("AD")
MEM(MP+"ID") = MEM("AD+1 ")

SETLOC ADDR data-location.

MEM(MP+"ID") = "AD"

STORE[(N)] primitive-mode cell.

MEM I BM I RM ("AD II) = MEM I BM I RM (MP+"ID II)

If primitive-mode is PROC:

MEM("AD+I ") = MEM(MP+"ID")
MEM("AD") = MEM(MP+"ID-1 ")

MOVE[(N)] mode variable.

CALL MOVE (MEM (MP+"ID") , "AD",' mode')

CMPM[(N)] mode data-location.

CALL CMPM(MEM(MP+"ID"), "AD", 'mode')

TEST condition-code.

BM(MP+"ID") = "OPD 1 "."condition-code". "OPD2"

TEST condition-code cell.

20

BM (11 AD 11) = 110PD 1 u. "condition-code". 110PD 2"

BASE ADDR.

IBS = MEM(MP+"ID 11)

BASE(R) ADDR.

IBS = MEM (MP+11ID- l 11)

RM (MP+11ID- l 11) = RM (MP+11ID 11)

BASE ADDR operand.

IBS = MEM(11AD")

BASLOC ADDR data-location.

IBS = "AD"

INDEX INT ['i'] •

IND = MEM(MP+"ID")

INDEX(R) INT['i'] •

IND = MEM(MP+"ID-1 ")
RM(MP+"ID-1 11) = RM(MP+"ID")

INDEX INT['i') operand.

IND = "OP"

COMPUTATIONAL statements.

All Janus computational instructions consist of an operator and an
optional operand. The operator is monadic or dyadic. If no operand is
given it is assumed to be on the operand stack. The left operand for a
dyadic operator is always on the operand stack; if operand is present it
is the right one; otherwise the right operand is the top element of the
operand stack and the left operand is the subtop element.

Each operator delivers a value; the type of this value depends on the
operator and the type of the operands; the resulting value is pushed onto
the operand stack. Monadic operators - ABS, NEG, NOT, TRUNCN and TRUNCZ -
cause ID to be increased by 1 (C2 ID= ID+l) if operand is present;
otherwise ID remains unchanged (the operand is overwritten). Dyadic
operators - ADD, AND, CMP, DIV, EQSGN, EXOR, MOD, MPY, OR and SUB - cause
ID to be decreased by 1 if no operand is given; otherwise ID remains
unchanged; in both cases the left operand is overwritten.

The CMP- and EQSGN-instructions set the condition-code; at the
translation of the EQSGN-instruction two new operands are created; these
two operands make it possible this instruction to be implemented in the
same way as the other condition-code setting instructions.

The DIV-, SUB- and MOD~instructions may be provided with the
(R)-flag. If so, the operands are exchanged.

21

The EQSGN- and CMP-instructions may be provided with the (N)-flag. If
so, ID is decreased by 2 if no operand is given; otherwise ID is decreased
by 1.

The conventions used are the same as in the previous section. Below,
I give the code for the instructions in case no operand is present. The
implementation of the instructions provided with operand is nearly the
same.

ABS INT !REAL •

MEMIRM(MP+"ID") = IABSIABS(MEMIRM(MP+11 ID 11))

ADD INTIREAL.

MEMIRM(MP+"ID-1 ") = MEMIRM(MP+"ID-1 ") + MEMIRM(MP+"ID")

AND BOOL •

BM(MP+"ID-1 ") = BM(MP+"ID-l 11) .AND. BM(MP+11ID 11)

CMP[(N)] INTIREAL •

CI OPD 1 = MEM I RM (MP+"ID-1 ")
C 1 OPD 2 = MEM I RM (MP+"ID ")

DIV INTIREAL.

MEMIRM(MP+"ID-l 11) = MEMIRM(MP+ 11ID-l 11) / MEMIRM(MP+"ID")

DIV(R) INTIREAL.

MEMIRM(MP+"ID-1 ") = MEMIRM(MP+"ID") / MEMIRM(MP+"ID-1 ")

EQSGN[(N)] INTIREAL.

CI OPD 1 = ISIGN I SIGN (MEM IRM(MP+"ID") ,MEM IRM(MP+"ID-1 "))
Cl OPD2 = MEM IRM(MP+"ID")

EXOR BOOL •

BM(MP+"ID-1 ") = (BM(MP+11 ID-l 11) .OR.BM(MP+"ID")) .AND.
(.NOT. BM (MP+"ID-1 11). OR •• NOT. BM (MP+"ID 11))

MPY INJC!REAL.

MEMIRM(MP+"ID-1 ") = MEMIRM(MP+"ID-1 ") * MEMIRM(MP+"ID")

NEG INTIREAL.

22

I

MEMIRM(MP+"ID") = - MEMIRM(MP+"ID")

NOT BOOL.

BM(MP+"ID") = .NOT. BM(MP+"ID")

OR BOOL.

BM(MP+"ID-1 ") = BM(MP+"ID-1 ") .OR. BM(MP+"ID")

SUB INT I REAL •

MEMIRM(MP+"ID-1 ") = MEMIRM(MP+"ID-1 11) - MEMIRM(MP+"ID")

SUB(R) INTIREAL.

MEM I RM (MP+"ID-1 ") = MEM I RM (MP+"ID") - MEM I RM (MP+"ID-1 ")

TRUNCN INT.

X = RM(MP+"ID")
MEM(MP+"ID") = INT (X)
IF (FLOAT (MEM(MP+"ID")) .GT .X) MEM(MP+"ID") = MEM(MP+"ID") - 1

TRUNCZ INT •

MEM(MP+"ID") = INT (RM(MP+"ID"))

OPTIONAL statements.

The operations I have discussed until now are available in every
implementation of Janus. Furthermore, some operators are "optional", that
is to say they are not included within Standard Janus. All operators in
this section except LDEX are monadic. The operator ODD that sets the
condition-code may be provided with the (N)-flag; if so, ID is decreased
by 1. In the same way as the EQSGN-instruction, the ODD-instruction
delivers two operands in the character strings OPDI and OPD2. The EXPO
and LDEX-instructions handle the exponent of an operand. It is not easy to
isolate the exponent of a real variable in Fortran, nor is it clear what
it would mean in Standard Fortran; it is not even clear what it would
mean, since Janus has no way of indicating the base. For these reasons I
do not implement these instructions.

ODD [(N)] INT •

C 1 OPD 1 = IABS (MOD (MEM(MP+"ID"), 2))
Cl OPD2 = 1

ROUND INT I REAL •

MEM IRM(MP+11ID 11) = INT IAINT (RM(MP+"ID")+SIGN (0. 5,RM(MP+"ID")))

SIGN INT !REAL •

IF (MEM IRM(MP+"ID") .NE. 0 Io.)
CMEM(MP+"ID") = ISIGN I SIGN (I 11. ,MEM IRM(MP+"ID"))

IF (RM (MP+"ID 11) • EQ. 0.) MEM (MP+"ID ") = 0

SQUARE INTIREAL.

MEMIRM(MP+"ID") = MEMIRM(MP+"ID 11) * MEMIRM(MP+"ID")

TRUNCN REAL •

X = RM(MP+"ID")
RM(MP+"ID") = AINT (X)
IF (RM(MP+"ID") .GT.X) RM(MP+"ID 11) = RM(MP+11 ID 11) - 1.0

TRUNCZ REAL.

RM(MP+"ID") = AINT (RM(MP+"ID"))

Conversions.

23

In .Janus it is possible to convert a value of some type into a value
of other types. Some of these conversions are defined by Janus, but the
conversion of others is left to the implementer. Janus includes 9
conversion operators. Since I do not implement subranges of the modes
REAL and INT, the conversions REAL REAL and INT INT are implemented as if
they were copying instructions. As mentioned already, Janus characters are
implemented as integer values using two transform functions. This implies
that the conversions CHAR INT and INT CHAR are also implemented as if they
were copying instructions. The implementation of the conversions B00L INT,
INT B00L,, REAL INT and INT REAL is trivial. Discussion about the
conversion PR0C DISP'i' is held separately.

B00L INT •

BM(MP+"ID") = MEM(MP+"ID") .EQ. I

INT B0OL •

I = 0
IF (BM(MP+"ID")) I =
MEM(MP+"ID") = I

INT REAL.

MEM (MP+"ID II) = RM (MP+"ID II)

REAL INT •

24

RM(MP+"ID") = MEM(MP+"ID").

PROC DISP'i' operand.

This Janus instruction converts an ADDR-mode object into a PROC-mode
object. The creation of a PROC-mode object takes place in two cases: 1.
operand denotes a Janus procedure or 2. operand denotes a Janus label. My
implementation requires an explicit operand, since otherwise no
distinction can be made between operands that denote Janus procedures and
those that denote Janus labels; if operand denotes a Janus procedure,
symbol (of operand) is in the procedure table PT. PROC-mode objects are
created for labels whose applied occurrence may be within an other
procedure (i.e. a jump out of a procedure). To make a treatment similar to
that of a procedure possible, the display level of the label has to be one
more than the display level of the procedure in which this label is
contained. In both cases - a call to the procedure or a jump to the label
- the result is a call of the Fortran subroutine corresponding to a Janus
procedure. It is not sufficient to specify which procedure is meant; the
addressing environment (as indicated by DISP'i') must also be specified.
Clearly, this instruction is contained within a Janus procedure of level j
(DISP'j'). It is necessary that i ~ j+l. MP marks the beginning of the
activation record of the subroutine (procedure) currently active. The
code that is generated depends on the value of j-i+l. The number of the
procedure (if operand denotes a Janus procedure) or the entry-point
corresponding to the label (if operand denotes a label) is pushed onto the
operand stack.

C2 ID = ID+l

if i = j+l MEM(MP+"ID") = MP

if i = j MEM(MP+"ID") = MEM(MP)

if i = j-1 K = MEM(MP)
MEM (MP+"ID II) = MEM(K)

otherwise(i ~ j-2) K = MEM(MP)
L = "DL"-'i'-1

Cl LC = LC+l
DO "LC" M = 1 ,L

"LC II K = MEM(K)
MEM(MP+"ID") = MEM(K)

C2 ID = ID+l

If operand denotes a procedure:

MEM(MP+"ID") = 'symbol'

If operand denotes a label:

Cl LA(Tl) = LA(Tl)+l
Cl EP(Tl,LA(Tl)) = 'symbol'

MEM (MP+"ID 11) = "LA (T 1) "

ALLOCATION statements.

When a block of storage is claimed or freed the run-time routines
GRAB and FREE are used. Code for these routines is given in APPENDIX 2.
No distinction is made between STACK- and HEAP-instructions.

GRAB STACKIHEAP index.

C2 ID = ID+l
MEM(MP+"ID") = GRAB('index')

FREE STACKIHEAP index.

CALL FREE(IBS,'index')

CONTROL statements.

JMP target.

25

If J:arget is a code-location, this instruction is interpreted as a
jump within the current procedure. In my implementation code-location is
allowed to be only of the form: R symbol. The value that is associated
with symbol is filled in during the second pass; in this way there are no
problems with forward references of labels.

GO TO 'symbol'

If ~target is a cell, this cell is considered to be a PROC-mode object
and the instruction is interpreted as a jump out of the current procedure.

MP = MEM("AD")
MEM(MP+3) = MEM("AD+l ")
RETURN

JMP condition-code target.

If target is a code-location:

IF ("OPD 1 ". "condition-code 11 • "OPD 2 ") GOTO 'symbol'

If target is a cell:

C 1 LC = LC+l
IF (.NOT.("OPD1"."condition-code"."OPD2")) GOTO "LC"
MP = MEM (II AD II)
MEM(MP+3) = MEM("AD+l ")
RETURN

26

"LC" CONTINUE

TRAP [condition-code] identifier.

The implementation of the Janus TRAP-instruction can best be left to
the implementer on each machine, because he knows all about the
peculiarities of his machine. If a trap occurs, further execution of a
Janus program is undefined; Janus does not define the meanings of any trap
identifier. By IDF, I denote a traproutine whose specification is given
by each individual implementer.

If condition-code is absent:

CALL "IDF"

and otherwise:

IF ("OPDl"."condition-code"."OPD2") CALL "IDF"

BEGCAS[(N)] primitive-mode.

It is impossible to select on a PROC-mode, an ADDR-mode or a BOOL
mode object, since there are no data-constants of these modes.

If primitive-mode is INT or CHAR:

I = MEM(MP+"ID")

If primitive-mode is REAL:

X = RM (MP+"ID II)

If (N) is present:

C2 ID = ID-1

CASE primitive-mode code-location data-constant.

DC denotes a Fortran integer or real constant equivalent to the Janus
data-constant.

IF (I IX.EQ. "DC") GOTO 'symbol'

I admit that this translation may very often not be the most
efficient one. For example, if it concerns an integer case-selection and
the data-constants start from one with steps of one, it is obvious
preferable to generate a Fortran COMPUTED GOTO statement. However, this
requires a lot of administration since all data-constants and
code-locations must be stored until the ENDCAS-statement is encountered.
At that moment it is possible to make a choice between a COMPUTED GOTO
statement and a row of LOGICAL IF statements. Furthermore, the values of
the data-constants may be machine-independent. At this moment I have not
chosen such a solution, although I realize that in most implementations

such an analysis may be necessary to achieve sufficient efficiency.

ENDCAS primitive-mode [code-location].

If code-location is absent, no code is generated;

othe:rwise:

GOTO 'symbol'

[R]CALL [primitive-mode] target.

As already mentioned, no distinction is made between recursive and
nonrecursive calls. Nonrecursive calls are treated as if they were
recursive. No code is generated.

[R]ARG[(N)] primitive-mode [operand].

27

In my implementation, the arguments for a call are pushed onto the
operand stack. If operand is absent, the argument is already on the
operand stack and no action is performed; otherwise this instruction is
interpreted as a LOAD-instruction. I pay no attention to the occurrence of
(N), since all arguments must be left on the operand stack. The arguments
are assumed to be of primitive-mode; if the mode of an argument is not
restricted, a run-time routine is used to copy operand to the operand
stack (se.e page 19: the MOVE-instruction).

C2 ID = ID+l
MEMIBMIRM(MP+"ID") = "OP"

If primitive-mode is PROC:

C2 ID = ID+2
MEM(MP+"ID-1 ") = MEM("AD")
MEM (MP+"ID ") = MEM ("AD+ 1 ")

[R]ARGLOC[(N)] ADDR data-location.

C2 ID = ID+l
MEM(HP+"ID") = "AD"

[R]CEND [primitive-mode] target.

If target is a code-location:

MEM(MP+"ID+l ") = MP
MEM (MP+"ID+2 ") = 'symbol'

If target is a cell:

MEM (MP+"ID+ 1 ") = MEM ("AD")

28

MEM(MP+"ID+2") = MEM("AD+l ")

In both cases:

MEM(MP+"ID+3") = HP
l1EM(MP+"ID+4") = 1

Cl LA(Tl) = LA(Tl) + 1
C 1 LC = LC+l
Cl EP(Tl,LA(Tl)) = LC

MEM(MP+3) = "LA(Tl)"
MP= MP+"ID+l"
RETURN

"LC" CONTINUE
CZ ID= ID - TP('symbol'IMEM("AD+l")) [+ 'primitive-mode']

RETURN [primitive-mode] procedure-class symbol.

If primitive-mode is present, a value of this mode is to be placed on
the top of the operand stack.

MEM I BM I RM (MP-"TP (T 1) ") = MEM I BM I RM (MP+"ID")

If it is a PROC value:

MEM(Ml'-"TP(Tl)") = MEM(MP+"ID-1 ")
MEM(MP-"TP(TI)-1 ") = MEM(MP+"ID")

Furthermore - also if primitive-mode is absent -

MP= MEM(MP+2)
RETURN

STOP [primitive-mode] procedure-class symbol.

STOP

ABORT [primitive-mode] procedure-class symbol.

STOP

OMISSIONS AND PROBLEMS

The implementation of several Janus concepts is not given or is left
to each individual implementer. A summary is given now of all points in
the Janus definition that are not discussed.

I. Code-locations are allowed to be only of the form: R symbol.
2. The INDEX- and BASE-instructions cause problems if the (R)-flag is

present.
3. The implementation of the TRAP-instruction is left to each individual

implementer.
4. No subranges (RANGE) and precisions (PRECSN) are implemented.

29

5. EXPO and LDEX are not implemented.
6. No difference is made between aligned and packed arrays~

FINAL REMARKS

In this paper only a sketch has been given of a portable
implementation. I have tried not to deviate from the Janus document, but
at some places I have chosen for an interpretation which seems the best
possible to me. I have done so only where the Janus document is not clear
or does not specify exactly what is meant. Janus includes some less
successful concepts, which are hopefully replaced in a later version; the
current language is not very suitable to be used as intermediate code for
the translation of high-level languages. I hope, that this paper may
contribute to a real implementation and may remove some difficulties which
might otherwise appear.

ACKNOWLEDGEMENT

I am very grateful to H.J. Boom for his helpful advice and his
patient explanations which were essential for the completion of this
paper.

REFERENCES

-(1] Waite, W.M. and B.K. Haddon, A preliminary definition of Janus,
Report SEG-75-1, Department of Electrical Engineering, University of
Colorado.

-(2] Standard FORTRAN Programming Manual, the National Computing Centre
Limited, 1972, SBN 85012 063 2.

-(3] Jensen, Kathleen and Niklaus Wirth, PASCAL User Manual and Report,
Springer Verlag, 1975, ISBN 0-387-90144-2.

30

APPENDIX I

It is not easy to implement Janus composed values in a correct and
efficient way. In this section an algorithm is given, described in Algol
68. This algorithm may be a guide for an implementer to write his own
version. The following variables are used:

al,a2,a3: one-dimensional integer arrays; al and a2 contain the values
of mode and expression, respectively; a3 is used to store the
nesting level upon encountering an ARVND-line.

C

n
t
k

constant counter.
number of times a primitive value (data-constant) is put out.
nesting level.
index in array a3.

The constant definitions etc. are implemented as DATA statements that
are generated on a separate constant file; for this constant file I have
chosen the file stand out (standard output file).
When the first ELMV- or FLDV-line is encountered, the integer variables n,
t and k have been initialized by the previous SPACE-line:

n := O; t := I; k := O;

The composed value is read from the Janus source file (standard input
file) by:

while t/=0 do readline((instruction,newline)) od;

The instruction can be:

I. ELMV-instruction
2. FLDV-instruction
3. RCVND-instruction
4. ARVND-instruction

The value on the end of the ELMV-, the FLDV- or the ARVND-line may be
a data-constant. I assume this data-constant is a real denotation. It is
not difficult to see what to do when another kind of data-constant occurs.
The data-constant is stored in a strings;

ELMV mode CONSTICSECTISTATIC [expression] !(expression) [value].

al [t] := 'mode';
a2[t] := •~ession'

a. value is absent:

c : = c + a 1 [t] * a2 [t] ;

b. value is data-constant:

print("DATA ");
p (I) ;
if s [I] = 11- II

:= s[l] + 11 • 11 + s[2:] thens
else s :=
fi;

II II . + s

print((11/",if n>l ~ (whole(n,0),"* 11)

s,"/",newline));
C : = C + a2 [t] ;
n := O;

c. value begins with a "+":

t:=t+l;

31

else 1111 fi _,

FLDV mode CONSTICSECTISTATIC symbol [[expression] !(expression)] [value].

a 1 [t] : = 'mode' ;
a2[t] := '~ession' (if absent then 1);

a. value is absent:

c : = c + a 1 [t] * a2 [t] ;

b. value is data-constant:

print ("DATA ") ;
p (1);
if s[l]="-"
then s : = s [1] + 11 • 11 + s [2 :]
else s := "•" + s
fi;
print(("/",if n>l then (whole(n,O),"*") else 1111 fi,

s,"/",newline));
C : = C + a2 [t] ;
n : = O;

c. value begins with a "+":

a2[t] := 1;
t:=t+l;

RCVND mode CONSTICSECTISTATIC [symbol].

while t := t - 1;
if t>O then c := c + al [t] * (a2[t] - 1) fi;
if k=O then false else a3[k]=t fi

do k := k - 1 od;

ARVND mode CONSTICSECTISTATIC [symbol] [expression] !(expression)
[value].

a 1 [t] : = 'mode' ;
a2[t] := '~ession';

a. value is absent:

WBLJ-ol·HEEK rvi;:..--;1,1Lt.~- .i;::cil c~t~Ai~:....>i
M1STl:RDAM

32

c := c + al [t] * a2[t];
while t := t - I;

if t>O then c := c + al [t] * (a2[t] - I) fi;
if k=O then false else a3[k]=t fi

do k := k - I od;

b. value is data-constant:

print ("DATA 11);

p (I) ;
if s[IJ="-"
then s : = s [I J + " • 11 + s [2 : J
else s := "." + s
fi;
print((11 / 11 ,if n>l then (whole(n,O),"*") else 1111 fi,

s, 11 / 11 ,newline));
C : = C + a2 [t] ;
n := O;
while t := t - I;

if t>O then c := c + al [t] * (a2[t] - I) fi;
if k=O then false else a3[k]=t fi

do k := k - I od;

c. value begins with a 11+ 11 :

k:=k+I;
a3 [k] : = t;
t:=t+l;

The code of the procedure p:

proc p= (inti) void:
(if :i.=t
then print((if n>O then 11 , 11 else"" fi, 11RM(",
-- whole(c, 0), ") 11))-;--

n: = n +I;
!£a2[t] - I
doc := c + al [t]; n := n + I;

print ((11 ,RM (11 , whole (c, O) , 11) "))

od
else p (i+I);

to a2[i] - I
do c : = c + a I [i] ; p (i + I) od

fi• _,
c := c - al[i] * (a2[i] - I)

) ;

APPENDIX 2

By the routines GRAB and FREE a block of storage is dynamically
claimed or freed, respectively.

INTEGER FUNCTION GRAB(N)
COMMON/Hf MP,MEM("SIZE")
K = "SIZE"

10 M = MEM(K)
IF (MEM(M).EQ.O) GOTO 40
IF (MEM(M-1).EQ.N) GOTO 30
IF (MEM(M-1).GE.N+2) GOTO 20
K = M
GOTO 10

20 L = M-N
MEM(K) = L
MEM(L) = MEM(M)
MEM(L-1) = MEM(M-1) - N
GRAB= M
RETURN

30 MEM(K) = MEM(M)
GRAB = M
RETURN

40 L = M-N
MEM(K) = L
MEM(L) = 0
GRAB = M

RETURN
END

SUBROUTINE FREE(Nl,N2)
COMMON/Hf MP,MEM("SIZE")
K = "SIZE"

lOM=MEM(K)
IF (M.LT.Nl) GOTO 20
K = M
GOTO 10

20 J = Nl-N2
IF (K.EQ."SIZE") GOTO 40
I = K - MEM(K-1)
IF (I.NE.NI) GOTO 40
IF (J .NE.M) GOTO 30
MEM(K) = MEM(M)
IF (MEM(M).NE.O) MEM(K-1) = MEM(K-1) + N2 + MEM(M-1)
RETURN

30 MEM(K-1) = MEM(K-1) + N2
RETURN

40 IF (J.NE.M) GOTO 50
MEM(K) = Nl
MEM (N 1) = l1EM (M)
IF (MEM(M).NE.O) MEM(Nl-1) = MEM(M-1) + N2
RETURN

50 MEM(K) = Nl

33

34

MEM(Nl) = M
MEM (N 1-1) = N 2
RETURN
END

35

APPENDIX 3

As an example a Janus program is given and the translation of this
program into Standard Fortran. In the left column the Janus program and in
the right column comment is given in Algol 68 style. The program concerns
the computation of the Ackermann function.

START ACKERMANN.
BEGIN MAIN AO.
PAREND MAIN AO.
SPACE PROC DIS PO A 1 •
PROC DISPl R Tl.
STORE(N) PROC LOCAL Al.
RCA.LL INT DIS PO A 1 •
RARG(N) INT A.INT 3.
RARG(N) INT AINT 4.
RC END INT DIS PO A 1 •
RETURN MAIN AO.
END MAIN AO.
BEGIN INT DISPl Tl.
PARAM INT DISPl Ml.
PARAM INT DISPl N 1.
PAREND INT DISPI Tl.
LOAD INT LOCAL M 1 •
CMP (N) INT AINT O.
JMP NE R LO.
LOAD INT LOCAL NI •
ADD INT AINT 1 •
RETURN INT DISPl Tl.
LOG LO.
LOAD INT LOCAL N 1 •
CHP (N) INT A.INT O.
JMP NE R L 1.
RCALL INT DIS PO A 1 •
LOAD INT LOCAL Ml.
SUB INT AINT 1 •
RARG (N) INT •
RARG(N) INT A.INT 1.
RC END INT DIS PO A 1 •
RETURN INT DISPI Tl.
LOG L 1.
RCALL INT DISPO A 1 •
LOAD INT LOCAL MI •
SUB INT AINT I •
RARG (N) INT •
RCALL INT DIS PO A I •
RARG(N) INT LOCAL Ml.
LOAD INT LOCAL N 1 •
SUB INT A.INT I •
RARG (N) INT •
RC END INT DIS PO A I •
RARG (N) INT •
RC END INT DISPO A 1.

begin

proc ack = •••
ack
(3
,4
)

end

(m
,n

if m
= 0

then n
+1

elif
n
= 0

then
m
-1

' 1
)

else
ack(
m
-1

,ack(
m
,n
-1

)

)

ack(

36

RETURN INT DISPl Tl.
END INT DISPI Tl.
FINISH.

ll

In the Fortran program the statements which are the translation of a
Janus instruction are preceded by that Janus instruction as a comment
line. The program causes 125 to be printed.

C START ACKERMANN.
C BEGIN MAIN AO.

SUBROUTINE P2
C PAREND MAIN AO.

LOGICAL BM(lOOO)
REAL RM(lOOO)
COMMON/Hf MP,MEM(lOOO)
EQUIVALENCE (MEM(l),BM(l),RM(I))
I=MEM(MP+3)
GO TO (I , 2) , I

I CONTINUE
C SPACE PROC DISPO Al.
C PROC DISPI R Tl.

MEM(MP+6)=MP
MEM(MP+7)=3

C STORE(N) PROC LOCAL Al.
MEM(MP+5)=MEM(MP+7)
MEM(MP+4)=MEM(MP+6)

C RCALL INT DISPO Al.
C RARG(N) INT AINT 3.

MEM(MP+6)=3
C RARG(N) INT AINT 4.

MEM(MP+7)=4
C RCEND INT DISPO Al.

MEM(MP+8)=MEM(MP+4)
MEM(MP+9)=MEM(MP+5)
MEM(MP+IO)=MP
MEM(MP+ll)=I
MEM(MP+3)=2
MP=MP+8
RETURN

2 CONTINUE
C PRINT RESULT (NO JANUS INSTRUCTION)

WRITE(6,30) MEM(MP+6)
30 FORMAT(I8)

C RETURN MAIN AO.
MP=MEM(MP+2)
RETURN

C END MAIN AO.
END

C BEGIN INT DISPI Tl.
SUBROUTINE P3

C PARAM INT DISPI Ml.
C PARAM INT DISPI Nl.
C PAREND INT DISPI Tl.

LOGICAL BM(l 000)
REAL RM(l 000)
COMMON/H/ MP,MEM(1000)
EQUIVALENCE(MEM(l),BM(l),RM(l))
I=MEM(MP+3)
GO TO (1 , 3, 5, 6) , I
CONTINUE

C LOAD INT LOCAL Ml.
MEM(MP+4)=MEM(MP-2)

C CMP(N) INT AINT O.
C JMP NE R LO.

IF (MEM(MP+4).NE.O) GO TO 2
C LOAD INT LOCAL Nl.

MEM(MP+4)=MEM(MP-1)
C ADD INT AINT 1.

MEM(MP+4)=MEM(MP+4)+1
C RETURN INT DISPl Tl.

MEM(MP-2)=MEM(MP+4)
MP=MEM(MP+2)
RETURN

C LOG LO.
2 CONTINUE

C LOAD INT LOCAL N 1 •
MEM(MP+4)=MEM(MP-1)

C CMP(N) INT AINT O.
C JMP NE R LI.

IF (MEM(MP+4).NE.0) GO TO 4
C RCALL INT DISPO Al.
C LOAD INT LOCAL M 1 •

MEM(MP+4)=MEM(MP-2)
C SUB INT AINT 1 •

MEM(MP+4)=MEM(MP+4)-l
C RARG (N) INT •
C RARG(N) INT AINT I.

MEM(MP+S)=l
C RCEND INT DISPO Al.

I=MEM(MP)
MEM(MP+6)=MEM(I+4)
MEM(MP+7)=MEM(I+5)
MEM(MP+8)=MP
MEM(MP+9)=1
MEM(MP+3)=2
MP=MP+6
RETURN

3 CONTINUE
C RETURN INT DISPI Tl.

MEM(MP-2)=MEM(MP+4)
MP=MEM(MP+2)
RETURN

C LOG L 1.
4 CONTINUE

C RCALL INT DISPO Al.
C LOAD INT LOCAL M 1 •

37

38

MEM(MP+4)=MEM(MP-2)
C SUB INT AINT 1.

MEM(MP+4)=MEM(MP+4)-1
C RARG(N) INT.
C RCALL INT DISPO A1.
C RARG (N) INT LOCAL M 1 •

MEM(MP+.S)=MEM(MP-2)
C LOAD INT LOCAL N1.

MEM(MP+6)=MEM(MP-1)
C SUB INT AINT 1.

MEM(MP+6)=MEM(MP+6)-1
C RARG (N) INT •
C RCEND INT DISPO A1.

I=MEM(MP)
MEM(MP+7)=MEM(I+4)
MEM(MP+8)=MEM(I+5)
MEM(MP+9)=MP
MEM(MP+10)=1
MEM(MP+3)=3
MP=MP+7
RETURN

5 CONTINUE
C RARG (N) INT •
C RCEND INT DISPO A1.

I=MEM(MP)
MEM(MP+6)=MEM(I+4)
MEM(MP+7)=MEM(I+5)
MEM(MP+8)=MP
MEM(MP+9)=1
MEM(MP+3)=4
MP=MP+6
RETURN

6 CONTINUE
C RETURN INT DISP1 T1.

MEM(MP-2)=MEM(MP+4)
MP=MEM(MP+2)
RETURN

C END INT DISP1 T1.
END

C FINISH •
PROGRAM SPV(OUTPUT,TAPE6=0UTPUT)
LOGICAL BM(1000)
REAL RM(1000)
COMMON/H/ MP,MEM(1000)
EQUIVALENCE (MEM(l),BM(1),RM(1))
MEM(MP-3)=1
MEM(MP)=MP-4
MEM(MP+1)=2
MEM(MP+2)=MP-4
MEM(MP+3)=1
I=MEM(MP+1)
GO TO (1 1 , 1 2, 1 3) , I

12 CALL P2

GO TO 1
13 CALL P3

GO TO 1
11 STOP

END
BLOCK DATA
LOGICAL BM(lOOO)
REAL RM(lOOO)
COMMON/HJ MP,MEM(lOOO)
EQUIVALENCE (MEM(l),BM(l),RM(l))
DATA MP/5/
DATA MEM(1OOO)/999/,MEM(999)/O/
END

39

l

