
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

P. KLINT & H.J. SINT

A FRAMEWORK FOR THE INTEGRATION
OF GRAPHICS AND PATTERN RECOGNITION

Preprint

~
MC

I W 96/78 MEI

2e boerhaavestraat 49 amsterdam

SIB

PJt.inted a.t .the Ma.thema;Uc.a.l Ce.n:tJz.e, 49 ,· 2e BoeJr.haavu.tlta.a.t, Am.6.teJuiam.

The Ma.thema;Uc.a.l Centlr..e, 6ou.nded .the 11-.th 06 Feb~uaJr.y 1946, -<.-6 a non
p~o6Lt ,i.nt:,u..tu.,t,ion cum,lng a.t .the p1tom0Uon 06 pUll.e ma.thema;Uc.6 and -lt6
app.U.c.a.Uon6. I.t -<.-6 .6pon1:,o~ed by the Ne.the.Jtla..ndo GoveJz.nment tMough the
Ne.theJtla..ndo 01tganizmon 60~ the Advanc.ement 06 PUite RueMc.h (Z.W.O).

AMS(MOS) subject classification scheme (1978): 68A45

Computing Reviews 3.63, 8.2

A framework for the integration of graphics and pattern recognition.*)

by

Paul Klint & Marleen Sint

ABSTRACT

A model is presented that describes a symmetric input/output function

in a computer Graphics System. This model is based on the construction of

a symmetric input function by means of pattern recognition. Both theoreti

cal and implementational aspects of this model are discussed.

KEY WORDS & PHRASES: Computer Graphics, Pattern Recognition, Symmetric

input/output.

*) This report will be submitted for publication elsewhere.

1. Informal outline.

Symmetry of input and output operations is not only aesthetically

pleasing but has also advantages in many computer applications. Some

times such a symmetry is difficult to achieve, sometimes it is not even

clear what it means.

In the case of Computer Graphics one can envisage a high level

graphics language that produces as output programs in some machine in

dependent intermediate language, and accepts as input programs in the

same intermediate language. Input from a drawing machine should somehow

produce programs in the intermediate language. In this paper we will

try to refine this 'somehow' somewhat.

First we need some terminology: 'A picture is defined as a descrip

tion of some object such that a visible image can be obtained from this

description in a uniform way. The description may include both geometri

cal (shape, size) and non-geometrical (colour, weight) properties of the

obj ec t' [1] •

This definition states that there exists a function that maps pic

tures onto visible images. This function is an output function; it maps

an internal representation (the picture) onto an external representation

(the image, i.e. the line-drawing, photograph or video image, produced

by some output device). Pictures are structured objects, but images are

not. By going from a picture to its image the structure is lost. Con

sequently, the inverse mapping from images to pictures will not be a

function: the same image can be mapped onto more pictures since there is

no way to structure an.image uniquely. Consider the following pictures

(the notation from [1] is used):

pict Picturel {Trianglel; Triangle2}.

subpict Trianglel LINE([O,O], [1,0], [1,1], [0,0]).

1

subpict Triangle2 WITH ROTATE 180 AROUND ([.5,.5]) DRAW Trianglel.

2

pict Picture2 {Square; LINE([0,0], [1,1])}.

subpict Square LINE([0,0], [1,0], [1,1], [0,1], [0,01).

pict Picture3 {Square; LINE([l,1], [0,0])}.

When Picturel, Picture2_ and Picture3 are drawn, they all lead to

the image shown in figure 1. Picture2 differs from Picture3 only in the

drawing direction of the diagonal.

Figure 1.

The inverse mapping, from images to sets of pictures, is an input

mapping, from an external representation (the image, i.e. what you draw

on some input device) to a set of internal representations (pictures).

If one succeeds in constructing such an input mapping as the reverse of

the output mapping (for a given device which is capable to do both input

and output) then symmetry of input and output is obtained for that dev

ice.

Suppose we want an input function instead of an input mapping, how

could that be achieved? A picture combines 'content' and 'structure'

while in an image only the 'content' is retained. (The terms content and

structure are somewhat vague, but are probably intuitively clear. They

will only be used to clarify underlying ideas, and are not used as

technical terms.) To obtain a unique mapping from images to pictures, we

need structure descriptions and a process to combine these with the im

ages to yield pictures. For example, structure descriptions correspond

ing to 'two triangles sharing one side' and 'a square with one diagonal'

would allow us to map the image of figure back to Picture] when com

bined with the first description, and to Picture2 (or Picture3) when

combined with the second. T.his process is nothing else than a pattern

recognition process; the structure descriptions will be called patterns.

In the next section we will present a formalization of these ideas.

Everything between square brackets is comment on, not part of the model.

In section 3 we pay some attention to implementational aspects of our

model and try to identify problem areas.

2. A model for graphics input/output functions.

2.1. Description of the model.

[Our goal can be stated as follows:· given a graphical output func

tion, construct an input function, using patterns and pattern recogni

tion, such that this input function is symmetric (in some sense) with

the output function.]

Given are a set PICT [of pictures] and a set IM [of images]. Given

is also an equivalence relation

equivalence classes denoted by IM-.

on IM, dividing IM into a set of

[It is not at all obvious when two images are the same; should for in-

stance, drawing order be considered part of the image? For the moment we

content ourselves with stating that there is some equivalence relation

on IM, dividing IM into classes of images indiscernible for the input

process. In the comment we will keep using the word 'image' in

stead of 'equivalence class of images'.]

Also given is a surjective function DRAW: PICT-> IM~.

[DRAW is th,e graphical output function. We are only interested in images

3

4

which can be drawn, hence the assumption that DRAW is surjective. In

section 2.3. we will justify the choice of having IM- rather than IM as

the range of DRAW. ·For people who object that a graphical output func

tion always maps a picture to an image and not to an equivalence class

of images, we can add one step to the definition:

Given a function

OUT: PICT-> IM, let

DRAW: PICT-> IM- be defined by

DRAW(p) = im- <=> OUT{p) E im-.

The situation is as shown in figure 2a; DRAW is surjective but not

necessarily injective. Next, we want to formalize our notion of sym

metric input/output.]

pat 3 ..

Figure 2a.

Output - example:

DRAW (pl)= DRAW (p2) = DRAW (p3) = iml.

DRAW (p4) = DRAW (p5) = im2.

.....

iin I

Figure 2b.

Input - examples (for the same

pictures and images as in

figure 2a):

REC(iml,patl) = pl,

REC(iml,pat2) = p2,

REC(im2,pat3) = p4.

IM ...

p3 and p5 are not in the range

of REC.

A function I: IM--> P(PICT)

will be called an input function symmetric with DRAW iff

(1) Vp E PICT V ·im- E IM- (p E I (im-) => DRAW(p) = im-)

and

(2) Vim- E IM- (I (im-) :/, 0)

[We appoint as the range of the input function the powerset of PICT

and not PICT itself, because we do not want to exclude the possibility

that the input function is really the inverse of the output function.

Requirement (1) states that the input function must be consistent with

the output function in the following sense: if the input function maps

an image onto some picture, this picture should, when drawn, yield that

same image. Requirement (2) states that the input function must be com

plete in the sense that it can map each image to at least one picture.

It seems not possible to formulate weaker requirements and still obtain

an input function which can reasonably be called symmetric with the

given output function. The arrow in (1) is one-sided; we do not require

that the input function maps an image back onto all pictures which, when

drawn, yield that image. Whether that requirement is necessary as well,

is merely a matter of taste. In section 2.2. we will briefly review

this stronger form of symmetry.

Next we show how the function I can be realized by introducing a

set of patterns and a recognition function.]

Given an additional set PAT and a function

REC: PAT x IM--> PICT u {fail}, where fail t PICT.

[PAT contains the patterns, the structure descriptions which can be

considered as abstractions of pictures from their content. The recogni

tion function REC (re)combines images with patterns. There are two pos

sible outcomes when the recognition process is comparing an image and a

pattern. First, it is possible to structure the image in the way the

pattern prescribes, in which case the result is a picture. Second, the

5

6

image can fail to match the pattern. To allow for this case and yet de

fine REC as a complete function, the element 'fail' is added to the

range of REC.]

We now formulate consistency (3) and completeness (4) requirements

for PAT and REC, such that we will be able to construct a symmetric in

put function:

(3) Vim- i, IM- V pat E PAT (REC(im ,pat) = fail v

DRAW(REC(im-,pat)) = im)

[This .embodies the consistency requirement: a match using an image and a

pattern should either fail or yield a picture, which can produce the

same image.]

(4) Vim- i, IM- 3 pat E PAT (REC(im- ,pat) "F fail)

[This embodies the completeness requirement: each image can be combined

with at least one picture without failing.

Figure 2b shows an example of the behaviour of REC.]

If the properties (3) and (4) hold, then the function:

INP: IM--> P(PICT)

with

(5) INP (im-~) = {p E PICT I 3 pat E PAT (REC (im- ,pat) = p)}

is an input function symmetric with DRAW.

Proof:

1. p E INP (:i.m-)

p E INP (:i.m-)

p = REC (:i.m- , pa tc)

=> DRAW(p) = im-

=> there is some pattern, call it pate, with

by definition of INP.

p ;. fail (asp€ PICT and fail¢ PICT), hence

REC(im-,patc) ~fail.Combined with (3) this yields

DRAW(REC(im-,patc)) = im- =>
DRAW(p) = im-.

2. Vim- E IM- (INP (im-) ·~ (J):

Vim- E IM- 3 pat E PAT (REC(im-,pat) :I, fail)

(according to (4)), hence

3p E PICT (REC(im-,pat) = p), hence

p E INP(im-), which is consequently not empty.

PICT

IM-

Figure 3a. INP with weak symmetry requirements.

[What did we achieve so far? First, the notion of i/o symmetry is

formalized. Second, we showed how a symmetric input function can be

constructed by means of pattern recognition. Now we will look a little

closer at the relation between DRAW, INP and the equivalence relation

which is induced by - in PICT. PICT can be divided into equivalence

7

8

classes, putting all pictures mapped onto the same image by DRAW into

one class. INP maps an image uniquely into a subset of the equivalence

class generated by that image. Figure 3a shows the idea: equivalence

classes are separated by vertical bars; the arrows point at the values

of INP(im-), which are shown as shaded areas. We have used P(PICT) as

the range of INP, but it turns out that the induced equivalence classes

in PICT are sufficient. An auxiliary function INVDRAW is introduced to

formalize these ideas. It turns out that INVDRAW acts as an upperbound

on the behaviour of a symmetric input function. See equation (6) below.]

The equivalence relation: on PICT, dividing PICT into a set of

equivalence classes denoted by PICT:, is defined as follows:

pl: p2 <=> DRAW(pl) = DRAW(p2).

[pl: p2 if they map to equivalent images].

The function

INVDRAW: IM--> P(PICT)

with

INVDRAW(im-) = {p E PICT I DRAW(p) = im-}

is a bijection from IM- to PICT-.

[i.e. we will show that each equivalence class is generated by one

element from IM-]

Proof:

1. Vim- E IM- (INVDRAW(im-) E PICT:):

INVDRAW(im-) is not empty, as DRAW is surjective.

pl E INVDRAW(im-) A p2 E INVDRAW(im-) <=>

DRAW(pl) = im- A DRAW(p2) = im- <=>

DRAW(pl) = DRAW(p2) <=>

pl : p2

2. INVDRAW is injective:

iml- ~ im2- => INVDRAW(iml-) ~ INVDRAW(im2-).

Suppose not:

3 iml-, 3 im2- E IM- (iml- ~ im2- A INVDRAW(iml-) = INVDRAW(im2-))

Then, as INVDRAW(im-) is never empty,

3 p E PICT (p E INVDRAW(iml-) A p E INVDRAW(im2-)) hence

DRAW(p) = iml- A DRAW(p) = im2- hence

contrary to assumption.

3. INVDRAW is surjective:

V p:_ E PICT:_ 3 im- E IM- (INVDRAW(im-) = p:_)

namely, the element from IM- such that

V p E p:_ (DRAW(p) = im~).

[Back to the input function at last: each image is mapped into a subset

of the equivalence class generated by INVDRAW:]

(6) Vim- E IM- (INP(im-) c INVDRAW(im-))

because p E INP(im-) => DRAW(p) = im-,

as a consequence of the fact that INP is symmetric, see (1).

2.2. An alternative model.

Lets look once more at our definition of i/o symmetry. We required

that each image can be mapped back onto & least one picture, but possi

bly more, and this finally resulted in the situation depicted in fig.

3a. Some pictures (in the white areas) can never be the result of apply

ing the recognize function, though they can be drawn. Looking back at

the example in section 1, we allow the possibility that there is only

9

10

one pattern, specifying a 'square with one diagonal'. We will now

(without giving any proofs) give results for a stronger requirement on

symmetric i/o:

A function I: IM--> P(PICT)

is called strongly symmetric with the output function DRAW iff

(1') V p E PICT Vim- E IM- (p E I(im-) <=> DRAW(p) = im-)

There is no need for a second requirement; (2) immediately follows from

(1'). We have to change the requirements on REC accordingly, (3) and

(4) are now replaced by one stronger requirement:

(3') V p E PICT Vim- E IM- (DRAW(p) = im- <=>

3 pat E PAT (REC(im-,pat) = p))

In other words, a picture is mapped by DRAW onto some image if and only

if there is a pattern, which, when matched against that image, yields

the picture. The right arrow represents the stronger completeness re

quirement, the left arrow represents the·consistency requirement.

Figure 3b. INP with strong symmetry requirements.

If (3') holds, then INP is strongly symmetric with DRAW. Moreover,

(5) can be changed to INP(im-) = INVDRAW(im-). The situation is as shown

in figure 31b. Note that these stronger requirements are not require

ments on the recognize function, but on the set of patterns: now each

picture must have a corresponding pattern.

2.3. Notes on the model. -------

note 1. We will have to think some more about the role of the ---
equivalence relation - on images. Interesting cases for pattern recog

nition often include fuzzy matching: A hand drawn (and hence imperfect)

square should ideally be recognized and be drawn as a (perfect) square.

In the model as presented here, this effect can be achieved by a proper

choice of the equivalence relation on images: all nearly-squares should

go into the same equivalence class. However, this solution has the

serious disadvantage that we cannot utilize our patterns and recognition

function for inexact matching. If we do use the patterns and recogni

tion function for that purpose, then the consistency requirement forbids

to both recognize the imperfect square arid draw the perfect one. To

solve this difficulty, we can either relax the consistency requirement

or add a layer of pattern recognition to the model.

For exact pattern matching, a reasonable candidate for the

equivalence relation seems: 'two images are equivalent iff they coincide

when superimposed'. This definition of equivalence covers device depen

dency: pictures leading to the same image on a black-and-white device

can lead to different images on a colour device. In our model this

dependency is hidden in the dependency of ~ on DRAW.

note 2. In our formalization we assume the existence of a set of

pictures and an output mapping and state as our goal the construction of

an input mapping. We made this asymmetric choice because we have the

feeling that there is a reasonable understanding what pictures and out

put functions should look like. This choice had consequences for the

model. We assumed that pictures contain more information than images

11

12

(again, conforming to common practice) and excluded all images that are

not internally represented by pictures. Hence, the set of pictures is at

least as large as the set IM...... Since is not specified, one can not

say the same about PICT and IM.

If we had started from the pattern recognition point of view we

should probably have made the reverse choice. In that case, one has an

input function mapping images to pictures, and looses information on the

way. For example, in cluster analysis and contour finding different im

ages may we:11 lead to the same picture. We can still handle this case

by choosing the equivalence relation on images and the recognize func

tion in such a way, that all equivalence classes of pictures contain

only one picture, and that all images mapping onto the same picture are

in one class. In this case an output function could never map pictures

to images, but it can still map pictures to equivalence classes of im

ages (probably drawing the contours that have been determined by the in

put function). This is the reason why we choose IM- rather than IM as

the range of DRAW - we wanted, so to speak, minimize the consequences of

our asymmetric treatment of symmetric i/o.

PICT

PA DRAW INP

Figure 4: Functions between PICT, PAT and IM

note l• (see figure 4). Other functions between PICT, PAT and IM

with a reasonable interpretation are:

MATCH]: IM--> P(PAT), with

MATCHl(im-)={pat E PAT I 3 p E PICT (REC(im-,pat)=p)

MATCH] searches all patterns which match a given image.

MATCH2: PAT-> P(IM-), with

MATCH2(pat)={im- E IM- I 3 p E PICT (REC(im-,pat)=p)}

MATCH2 searches images matching a given pattern. There

is some relation between MATCH] and bottom up parsing,

and between MATCH2 and top down parsing. Constructing

these two MATCH functions could well turn out to be the

real difficult task when implementing the model.

ABSTR: PICT-> P(PAT) with

ABSTR(p)={pat E PAT I 3 im- E IM- (REC(im-,pat)=p)}

ABSTR is the function which maps pictures into structure

descriptions. With the weaker symmetry requirement,

ABSTR(p) can be empty; with the stronger it always con

tains at least one element. It can contain more. In

s,ection 3. 4. we pay more attention to abstraction.

CONCR: PAT-> P(PICT) with

CONCR(pat)={P E PICT 3 im- E IM- (REC(im- ,pat)=p) }.

CONCR maps a pattern to all pictures from which that pat

tern is an abstraction; from 'square with one diagonal'

to a whole set of individual squares with individual di

agonals.

13

14

3. From Model to Implementation

In section 2 we introduced a very general

input/output behaviour of a Computer Graphics system.

function DRAW, an input function was constructed with

model for the

Given an output

certain symmetry

properties. For this construction we needed an additional set of struc

ture descriptions (PAI) and a recognition function (REC). Their exter

nal behaviour was defined, but it was left unspecified how such a

behaviour can be achieved. In this section we attempt to derive some

properties of PAI and REC. These considerations are a first step to

wards an implementation of our abstract model.

One should bear in mind that we do not want to (re)invent tech

niques and algorithms for the solution of certain recognition tasks, but

rather want to provide a framework in which existing methods can be in

corporated.

3.1. Pictures

We assume the existence of a set of pictures and an output function

which maps pictures on images. Their precise form is not relevant

though the discussions are based on tree-like structured picture

descriptions such as ILP[l]. ILP pictures can describe objects of any

dimension. Implementation of the model can be simplified by restricting

pictures to two dimensions. It will be clear that any implementation

must choose its method of picture description and that this choice will

influence the various parts of the system, especially the form of pat

terns and the recognition function.

3.2. Patterns.

Patterns can be defined in several ways:

I. Patterns are an integral part of the recognition program.

2.

We will call this type of patterns fixed.

Patterns can be defined by the user of the program. The

user selects (in some way) a picture, which is converted

to a pattern by the system. We will call this type of

patterns~ defined. In this case patterns are created

as abstractions from pictures, in other words, the func

tion ABSTR (1.5, note 3) must be part of the Graphics

System.

3. Patterns are created by the system for the recognition of

frequently occurring subpictures. We will call this type

of patterns implicit.

Pattern primitives~ best best be chosen the same ~ picture

primitives (point, line,.!!:,£, curve). In that case, patterns and pic

tures are of a comparable level of complexity and the mapping from pic

tures to patterns is simplified. The patterns from the ESP language [2]

come close to what we envisage.

3.3. Images.

Images can be characterized in several ways, of which the following

two seem important to us. The first characterization concerns the form

of the data of which the image consists:

15

16

1 • An image is a list of coordinate pairs (points). Subse-

quent points in the list may be connected or not. Such

coordinate values are typically obtained as the result of

an input action on a sampled device (tablet).

2. The image consists of higher level primitives. This kind

of information can either be obtained directly as the

result of input actions on event devices or be the result

of processing data of the previous type. Possible primi

tives are lines, circles and curves. There is a relation

between this division of images according to the complex

ity of primitives and the decomposition problem to be

discussed in 3.5 ••

3. The image consists of a digitized photograph, i.e. a

two-dimensional array in which each of the elements

specifies the intensity and/or colour at that point.

This case will be ignored as presenting too much diffi

culties to be handled in a uniform and application in-

dependent way. It also presents problems on the output

side, since our proposed output function is based on ILP,

which is heavily oriented towards line drawings.

We consider the first possibility as the most interesting, but do

not regard this as a form suitable to define a recognition process on.

Hence,.£!!£ images will consist of data of the second kind. Preprocess-

ing may be needed to transform an image of the first kind into an image

of the second kind. Such a preprocessing phase can be based on well

known techniques [3].

A second characterization of images concerns the meaning of the

drawing order of primitives. Availability of the drawing order can be

used in two ways, either as a heuristic for the recognition task or as a

part of the structure description. In the latter case two images are

different if they were drawn in a different way, even if they are furth-

er identical. Restrictions of this kind lead to inflexibility, hence we

think that (obliged) drawing order may only be required for a small set

of hand written symbols.

l•lt• Abstraction

The pattern recognition function induces an equivalence relation on

pictures, putting all pictures which are recognized by means of the same

pattern into one class. It is clear that the form of such an

equivalence relation heavily influences both pattern definitions and

recognition function. The definition of an equivalence relation re

quires that one disregards some aspects of a picture. Closely related

with the definition of such an equivalence relation is the problem how

pictures can be abstracted to patterns. In section 2.2. it was men

tioned that there is no unique way to abstract from the 'contents' of a

picture. In principle there is a whole range of possibilities, from

considering the picture as content only to considering the picture as

structure only. The extreme cases do not seem very useful, but the fol

lowing four intermediate forms make sense:

1. weak topological abstraction: considers only the connec

tivity of components in a picture as structure, but

disregards shape. This type of abstraction can be used

for electrical network design.

2.

3.

strong topological abstraction: considers only connec

tivity, with the restriction that interior and exterior

components can never lead to the same abstraction. This

type of abstraction is invariant under arbitrary continu

ous transformations.

geometrical

shape into

abstraction:

account. Two

takes both

pictures

connectivity and

lead to the same

abstraction if their images can be made to coincide by

17

18

4.

means of a linear transformation. This is a special case

of 2. above.

object abstraction: two pictures lead to the same

abstraction if their images have exactly the same shape

and orientation, though these images may be located in

different parts of the enclosing image.

The above abstraction types have some relation with graphical pro

perties of the pictures under consideration. Other abstraction types

may be induced by the application program: a traffic analysis program

will manipulate 'vehicles' as abstraction, though the various sorts of

vehicles (bicycles, cars, boats) have no graphical properties in common.

This~ of abstraction requires that patterns allow the enumeration of

graphically unrelated pictures and that patterns can contain application

dependent predicates.£!!. pictures.

There are two places where application independent abstraction and

picture equivalence can be introduced: in the pattern definitions and in

the recognition function. In the first case, different pattern primi

tives are needed for the various abstraction types, i.e. CONNECTED TO

and LINE_TO, which are used by one (not parameterized) recognition pro

cess. This approach has the disadvantage that patterns must be modified

if one wants to switch to another abstraction type. In the second case,

recognition must be performed in a topological, geometrical or object

recognition mode, but patterns remain unchanged.

The second possibility seems more elegant but for practical reasons

we prefer the first. If the type of abstraction depends on the mode of

the recognition process, then one is obliged to define patterns which

can handle the lowest abstraction type. Working in object or geometri

cal recognition mode is for example impossible if different patterns for

a circle and a square are not available. Many applications though will

not need object abstraction, and will hence suffer from needless redun

dancy in their patterns. Furthermore, application dependent abstrac-

tions .!!!!!!!. be included in the pattern definitions, since the recognition

function should not be made aware of application programs. Hence~

decided!£. introduce abstraction and equivalence of pictures .kt means of

the pattern definitions.

The main difficulty in the implementation of the ABSTR function

lies in the necessity to make relations explicit which in the picture

definition are contained only implicitly. A picture describing two

touching circles will in general contain no reference to th-is topologi

cal important fact.

l•.2.• Recognition.

Methods which are based on syntactic pattern recognition seem for

our goal the most suitable. (See [4] for an overview).

Two tasks must be solved by a recognition process:

1. Given an image and a set of patterns, find the pattern

matched by the complete image. In this case the task of

finding out where one primitive ends and the next one be

gins is not part of the recognition task. We will call

this process identification.

2. Given an image and a set of patterns, find the combina

tion of patterns matched by the image. We will call this

process decomposition. This case is the most interesting

but by far the most difficult one.

The decomposition problem exists on all levels of the recognition

process. This is made clear by the choice of a tree-structured picture

description method. In such a description complex pictures are subdi

vided into simpler ones. Each subdivision in the picture description is

reflected in!!. pattern definition and presents !!. ~ decomposition

19

20

problem to the recognition process.

In all levels of the decomposition hierarchy one can choose between

top down and bottom up recognition techniques. These two approaches are

represented in the formal model by the functions MATCHl and MATCH2. A

different amount of a priori knowledge is available on each level. It

is extremely important to use as much a priori information as possible.

In that way one can avoid combinatorial explosions caused by exhaustive

searching. The description of the recognition process in terms of a

decomposition hierarchy does neither imply that the decomposition steps

are sequentially ordered in time, nor that they are mutually indepen

dent. We envisage a system architecture as used in the speech recogni

tion system HEARSAY (5).

In 2.2. we divided images according to the level of complexity of

their primitives. The transition from raw coordinates to lines and arcs

can be seen as a decomposition step. But there is a difference. We al

ready committed ourselves to a certain kind of pictures and patterns.

Raw coordinates are data of a lower level than these primitives. Hence,

the transition can never be handled by the recognition process itself,

and if raw coordinates are allowed as input one needs a separate process

for that transition. This does not necessarily mean ~processing - a

certain interaction between recognition process and primitive

identification process (as we will call it) is very well possible. This

is an example of the dependency between various decomposition levels.

The following approach seems sensible: At first, the primitive identifi

cation process identifies straight lines in the image. It tries to find

the exact form of curves only on request of the recognition process -

which will in general be able to provide extra information (look for a

circle, a sinoid etc.) which is not available to the primitive identifi

cation process itself.

i• Conclusion.

An attempt was- made to provide both a theoretical and pragmatic

basis for the integration of input/output functions in a Computer Graph

ics System. The following conclusions were reached:

1. input/output symmetry can be defined in such a way that

the input function is (almost) the reverse of the output

function.

2. A symmetrical input function can be constructed by means

of pattern matching. This requires a set of patterns

(PAT) and a recognition function (REC). In this way

'structure' and 'content' of pictures can be separated.

3. Tree structured picture descriptions are well suited to

define a recognition process on.

4. Pattern primitives can best be chosen the same as picture

primitives.

5. Patterns should allow the enumeration of graphically un

related pictures.

6. It should be possible that application dependent predi

cates on pictures are part of patterns.

7. Several types of abstraction and equivalence can be de

fined on pictures. These should be part of the pattern

definitions.

8. Pattern matching should use as much a priori knowledge of

the problem as possible.

21

22

9. Our model wants to provide a terminology for describing

and thinking about input functions which incorporate pat

tern matching. In the present state of the art it is not

feasible to build a Graphics System which includes an in

put function with the same power as conventional output

functions. In a first implementation of the model we

will have to make severe restrictions; for instance, only

try to handle identification of 2-dimensional images.

With the insight gained in realizing this attainable

goal, one can go on to the more interesting cases and add

decomposition and preprocessing.

5. References

[l] T. Hagen, P.J.W. ten Hagen, P. Klint & H. Noot, 'The in

termediate language for pictures', IFIP Congress Proceed

ings, 1977.

[2] L.G. Shapiro & R.J. Baron, 'ESP3: A language for pattern

description and a system for pattern recognition', IEEE

transactions on software engineering, vol. SE-3, no. 2,

1977.

[3] H.J. Freeman, 'Computer processing of line drawing im

ages', Computing Surveys, Vol. 6, no. I, 1974.

[4] M. Nagao, 'A survey of pattern recognition and picture

processing', Artificial Intelligence and Pattern Recogni

tion in Computer Aided Design, IFIP W.G. 5.2 Working

Conference, 1978.

[5]. V.R. Lesser & L.D. Erman, 'A retrospective view of the

HEARSAY-II architecture', Proceedings of 5th Internation

al Joint Conference on Artificial Intelligence, 1977.

