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A framework for the integration of graphics and pattern recognition.*) 

by 

Paul Klint & Marleen Sint 

ABSTRACT 

A model is presented that describes a symmetric input/output function 

in a computer Graphics System. This model is based on the construction of 

a symmetric input function by means of pattern recognition. Both theoreti­

cal and implementational aspects of this model are discussed. 

KEY WORDS & PHRASES: Computer Graphics, Pattern Recognition, Symmetric 

input/output. 

*) This report will be submitted for publication elsewhere. 





1. Informal outline. 

Symmetry of input and output operations is not only aesthetically 

pleasing but has also advantages in many computer applications. Some­

times such a symmetry is difficult to achieve, sometimes it is not even 

clear what it means. 

In the case of Computer Graphics one can envisage a high level 

graphics language that produces as output programs in some machine in­

dependent intermediate language, and accepts as input programs in the 

same intermediate language. Input from a drawing machine should somehow 

produce programs in the intermediate language. In this paper we will 

try to refine this 'somehow' somewhat. 

First we need some terminology: 'A picture is defined as a descrip­

tion of some object such that a visible image can be obtained from this 

description in a uniform way. The description may include both geometri­

cal (shape, size) and non-geometrical (colour, weight) properties of the 

obj ec t' [ 1 ] • 

This definition states that there exists a function that maps pic­

tures onto visible images. This function is an output function; it maps 

an internal representation (the picture) onto an external representation 

(the image, i.e. the line-drawing, photograph or video image, produced 

by some output device). Pictures are structured objects, but images are 

not. By going from a picture to its image the structure is lost. Con­

sequently, the inverse mapping from images to pictures will not be a 

function: the same image can be mapped onto more pictures since there is 

no way to structure an.image uniquely. Consider the following pictures 

(the notation from [1] is used): 

pict Picturel {Trianglel; Triangle2}. 

subpict Trianglel LINE([O,O], [1,0], [1,1], [0,0]). 

1 

subpict Triangle2 WITH ROTATE 180 AROUND ([.5,.5]) DRAW Trianglel. 



2 

pict Picture2 {Square; LINE([0,0], [1,1])}. 

subpict Square LINE([0,0], [1,0], [1,1], [0,1], [0,01). 

pict Picture3 {Square; LINE([l,1], [0,0])}. 

When Picturel, Picture2_ and Picture3 are drawn, they all lead to 

the image shown in figure 1. Picture2 differs from Picture3 only in the 

drawing direction of the diagonal. 

Figure 1. 

The inverse mapping, from images to sets of pictures, is an input 

mapping, from an external representation (the image, i.e. what you draw 

on some input device) to a set of internal representations (pictures). 

If one succeeds in constructing such an input mapping as the reverse of 

the output mapping (for a given device which is capable to do both input 

and output) then symmetry of input and output is obtained for that dev­

ice. 

Suppose we want an input function instead of an input mapping, how 

could that be achieved? A picture combines 'content' and 'structure' 

while in an image only the 'content' is retained. (The terms content and 

structure are somewhat vague, but are probably intuitively clear. They 

will only be used to clarify underlying ideas, and are not used as 



technical terms.) To obtain a unique mapping from images to pictures, we 

need structure descriptions and a process to combine these with the im­

ages to yield pictures. For example, structure descriptions correspond­

ing to 'two triangles sharing one side' and 'a square with one diagonal' 

would allow us to map the image of figure back to Picture] when com­

bined with the first description, and to Picture2 (or Picture3) when 

combined with the second. T.his process is nothing else than a pattern 

recognition process; the structure descriptions will be called patterns. 

In the next section we will present a formalization of these ideas. 

Everything between square brackets is comment on, not part of the model. 

In section 3 we pay some attention to implementational aspects of our 

model and try to identify problem areas. 

2. A model for graphics input/output functions. 

2.1. Description of the model. 

[Our goal can be stated as follows:· given a graphical output func­

tion, construct an input function, using patterns and pattern recogni­

tion, such that this input function is symmetric (in some sense) with 

the output function.] 

Given are a set PICT [of pictures] and a set IM [of images]. Given 

is also an equivalence relation 

equivalence classes denoted by IM-. 

on IM, dividing IM into a set of 

[It is not at all obvious when two images are the same; should for in-

stance, drawing order be considered part of the image? For the moment we 

content ourselves with stating that there is some equivalence relation 

on IM, dividing IM into classes of images indiscernible for the input 

process. In the comment we will keep using the word 'image' in­

stead of 'equivalence class of images'.] 

Also given is a surjective function DRAW: PICT-> IM~. 

[DRAW is th,e graphical output function. We are only interested in images 
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which can be drawn, hence the assumption that DRAW is surjective. In 

section 2.3. we will justify the choice of having IM- rather than IM as 

the range of DRAW. ·For people who object that a graphical output func­

tion always maps a picture to an image and not to an equivalence class 

of images, we can add one step to the definition: 

Given a function 

OUT: PICT-> IM, let 

DRAW: PICT-> IM- be defined by 

DRAW(p) = im- <=> OUT{p) E im-. 

The situation is as shown in figure 2a; DRAW is surjective but not 

necessarily injective. Next, we want to formalize our notion of sym­

metric input/output.] 

pat 3 .. 

Figure 2a. 

Output - example: 

DRAW (pl)= DRAW (p2) = DRAW (p3) = iml. 

DRAW (p4) = DRAW (p5) = im2. 

..... 

iin I 

Figure 2b. 

Input - examples (for the same 

pictures and images as in 

figure 2a): 

REC(iml,patl) = pl, 

REC(iml,pat2) = p2, 

REC(im2,pat3) = p4. 

IM ... 

p3 and p5 are not in the range 

of REC. 



A function I: IM--> P(PICT) 

will be called an input function symmetric with DRAW iff 

(1) Vp E PICT V ·im- E IM- (p E I (im-) => DRAW(p) = im-) 

and 

(2) Vim- E IM- (I (im-) :/, 0) 

[We appoint as the range of the input function the powerset of PICT 

and not PICT itself, because we do not want to exclude the possibility 

that the input function is really the inverse of the output function. 

Requirement (1) states that the input function must be consistent with 

the output function in the following sense: if the input function maps 

an image onto some picture, this picture should, when drawn, yield that 

same image. Requirement (2) states that the input function must be com­

plete in the sense that it can map each image to at least one picture. 

It seems not possible to formulate weaker requirements and still obtain 

an input function which can reasonably be called symmetric with the 

given output function. The arrow in (1) is one-sided; we do not require 

that the input function maps an image back onto all pictures which, when 

drawn, yield that image. Whether that requirement is necessary as well, 

is merely a matter of taste. In section 2.2. we will briefly review 

this stronger form of symmetry. 

Next we show how the function I can be realized by introducing a 

set of patterns and a recognition function.] 

Given an additional set PAT and a function 

REC: PAT x IM--> PICT u {fail}, where fail t PICT. 

[PAT contains the patterns, the structure descriptions which can be 

considered as abstractions of pictures from their content. The recogni­

tion function REC (re)combines images with patterns. There are two pos­

sible outcomes when the recognition process is comparing an image and a 

pattern. First, it is possible to structure the image in the way the 

pattern prescribes, in which case the result is a picture. Second, the 
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image can fail to match the pattern. To allow for this case and yet de­

fine REC as a complete function, the element 'fail' is added to the 

range of REC.] 

We now formulate consistency (3) and completeness (4) requirements 

for PAT and REC, such that we will be able to construct a symmetric in­

put function: 

(3) Vim- i, IM- V pat E PAT (REC(im ,pat) = fail v 

DRAW(REC(im-,pat)) = im) 

[This .embodies the consistency requirement: a match using an image and a 

pattern should either fail or yield a picture, which can produce the 

same image.] 

(4) Vim- i, IM- 3 pat E PAT (REC(im- ,pat) "F fail) 

[This embodies the completeness requirement: each image can be combined 

with at least one picture without failing. 

Figure 2b shows an example of the behaviour of REC.] 

If the properties (3) and (4) hold, then the function: 

INP: IM--> P(PICT) 

with 

(5) INP (im-~) = {p E PICT I 3 pat E PAT (REC (im- ,pat) = p)} 

is an input function symmetric with DRAW. 

Proof: 

1. p E INP (:i.m-) 

p E INP (:i.m-) 

p = REC ( :i.m- , pa tc) 

=> DRAW(p) = im-

=> there is some pattern, call it pate, with 

by definition of INP. 



p ;. fail (asp€ PICT and fail¢ PICT), hence 

REC(im-,patc) ~fail.Combined with (3) this yields 

DRAW(REC(im-,patc)) = im- => 
DRAW(p) = im-. 

2. Vim- E IM- (INP (im-) ·~ (J): 

Vim- E IM- 3 pat E PAT (REC(im-,pat) :I, fail) 

(according to (4)), hence 

3p E PICT (REC(im-,pat) = p), hence 

p E INP(im-), which is consequently not empty. 

PICT 

IM-

Figure 3a. INP with weak symmetry requirements. 

[What did we achieve so far? First, the notion of i/o symmetry is 

formalized. Second, we showed how a symmetric input function can be 

constructed by means of pattern recognition. Now we will look a little 

closer at the relation between DRAW, INP and the equivalence relation 

which is induced by - in PICT. PICT can be divided into equivalence 
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classes, putting all pictures mapped onto the same image by DRAW into 

one class. INP maps an image uniquely into a subset of the equivalence 

class generated by that image. Figure 3a shows the idea: equivalence 

classes are separated by vertical bars; the arrows point at the values 

of INP(im-), which are shown as shaded areas. We have used P(PICT) as 

the range of INP, but it turns out that the induced equivalence classes 

in PICT are sufficient. An auxiliary function INVDRAW is introduced to 

formalize these ideas. It turns out that INVDRAW acts as an upperbound 

on the behaviour of a symmetric input function. See equation (6) below.] 

The equivalence relation: on PICT, dividing PICT into a set of 

equivalence classes denoted by PICT:, is defined as follows: 

pl: p2 <=> DRAW(pl) = DRAW(p2). 

[pl: p2 if they map to equivalent images]. 

The function 

INVDRAW: IM--> P(PICT) 

with 

INVDRAW(im-) = {p E PICT I DRAW(p) = im-} 

is a bijection from IM- to PICT-. 

[i.e. we will show that each equivalence class is generated by one 

element from IM-] 

Proof: 

1. Vim- E IM- (INVDRAW(im-) E PICT:): 

INVDRAW(im-) is not empty, as DRAW is surjective. 

pl E INVDRAW(im-) A p2 E INVDRAW(im-) <=> 

DRAW(pl) = im- A DRAW(p2) = im- <=> 

DRAW(pl) = DRAW(p2) <=> 

pl : p2 



2. INVDRAW is injective: 

iml- ~ im2- => INVDRAW(iml-) ~ INVDRAW(im2-). 

Suppose not: 

3 iml-, 3 im2- E IM- (iml- ~ im2- A INVDRAW(iml-) = INVDRAW(im2-)) 

Then, as INVDRAW(im-) is never empty, 

3 p E PICT (p E INVDRAW(iml-) A p E INVDRAW(im2-)) hence 

DRAW(p) = iml- A DRAW(p) = im2- hence 

contrary to assumption. 

3. INVDRAW is surjective: 

V p:_ E PICT:_ 3 im- E IM- (INVDRAW(im-) = p:_) 

namely, the element from IM- such that 

V p E p:_ (DRAW(p) = im~). 

[Back to the input function at last: each image is mapped into a subset 

of the equivalence class generated by INVDRAW:] 

(6) Vim- E IM- (INP(im-) c INVDRAW(im-)) 

because p E INP(im-) => DRAW(p) = im-, 

as a consequence of the fact that INP is symmetric, see (1). 

2.2. An alternative model. 

Lets look once more at our definition of i/o symmetry. We required 

that each image can be mapped back onto & least one picture, but possi­

bly more, and this finally resulted in the situation depicted in fig. 

3a. Some pictures (in the white areas) can never be the result of apply­

ing the recognize function, though they can be drawn. Looking back at 

the example in section 1, we allow the possibility that there is only 
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one pattern, specifying a 'square with one diagonal'. We will now 

(without giving any proofs) give results for a stronger requirement on 

symmetric i/o: 

A function I: IM--> P(PICT) 

is called strongly symmetric with the output function DRAW iff 

(1') V p E PICT Vim- E IM- (p E I(im-) <=> DRAW(p) = im-) 

There is no need for a second requirement; (2) immediately follows from 

(1'). We have to change the requirements on REC accordingly, (3) and 

(4) are now replaced by one stronger requirement: 

(3') V p E PICT Vim- E IM- (DRAW(p) = im- <=> 

3 pat E PAT (REC(im-,pat) = p)) 

In other words, a picture is mapped by DRAW onto some image if and only 

if there is a pattern, which, when matched against that image, yields 

the picture. The right arrow represents the stronger completeness re­

quirement, the left arrow represents the·consistency requirement. 

Figure 3b. INP with strong symmetry requirements. 



If (3') holds, then INP is strongly symmetric with DRAW. Moreover, 

(5) can be changed to INP(im-) = INVDRAW(im-). The situation is as shown 

in figure 31b. Note that these stronger requirements are not require­

ments on the recognize function, but on the set of patterns: now each 

picture must have a corresponding pattern. 

2.3. Notes on the model. -------

note 1. We will have to think some more about the role of the ---
equivalence relation - on images. Interesting cases for pattern recog­

nition often include fuzzy matching: A hand drawn (and hence imperfect) 

square should ideally be recognized and be drawn as a (perfect) square. 

In the model as presented here, this effect can be achieved by a proper 

choice of the equivalence relation on images: all nearly-squares should 

go into the same equivalence class. However, this solution has the 

serious disadvantage that we cannot utilize our patterns and recognition 

function for inexact matching. If we do use the patterns and recogni­

tion function for that purpose, then the consistency requirement forbids 

to both recognize the imperfect square arid draw the perfect one. To 

solve this difficulty, we can either relax the consistency requirement 

or add a layer of pattern recognition to the model. 

For exact pattern matching, a reasonable candidate for the 

equivalence relation seems: 'two images are equivalent iff they coincide 

when superimposed'. This definition of equivalence covers device depen­

dency: pictures leading to the same image on a black-and-white device 

can lead to different images on a colour device. In our model this 

dependency is hidden in the dependency of ~ on DRAW. 

note 2. In our formalization we assume the existence of a set of 

pictures and an output mapping and state as our goal the construction of 

an input mapping. We made this asymmetric choice because we have the 

feeling that there is a reasonable understanding what pictures and out­

put functions should look like. This choice had consequences for the 

model. We assumed that pictures contain more information than images 

11 



12 

(again, conforming to common practice) and excluded all images that are 

not internally represented by pictures. Hence, the set of pictures is at 

least as large as the set IM...... Since ..... is not specified, one can not 

say the same about PICT and IM. 

If we had started from the pattern recognition point of view we 

should probably have made the reverse choice. In that case, one has an 

input function mapping images to pictures, and looses information on the 

way. For example, in cluster analysis and contour finding different im­

ages may we:11 lead to the same picture. We can still handle this case 

by choosing the equivalence relation on images and the recognize func­

tion in such a way, that all equivalence classes of pictures contain 

only one picture, and that all images mapping onto the same picture are 

in one class. In this case an output function could never map pictures 

to images, but it can still map pictures to equivalence classes of im­

ages (probably drawing the contours that have been determined by the in­

put function). This is the reason why we choose IM- rather than IM as 

the range of DRAW - we wanted, so to speak, minimize the consequences of 

our asymmetric treatment of symmetric i/o. 

PICT 

PA DRAW INP 

Figure 4: Functions between PICT, PAT and IM ...... 



note l• (see figure 4). Other functions between PICT, PAT and IM­

with a reasonable interpretation are: 

MATCH]: IM--> P(PAT), with 

MATCHl(im-)={pat E PAT I 3 p E PICT (REC(im-,pat)=p) 

MATCH] searches all patterns which match a given image. 

MATCH2: PAT-> P(IM-), with 

MATCH2(pat)={im- E IM- I 3 p E PICT (REC(im-,pat)=p)} 

MATCH2 searches images matching a given pattern. There 

is some relation between MATCH] and bottom up parsing, 

and between MATCH2 and top down parsing. Constructing 

these two MATCH functions could well turn out to be the 

real difficult task when implementing the model. 

ABSTR: PICT-> P(PAT) with 

ABSTR(p)={pat E PAT I 3 im- E IM- (REC(im-,pat)=p)} 

ABSTR is the function which maps pictures into structure 

descriptions. With the weaker symmetry requirement, 

ABSTR(p) can be empty; with the stronger it always con­

tains at least one element. It can contain more. In 

s,ection 3. 4. we pay more attention to abstraction. 

CONCR: PAT-> P(PICT) with 

CONCR(pat)={P E PICT 3 im- E IM- (REC(im- ,pat)=p) }. 

CONCR maps a pattern to all pictures from which that pat­

tern is an abstraction; from 'square with one diagonal' 

to a whole set of individual squares with individual di­

agonals. 

13 
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3. From Model to Implementation 

In section 2 we introduced a very general 

input/output behaviour of a Computer Graphics system. 

function DRAW, an input function was constructed with 

model for the 

Given an output 

certain symmetry 

properties. For this construction we needed an additional set of struc­

ture descriptions (PAI) and a recognition function (REC). Their exter­

nal behaviour was defined, but it was left unspecified how such a 

behaviour can be achieved. In this section we attempt to derive some 

properties of PAI and REC. These considerations are a first step to­

wards an implementation of our abstract model. 

One should bear in mind that we do not want to (re)invent tech­

niques and algorithms for the solution of certain recognition tasks, but 

rather want to provide a framework in which existing methods can be in­

corporated. 

3.1. Pictures 

We assume the existence of a set of pictures and an output function 

which maps pictures on images. Their precise form is not relevant 

though the discussions are based on tree-like structured picture 

descriptions such as ILP[l]. ILP pictures can describe objects of any 

dimension. Implementation of the model can be simplified by restricting 

pictures to two dimensions. It will be clear that any implementation 

must choose its method of picture description and that this choice will 

influence the various parts of the system, especially the form of pat­

terns and the recognition function. 



3.2. Patterns. 

Patterns can be defined in several ways: 

I. Patterns are an integral part of the recognition program. 

2. 

We will call this type of patterns fixed. 

Patterns can be defined by the user of the program. The 

user selects (in some way) a picture, which is converted 

to a pattern by the system. We will call this type of 

patterns~ defined. In this case patterns are created 

as abstractions from pictures, in other words, the func­

tion ABSTR (1.5, note 3) must be part of the Graphics 

System. 

3. Patterns are created by the system for the recognition of 

frequently occurring subpictures. We will call this type 

of patterns implicit. 

Pattern primitives~ best best be chosen the same ~ picture 

primitives (point, line,.!!:,£, curve). In that case, patterns and pic­

tures are of a comparable level of complexity and the mapping from pic­

tures to patterns is simplified. The patterns from the ESP language [2] 

come close to what we envisage. 

3.3. Images. 

Images can be characterized in several ways, of which the following 

two seem important to us. The first characterization concerns the form 

of the data of which the image consists: 

15 
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1 • An image is a list of coordinate pairs (points). Subse-

quent points in the list may be connected or not. Such 

coordinate values are typically obtained as the result of 

an input action on a sampled device (tablet). 

2. The image consists of higher level primitives. This kind 

of information can either be obtained directly as the 

result of input actions on event devices or be the result 

of processing data of the previous type. Possible primi­

tives are lines, circles and curves. There is a relation 

between this division of images according to the complex­

ity of primitives and the decomposition problem to be 

discussed in 3.5 •• 

3. The image consists of a digitized photograph, i.e. a 

two-dimensional array in which each of the elements 

specifies the intensity and/or colour at that point. 

This case will be ignored as presenting too much diffi­

culties to be handled in a uniform and application in-

dependent way. It also presents problems on the output 

side, since our proposed output function is based on ILP, 

which is heavily oriented towards line drawings. 

We consider the first possibility as the most interesting, but do 

not regard this as a form suitable to define a recognition process on. 

Hence,.£!!£ images will consist of data of the second kind. Preprocess-

ing may be needed to transform an image of the first kind into an image 

of the second kind. Such a preprocessing phase can be based on well­

known techniques [3]. 

A second characterization of images concerns the meaning of the 

drawing order of primitives. Availability of the drawing order can be 

used in two ways, either as a heuristic for the recognition task or as a 

part of the structure description. In the latter case two images are 

different if they were drawn in a different way, even if they are furth-



er identical. Restrictions of this kind lead to inflexibility, hence we 

think that (obliged) drawing order may only be required for a small set 

of hand written symbols. 

l•lt• Abstraction 

The pattern recognition function induces an equivalence relation on 

pictures, putting all pictures which are recognized by means of the same 

pattern into one class. It is clear that the form of such an 

equivalence relation heavily influences both pattern definitions and 

recognition function. The definition of an equivalence relation re­

quires that one disregards some aspects of a picture. Closely related 

with the definition of such an equivalence relation is the problem how 

pictures can be abstracted to patterns. In section 2.2. it was men­

tioned that there is no unique way to abstract from the 'contents' of a 

picture. In principle there is a whole range of possibilities, from 

considering the picture as content only to considering the picture as 

structure only. The extreme cases do not seem very useful, but the fol­

lowing four intermediate forms make sense: 

1. weak topological abstraction: considers only the connec­

tivity of components in a picture as structure, but 

disregards shape. This type of abstraction can be used 

for electrical network design. 

2. 

3. 

strong topological abstraction: considers only connec­

tivity, with the restriction that interior and exterior 

components can never lead to the same abstraction. This 

type of abstraction is invariant under arbitrary continu­

ous transformations. 

geometrical 

shape into 

abstraction: 

account. Two 

takes both 

pictures 

connectivity and 

lead to the same 

abstraction if their images can be made to coincide by 

17 
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4. 

means of a linear transformation. This is a special case 

of 2. above. 

object abstraction: two pictures lead to the same 

abstraction if their images have exactly the same shape 

and orientation, though these images may be located in 

different parts of the enclosing image. 

The above abstraction types have some relation with graphical pro­

perties of the pictures under consideration. Other abstraction types 

may be induced by the application program: a traffic analysis program 

will manipulate 'vehicles' as abstraction, though the various sorts of 

vehicles (bicycles, cars, boats) have no graphical properties in common. 

This~ of abstraction requires that patterns allow the enumeration of 

graphically unrelated pictures and that patterns can contain application 

dependent predicates.£!!. pictures. 

There are two places where application independent abstraction and 

picture equivalence can be introduced: in the pattern definitions and in 

the recognition function. In the first case, different pattern primi­

tives are needed for the various abstraction types, i.e. CONNECTED TO 

and LINE_TO, which are used by one (not parameterized) recognition pro­

cess. This approach has the disadvantage that patterns must be modified 

if one wants to switch to another abstraction type. In the second case, 

recognition must be performed in a topological, geometrical or object 

recognition mode, but patterns remain unchanged. 

The second possibility seems more elegant but for practical reasons 

we prefer the first. If the type of abstraction depends on the mode of 

the recognition process, then one is obliged to define patterns which 

can handle the lowest abstraction type. Working in object or geometri­

cal recognition mode is for example impossible if different patterns for 

a circle and a square are not available. Many applications though will 

not need object abstraction, and will hence suffer from needless redun­

dancy in their patterns. Furthermore, application dependent abstrac-



tions .!!!!!!!. be included in the pattern definitions, since the recognition 

function should not be made aware of application programs. Hence~ 

decided!£. introduce abstraction and equivalence of pictures .kt means of 

the pattern definitions. 

The main difficulty in the implementation of the ABSTR function 

lies in the necessity to make relations explicit which in the picture 

definition are contained only implicitly. A picture describing two 

touching circles will in general contain no reference to th-is topologi­

cal important fact. 

l•.2.• Recognition. 

Methods which are based on syntactic pattern recognition seem for 

our goal the most suitable. (See [4] for an overview). 

Two tasks must be solved by a recognition process: 

1. Given an image and a set of patterns, find the pattern 

matched by the complete image. In this case the task of 

finding out where one primitive ends and the next one be­

gins is not part of the recognition task. We will call 

this process identification. 

2. Given an image and a set of patterns, find the combina­

tion of patterns matched by the image. We will call this 

process decomposition. This case is the most interesting 

but by far the most difficult one. 

The decomposition problem exists on all levels of the recognition 

process. This is made clear by the choice of a tree-structured picture 

description method. In such a description complex pictures are subdi­

vided into simpler ones. Each subdivision in the picture description is 

reflected in!!. pattern definition and presents !!. ~ decomposition 
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problem to the recognition process. 

In all levels of the decomposition hierarchy one can choose between 

top down and bottom up recognition techniques. These two approaches are 

represented in the formal model by the functions MATCHl and MATCH2. A 

different amount of a priori knowledge is available on each level. It 

is extremely important to use as much a priori information as possible. 

In that way one can avoid combinatorial explosions caused by exhaustive 

searching. The description of the recognition process in terms of a 

decomposition hierarchy does neither imply that the decomposition steps 

are sequentially ordered in time, nor that they are mutually indepen­

dent. We envisage a system architecture as used in the speech recogni­

tion system HEARSAY (5). 

In 2.2. we divided images according to the level of complexity of 

their primitives. The transition from raw coordinates to lines and arcs 

can be seen as a decomposition step. But there is a difference. We al­

ready committed ourselves to a certain kind of pictures and patterns. 

Raw coordinates are data of a lower level than these primitives. Hence, 

the transition can never be handled by the recognition process itself, 

and if raw coordinates are allowed as input one needs a separate process 

for that transition. This does not necessarily mean ~processing - a 

certain interaction between recognition process and primitive 

identification process (as we will call it) is very well possible. This 

is an example of the dependency between various decomposition levels. 

The following approach seems sensible: At first, the primitive identifi­

cation process identifies straight lines in the image. It tries to find 

the exact form of curves only on request of the recognition process -

which will in general be able to provide extra information (look for a 

circle, a sinoid etc.) which is not available to the primitive identifi­

cation process itself. 



i• Conclusion. 

An attempt was- made to provide both a theoretical and pragmatic 

basis for the integration of input/output functions in a Computer Graph­

ics System. The following conclusions were reached: 

1. input/output symmetry can be defined in such a way that 

the input function is (almost) the reverse of the output 

function. 

2. A symmetrical input function can be constructed by means 

of pattern matching. This requires a set of patterns 

(PAT) and a recognition function (REC). In this way 

'structure' and 'content' of pictures can be separated. 

3. Tree structured picture descriptions are well suited to 

define a recognition process on. 

4. Pattern primitives can best be chosen the same as picture 

primitives. 

5. Patterns should allow the enumeration of graphically un­

related pictures. 

6. It should be possible that application dependent predi­

cates on pictures are part of patterns. 

7. Several types of abstraction and equivalence can be de­

fined on pictures. These should be part of the pattern 

definitions. 

8. Pattern matching should use as much a priori knowledge of 

the problem as possible. 
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9. Our model wants to provide a terminology for describing 

and thinking about input functions which incorporate pat­

tern matching. In the present state of the art it is not 

feasible to build a Graphics System which includes an in­

put function with the same power as conventional output 

functions. In a first implementation of the model we 

will have to make severe restrictions; for instance, only 

try to handle identification of 2-dimensional images. 

With the insight gained in realizing this attainable 

goal, one can go on to the more interesting cases and add 

decomposition and preprocessing. 
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