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A sound and complete Hoare-like system for a fragment of PASCAL*) 

by 

K.R. Apt 

ABSTRACT 

A fragment of PASCAL is considered in which local declarations of 

simple variables, of array variables and of systems of mutually recursive 

parameterless procedures are allowed. A Hoare-like proof system for the 

fragment is presented which is proved to be both sound and complete in the 

sense of Cook. 

KEY WORDS & PHRASES: local declarations, substitution, denotational seman­

tics, partial correctness, Hoare-Zike proof system, 

soundness, completeness in the sense of Cook. 

*) This report will be submitted for publication elsewhere. 



SYSTEMS OF KNOWLEDGE 

No system is any use if you merely possess it. Ownership requires 

operation. 

No system lS useful if one can only experiment with it. For a system 

to be useful, it must be correctly operated. 

The means of operating a system must correspond with contemporary 

It should not be imitatively traditionalistic. 

Defectiveness of a system should not be confused with human 

shortcomings. People cannot attain certain things unless they have the 

means. 

needs. 

A system may be complete for one set of circumstances, defective for 

another. 

Possession of a system, or any part of it, or an interest 1n it or in 

discovering one, should not be assumed to confer any licence or capacity 

to operate it. 

Individual criticisms of a system, incapacity to operate it, or 

dissatisfaction with it should not be confused with any shortcoming of the 

system. 

Consistency in a system, like inconsistency, is always more apparent 

than real: because what is coherent in one frame of reference may not be 

so in another. 

These points are intended to emphasise that information and fami­

liarisation with a system are much more important, vital and urgent than 

to apply existing imaginings about it to any attempt to understand or 

operate it. 

Experience comes before understanding and before capacity to operate. 

in: Cm•avan of D1'eGJns, Idries Shah 
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1. INTRODUCTION 

We study in this paper a fragment of PASCAL containing simple and 

subscripted variables, assignment, sequential composition, conditionals, 

declarations of simple variables, of arrays and of parameterless procedures, 

and procedure calls. We present a Hoare-like proof system for the above 

language and prove its soundness and completeness in the sense of COOKC51. 

Many ideas of this paper find their origin in APT & DE BAKKER[2l and 

APT[l]. Our results extend those of COOK:.51 who proved soundness and com­

pleteness of a Hoare system for a fragment of Algol 60, in which, among 

others, the while statement and non-recursive procedures with parameters 

are allowed. We did not include the while statement into our language be­

cause it can be dealt with in the same way as in COOK[Sl. On the other 

hand we have not allowed procedures to have parameters as this would great­

ly complicate the already complex arguments. 

The results of this paper for a corresponding fragment of Algol 60 

were claimed by GORELICK[7] who attempted to extend the results of COOK 

[57 to the case of a language allowing recursion. However, as we shall see 

in sections 7 and 12 he does not deal satisfactorily with some of the in­

evitably arising problems. Among others, his (and Cook's) treatment of 

scope problems is incorrect. CLARKE[4] proposed a modification of Gorelick's 

proof system which repairs the above deficiency. He claimed without proof 

that his system was sound and complete in the sense of Cook. The results of 

this paper to some extent support his claim. However, it must be noted that 

both GORELICK[7] and CLARKE[4] use a definition of soundness of a proof rule 

which is not sufficient to prove the soundness theorem. We discuss this 

issue in section 7. 

The proper treatment of all the problems arising in proofs is much 

more difficult than might appear at first sight. The main difficulties 

stem from the inclusion of local procedure declarations in the language. 

To deal with the partial correctness of programs allowing recursive pro­

cedures HOARE[IO] introduced a proof rule which as a premise uses the fact 

that a certain asserted statement is provable from another asserted state­

ment, written as A~ B. If one admits local procedure declarations, in the 

proof required in the premise of the rule one has to allow the rule itself. 
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Because of it the notion of proof becomes extremely awkward. A rule which 

is defined in terms of itself is not an easy object to study and even to 

define its soundness becomes a highly non-trivial task. To resolve these 

difficulties we transformed the whole proof system into a system which uses 

the usual notion of proof. 

Another problem arises by allowing local variable declarations. The 

rule of (recursive) procedure calls introduces the so-called dummy pro­

cedure variables which do not have any semantic meaning. It is by no 

means clear how to define the validity of asserted statements involving 

such variables. If one allows local variable declarations, the naive ap­

proach of quantifying over all possible meanings of the dummy procedure 

variables completely fails to work. This problem arises even if one dis­

allows local procedure declarations and procedures with global variables 

in their bodies and in our opinion no satisfactory solution of it has been 

published as yet. 

Allowing procedures with global variables in their bodies leads to scope 

problems. To resolve them we adopted a solution proposed by CLARKE[4] and indepen· .. 

dently by APT & DE BAKKER[ 2]: the use of subs ti tut ion both in semantics and proof 

theory. 
This is by no means a complete list of the difficulties encountered. 

Most of the problems are of a purely technical nature, yet we saw no possi­

bility of reducing them. 

The paper is organized as follows. In section 2 we define the subset 

of PASCAL we are concerned with. In sections 3 and 4 we give the definition 

of its semantics. These three sections are taken with minor changes from 

APT & DE BAKKER[2]. The proof system is defined in section 5. The system 

its elf owes much to APT & DE BAKKER[ 2] and GORELICK[ 7]. The idea of sepa·­

rating a Hoare-like system from a deductive system concerning assertions 

comes from C0OK[Sl. 

Section 6 is devoted to a discussion concerning the notion of validity. 

In section 7 we indicate why various approaches to this notion, published 

unto this day, are incorrect. In section 8 we list some lermnata from 

APTCI] which are needed in the proofs of soundness and completeness theo­

rems. The proof of the soundness theorem is presented in sections 9, 10 

and 11. In section 12 we introduce and discuss Cook's notion of complete-
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ness and in section 13 we prove the completeness theorem. Finally, in sec­

tion 14 we discuss the problem of whether the use of an operational seman­

tics might simplify the proofs in this paper. 

2. PRELIMINARIES 

To define the programming language we shall be concerned with we shall 

use the following classes of symbols: 

SV simple variables 

AV - array variables 

with typical elements x,y,z,u, 

with typical elements a,b,c, 

with typical elements P,Q. PV - procedure variables 

For later use we assume these sets to be well-ordered. 

Let F = {f 1, ••• ,ft} be a set of function symbols and let 
0 

RE = {=,re 1, ••• ,re } be a set of relation symbols. Let R.. denot.e the arity 
m0 i 

off. and m. the arity of re .• i i i 
We now define the classes IV (integer variables), IE (integer expres-

sions) and BE (boolean expressions) as follows: 

v··= xja[t] (v E IV) 

t··= vj •.. jfi(t 1, ••• ,t£.i)j ... jif e then t 1 else t 2 fi (t E IE) 

e::= truejfalselt 1=t 2 j .•. jrei(t 1 , ••• ,tm.)j ... l,eie 1ve 2 j ... (e EBE) 
i 

Finally we introduce the class of statements Sand the class of systems of 

procedure declarations E using auxiliary classes R1, R2 and R3 as follows: 

I I l S· ·= R var x;R 

I 
R • ·-.. -

2 
R • ·= .. 

R2 larray 

R3 jE;R3 

2 a;R 

R3::= v:=tjR~;R~jif e then R3 else R3 filP 
I 2 

(S E S) 

(RI E RI) 

(R2 E R2 ) 

(R3 E R3) 

(E E E) 
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(where it is required that in each declaration 

P1 <= <S 1>, •.• ,P <= <S >, P. ~ P. for 1 s i < j s n). 
n n 1. J 

REMARKS. 

(i) The above defined language is essentially a subset of PASCAL. The f. 
l. 

are the unspecified primitive function symbols of the language and 

the r. are the unspecified primitive relation symbols of the language. 
l. 

(ii) For technical reasons we allow the empty system of procedure decla-

rations. 

(iii) P <= <S> stands for the PASCAL procedure declaration procedure P; 

begin Send. 

(iv) Arrays do not have bounds associated with them. 

(v) All simple variables and all components of arrays are of the same 

(unspecified) type. 

(vi) All considerations of this paper can be trivially extended to the 

case of lists of simple variable declarations or array variable 

declarations. 

Finally we define the class of assertions AST as follows: 

(p E AST) 

Observe that only simple variables can be bound in assertions. 

By var(E) where EE Ewe denote the set of all simple variables which 

occur in E. It should be clear what we mean by var(S) or var(p,E,S). 

Similarly we define array(E). 

We write s1 = s2 to denote the fact that s 1 and s2 are the same se­

quences of symbols. 

An occurrence of a simple variable x in a statement Sis bound when­

ever it is within a substatement of S of the form var x; R1. An occurrence 

of x in Sis free if it is not bound. By S[y/x] we mean a substitution of 

y for x in a statement S. The most important case in its definition is: 
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• if X = 
• if X ~ and y ¥ y 

0 
if X -,; and y = y - 0. 

where y' is the first 

simple variable not 
f . I I el, ree in R, y r x and 

y' ~ Yo· 

The other cases are left to the reader. 

Similarly we define S[b/a], S[Q/P] and S[Q/P] where Q and Pare se­

quences of different procedure variables of the same length. By convention 

each occurrence of P.(J:::i::sn) in E or E·,R3 , where E = <P <=<S >>n is 
1. - i i i= l' . 

In a similar way we define p[y/x], p[b/al, piy/x~ and p[b/a~ where pis an 

assertion and y and x (band a) are sequences of different simple (array) 

variables of the same length. If x = (x 1, ••• ,~), y = (y 1, ••• ,ym), a= 

(a 1, ••• ,ak) and b = (b 1, ••• ,bm),. where k ::; m, then by definition p[y/x] = 
p[(y 1, ... ,yk)/(x 1, ••. ,xk)l and p[b/'i°J !!! p[(b 1, ••. , /(a 1, ••• ,ak)J. 

By p[t/v] where t E IE and v E IV we mean a substitution oft for v 

in an assertion p. It is defined precisely in DE RAK.KER [3]. We present here 

only the central clause from its definition: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

By d (S) we mean the depth of a statement S which we define as follows: 

d(var x;R1) = d(R 1) 
- 2 2 

d(array a;R) = d(R) 

d(E;R3)= d(E) + d(R3)+ 

d(v:=t) = 0 
3 3 3 1 d(R 1 ;R2) = max (d(R 1), d(R2)) 

d(if e then Rf else R; fi) = max (d(Rf), d(R~)) 

(vii) d(P) = 0 

(viii) d(E 1,E2) = d(E 1) + d(E2) 

(ix) d(P <= <S>) = d(S) + l 

(x) d() = O (depth of the empty system of procedure declarations 1s 0). 
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d(S) corresponds to the level of nesting of procedure declarations within 

the statement S. By l(S) we denote the length of the statement S. 

If A1 , ••• ,An are some well-ordered sets then -<.e_ denotes the lexico­

graphical well-ordering on A1 x, •• x An' i.e. 

3i(l~i~n A Vj(l~j<i + a.= a!) A (a.< a!)). 
J J 1 1 

For EE E and SES let c(E!S) = (d(E)+d(S),l(S)). We call c(E!S) the 

complexity of EJs. Many proofs in this paper proceed by-<l-induction with 

respect to the complexity of EJS. 

3. STATES AND ENVIRONMENTS 

An interpretation I for the primitive symbols of our language consists 

of a non-empty countable domain D and an assignment of functions f. on D 
-1 

to function symbols f. from F and relations re. on D to relation symbols re. 
1 -1 ~1 

from RE. We assume I to be arbitrarily fixed throughout the paper. 

Let A= {o 1,o 2 , ••• } be an infinite well-ordered set of addresses whose 

elements are denoted by letters ~,a with possible subscripts. Let 

I = A + D 

Vall.= SV u (AVxD) 

and let Env be the set of all E: Vall.--+ A such that part 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Eis 1 - 1 

{x € SV: E(x) is defined} is finite 

{a E AV: for some d ED E(a,d) is defined} is finite 

for all d1,d2 € D and a€ AV E(a,d 1) is defined if 

e(a,d2) is defined 

A\ range (E) is infinite. 

Thus if for some EE Env, a E AV and d ED E(a,d) 1s defined then for all 
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d ED e:(a,d) is defined and if d 1 # d2 then e:(a,d 1) # e:(a,d2). This explains 

why we imposed on D the restriction to be countable: otherwise we would have 

dom(e:) S SV for all e: E Env, because A is assumed to be countable. 

The elements of rare called states and denoted by letters a,a', ..• 

and the elements of Env are called environments. Roughly speaking environ­

ments map variables on addresses and states assign to adresses values from 

the domain D. 

For any e: E Env, y E SV such that y i dom(e:) and a EA such that 

a i range(e:), we write e: u <y,a> for the extension of e: yielding a when 

applied toy. Similarly we define e: u <y,a> where y is a sequence of differ­

ent simple variables not in dom(e:) and a is a sequence of different addresses 

not in range(e:). Analogously we write e: u <<a,d>,ad>dED for the extension of 

e: yielding ad when applied to (a,d). 

For any a EE, d ED and a EA cr{d/a} is the state such that cr{d/a}(B) = 

d if B = a and cr{d/a}(8) = cr(8) otherwise. We introduce the mappings 

L: IV ➔ (Env x E + A) (Zeft-hand-vaZue of an integer variable) part 
R: IE ➔ (Env x part L ➔ D) (right-hand-vaZue of an integer 

T: AST -+ (Env x L ➔ {I,Jf} (truth value of an assertion) part 

defined as follows: 

L(x)(e:,cr) = e:(x), L(a[s])(e:,cr) = e:(a,R(s)(e:,cr)), 

R(v)(e:,cr) = cr(L(v)(e:,cr)), 

R ( f i ( t 1 , ••• , t ..e..) ) ( e:, a) = ii (R ( t 1 )( e:, a) , .•. , R ( t l _) ( e:, a)) , 
i i 

T(true)(e:,cr) = I, T(false)(e:,cr) = 1, 

if R(t 1)(e:,cr) = R(t 2)(e:,cr) 

if R(t 1)(e:,cr) # R(t2 )(e:,cr), 

expression) 

Ere. 
-i 

is (R(t 1)(e:,cr), .•• ,R(tm·)(e:,cr)) i 
i 

re. 
-1, 

R(if e then t 1 else t 2 fi)(e:,cr) { 
R ( t 1 ) ( e: , a ) if T (e ) ( e: , a) = I 

= R(t2)(e:,cr) if T(~(e:,cr) = E, 



8 

T(1p)(E,a) = 1f(p)(s,cr), ••. , 

={ -IT T(3xp)(E,o) 

if for some d ED T(p)(s,cr{d/s(x)}) = T 

if for all d ED T(p)(t,cr{d/s(x)}) = f, 

T(Vxp)(s,a) = T(1~x1p)(t,cr). 

We say that pis tr>ue (Fp) if for all E defined for all variables occurring 

in p and for all a T(p)(s,a) = I· 

4. SEMANTICS 

Let H = Env x r-+ E. H can be viewed as a set of all possible 
part 

meanings of procedures. We denote the elements of H by n with possible 

subscripts. The set theoretical inclusion~ forms a natural partial ordering 

on H. ~ naturally induces a partial ordering on fin (n~O). Let 0 = PV ➔ H. 

Each 6 E 0 can be viewed as a mapping assigning a meaning to each procedure 

variable. 
n -For each n = (n 1, ••• ,nn)EH and P = (P 1, ••• ,Pn) where P1 , ••• ,Pn are 

some different procedure variables, let 

e{ n/P} (P) 

If~: Hn ➔ Hn thenµ~ denotes the least element n of Hn such that 

~(n) = n. µ~ exists if~ is monotone, i.e. if~ preserves the partial orde­

ring on Hn. 

We now define a function M: Ex S ➔ (0 ➔ H) by-<.e_-induction with 

respect to c(EjS) as follows: 

M(E!v:=t)(e)(s,o) = cr{R(t)(s,a)/L(v)(s,cr)} 

M(E IR~ ;R~)(e) (s ,a) = M(E jR~) (e)(s ,M(E·I R~)(e )(s ,a)) 
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(1HE j R~) (8) (€:, a) if T(e)(E ,o) = I 
= .( 

lM(E l R~) (6) (s ,o) if T(e)(c ,a) = f 

M(E Ivar x;R1) (6) (e:,o) = M(EjR\y/x]) (6) (e:u<y,ci,>,o), 

where y is the first variable E SV not in dom(E) and a the first 

address not in range(s) 

M(Ejarray a;R2 ) (6) (s,a) = H(Ej R2[b/a]) (8) (su«b,d>,ad>dED'a), 

where bis the first variable E AV such that no <b,d> 1s 1n dom(s) 

and where the ad are chosen in some (unspecified but) unique way 

from A\ range (e:) 

M(El<P. <= <S.>>~ 1;R3)(8)(s,cr) = 
1. l 1= 

M(E, <Q. <= <S.[Q/P]»~ 1 IR3[Q/Pl) (8) (E,a), 
]. 1. 1= ' , 

where Q = (Q 1, ... ,Qn), P = (P 1, .•. ,Pn) and 0 1, ... ,Q are the . n 
first variables E PV such that for each j = l, ... ,n Q. does not 

J n 3 occur in E, <P. <= <S.>>. or R 
l ]. 1.=l 

M(EIP)(0)(e:,a) = 8{µ4lE,B/P}(P)(s,o) 

where E = <P. 
1 

1.s defined as 

1p~' 8 (n) = MC js.)(e{n/P}). 
l. l 

,.,E,'6 · ·""E,B . Ob h i'f P .J. ~ is clearly monotone, soµ~ exists. serve tat r P. 
1 

for 1 = l, ... ,n then simply M(EjP)(B)(E,a) = B(P)(s,a). 

E n 
In the further considerations we shall need the fact that~ ' is 

continuous, i.e. that 

00 

qiE, e ( U n ) = 

k=O k 

00 

U ~E,B(nk) for all nk(k=O,I, ... ) 
k=O 

The proof of it is left to the reader. 

Now define n!• 0 E Hn (k ~ 0) as follows: 



J ~0 , .. : ,. , 0 )J 
l n-t1.mes 

l~E' e <n!: ~) 

if k = 0 

if k > 0, 

where 0 1.s the empty function. Then by continuity of ~E,e 

The above defined semantics for our language is tuned to the proof 

system which will be presented in the next section. The intention is to 

simplify the proofs by having a semantics which is somewhat similar to the 

considered proof system. However, as we shall soon see, that even in spite 

of this choice we are faced with the necessity of extremely tedious and 

lengthy proofs. At the end of the paper we discuss the reasons why these 

proofs are so long and complicated. 

We make extensive use of substitution, both to resolve scope problems 

and to make the semantics more similar to the proof system. The above 

semantics is taken from APT & DE BAKKER [2] and is further elaborated 1.n 

APT [I] where an equivalence of this semantics with two other ones is 

proved. The only difference is that 1.n both papers procedures can call 

parameters by value or by variable. Of course, the results of APT [I] hold 

also for the language here considered, in which only parameterless proce­

dures are allowed. 

5. PROOF SYSTEM 

The proof system with which we are concerned is a modification of the 

usual Hoare system (see HOARE [9] and HOARE [10]) allowing to deal with 

nested systems of mutually recursive procedures. Before we define its 

axioms and proof rules we have to introduce some notation. 

By an atomic correctness formula we mean a construct of the form 

{p}S{q} or p, where p,q are assertions and Sis a statement. By a 

correctness formula we mean a finite set of atomic correctness formulas. 

Letters y,y' denote atomic correctness formulas and letters r,r' denote 



correctness formulas. By a correctness phrase we mean a construct of the 

form r + <Ejf'> where rand f'are correctness formulas and Eis a 

1 1 

system of procedure declarations (E E E). r can be viewed as a set of pre­

mises whereas f' can be viewed as a set of conclusions which can be deduced 

from r in the context of procedure declarations E. If r is empty we write 

<EI r' > instead of r +<EI r '>. Axioms in our system will be correctness phrases and 
A1•···,An 

proof Y'Ules will be constructs of the form----- where A1, •.. ,An+I are 

correctness phrases. 
An+l 

The axioms and proof rules of our system Hare as follows. 

Axioms. 

(Al) selection 

(A2) assignment 

r + <Ej{p[t/v]}v:=t{p}> 

(A3) invariance 

r + <Ej{p}P{p}> 

Proof rules. 

(RI) composition 

where y Er and none of the.procedure 

variables occurring in y is declared in E. 

where none of the variables occurring free 

in p occurs in E and Pis not declared in E. 

r + <Ej{p}Rf{q},{q}R~{r}> 

I 3 3 r + <E {p}R1 ;R 2 {q}> 

(R2) conditional statements 

r + <Ej{pAe}~:{q},{pA1e}R~{q}> 
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(R3) variable declarations 

r + <El{p}R1[y/x]{q}> 

r + <Ej{p}var;R1{q}> 

d . RI where y oes not occur in E,p, or q. 

(R4) array declarations 

r + <El{p}R2[b/aJ{q}> 

r + <E\{p}array a;R2{q}> 

2 where b does not occur in E,p,R or q. 

(RS) procedure declarations 

r + <E, <Pi+= <Si [P' /PJ»~=l I{ p}R3[P' /PJ{ q}> 

f + <E j{p}<Pi += <Si»~=l ;R3{q}> 

where P' = (Pi,···,P~!• P = (~1, ... ,Pn) and Pi,···,P~ do not 

occur in E,<P.+=<S.>>. 1 or R. 
1 1 1= 

(RG) consequence 

r + <Ejp + Pl, {pl}S{ql},ql + q> 

r + <Ej{p}S{q}> 

(R7) substitution 

r + <Ej{p}P{q}> 

r + <E j{p[y/z][b/c]}p{q[y/z][b/c]}> 

where 1°. y,z E sv, a,b E AV, all variables in y,z,a,b are 

different and none of them occurs bound in p or q 

2°. z n var(E) = ¢, c n array(E) = 0 
3°. if a variable from y occurs in E,p or q then the 

corresponding variable from z does not occur in q 

4°. if a variable from b occurs in E,p or q then the 

corresponding variable from c does not occur in q. 

(RS) procedure calls 

r,{pl}p1'{ql}, .•• ,{p }p'{q }+<E,E'\{p.}S!{q.}._o > 
n n n 1 1 1 1- , ••• ,n 



where l O • 

20. 

30. 

(R9) conjunction 

I _ n E = <P . .;=<S.>>. , and P1 , ..• ,Pn do not occur 1.n E 
J.. i i=I 

Pi,···,P~ do not occur in f,E,E' or s0 

for i = O, ..• ,n S~ = S.[(P 1', .•• ,P')/(P 1 , •.. ,P )]. 
1. 1. n n 

r ➔ <Ej{p}P{q},{p}P{r}> 

r ➔ <El{p}P{qA r}> 

(RI 0) collection 

r ➔ <Ejy , ••. ,r ➔ <Ely> 
I n 

(RI I) selection 

where y E: f • 
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Our system is constructed in such a way that the so-called proofs from 

asswrrptions usually needed in the premise of a rule of (recursive) procedure 

calls are completely avoided. Consequently we get a proof system for which 

the notion of proof is simply the one used 1.n formal logic. Two papers are 

known to us where a similar approach has been taken when dealing with re­

cursion in a Hoare-like system. In SCHWARZ [12] so-called generic commands 

are introduced to avoid the use of proofs from assumptions in a premise of 

a rule. In HAREL, PNUELI & STAVI [8] all formulas of the system are deduc­

tions of the form r ~ y for suitable randy and the notion of proof is 

the usual one. 

Formulas of the form A ~ B appeared for the first time 1.n SCOTT & 

DE BAKKER [13] where"~" simply stands for the implication sign (e.g. on 

page 13: "Consider an implication <P t- 1/1~'). They appear in almost all papers 

dealing with proof systems concerning recursive procedures. 

The use of the symbol "f-11 to denote implication is in our opinion quite con­

fusing. If we write ~ ~ ~ to denote the fact that if B can be derived from A then 

D can be derived from C, we are, strictly speaking, dealing with a metarule 
A+ B 

of proof. On the other hand if we write C + D we are dealing with a rule of 

proof, because the implication sign"+" is a logical symbol whereas the 
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provability sign"~" is a metalogical symbol. That both approaches are 

equivalent follows from the fact that for every reasonable logical system 

the deduction theorem holds: A ~ B iff ~ A "t B. Once we use the implication 

sign"+" we get a Gentzen-like proof system and we find ourselves on the 

familiar grounds of logic instead of wandering in an unexplored world of 

metarules and proofs from assumptions. 

That the proofs from assumptions can lead to confusion we shall see 

later in section 7. However, to begin with, let us discuss the axioms and 

proof rules we have adopted in our system H. 

The assignment axiom is taken from DE BAKKER [3]; it is an extension 

of the well-known Hoare's axiom, as it also covers the case of assignment 

to the subscripted variable. The invariance axiom is adopted from GORELICK 

[7]. 

The rule of variable declarations is taken from HOARE [10]. The corre­

sponding rule of array declarations first appeared in APT & DE BAKKER [2]. 

Also the rule of procedure declarations comes from this paper. It appeared 

independently (somewhat earlier) in CLARKE [4]. The substitution rule is 

essentially the rule of variable substitution of GORELICK [7]. The rule of 

conjunction is taken from the same paper. The rule of procedure calls 1s 

actually the general case of Scott's induction (see SCOTT & DE BAKKER [13]) 

which for the first time was used in this framework in HOARE [10]. The 

collection rule is used to collect separately derived conclusions. This is, 

for example, needed in order to apply the composition rule. The selection 

rule is used to select an appropriate atomic correctness formula after the 

rule of procedure calls has been applied. 

Observe that the only place where assertions appear as atomic correct­

ness formulas is the rule of consequence. As long as we do not augment H 

with a formal system capable of proving some facts about assertions (like 

p + p 1), we cannot meaningfully apply this rule. For example we cannot 

prove in H < j{p[t/v]}v:=t{true}> because we have no means to prove 

< jp+ ~>. Instead of supplementing H by a formal system concerning 

assertions we shall simply add to the axioms of H another axiom scheme or 

rather a set of axioms, namely 

(A4) r + <E jp> for p E: T, 
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where Tis a set of assertions. The resulting system will be called (H,T). 

By a proof in (H,T) we mean a sequence of correctness phrases 

A1, ••• ,A such that each of the A. (Isisn) is either an axiom (including 
n 1 

(A4)) or follows from the preceding ones by an:application of one of the 

proof rules. We say that a correctness phrase A is provable in (H,T), 

(~H,TAh if there exists a proof in (H,T) A1, •.. ,An such that A= An. 

In the subsequent sections of the paper the shall be concerned with parti­

cular properties of the system H relative to a set T and not in T itself. 

Therefore we leave further specifications of T open. 

6. VALIDITY 

The usual (informal) definition of the meaning (or truth) of a formula 

{p}S{q} is as follows: whenever pis true before the execution of Sand S 

terminates, then q is true after the execution of S. Since Scan call some 

procedures, we shall rather consider the formulas of the form ~El{p}S{q}> 

where EE E and all procedure calls within Sare understood with respect 

to E. However procedures declared in E can in turn call some other proce­

dures which are not declared in E. Since we wish to exclude this type of 

situations, we are led to the following definition. 

DEFINITION I. A correctness phrase <Elf> is called normal if all procedure 

variables occurring free in r are declared in E and there are no procedure 

variables occurring free in E. 

Thus if <E[f> is normal then procedures declared in E can call only 

those procedures which are declared in E as well. 

We wish to prove that the system H provides complete information 

about the true normal correctness phrases, relative to T. More precisely, 

we want to prove that for any normal correctness phrase A if Tis sound 

and ~H,TA, then A is true, and if Tis complete and A is true, then ~H,~· 

We shall see in section 12 that the second part of this statement cannot 

be proved without additional assumptions (concerning the interpretation I). 

To prove a normal correctness phrase in (H, T) unfortunately one has to deal 

with arbitrary correctness phrases which are needed in proofs concerning 

calls of recursive procedures. So in our considerations we cannot restrict 
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our attention to normal correctness phrases. 

Suppose now that T is sound (i.e. all assertions from T are true). 

To prove the soundness of (H,T) we introduce the notion of validity of 

correctness phrase such that 

(i) all axioms of (H,T) are valid 

(ii) the rules of H preserve the validity of correctness phrases 

(iii) all valid normal correctness phrases are true. 

a 

At first glance one might think that it is enough to take for the notion 

of validity a simple extension of the truth notion of normal correctness 

phrases: a correctness phrase A is valid if for all possible meanings 

assigned to procedures occurring free 1n A, A is true (where+ is inter­

preted as implication). Unfortunately this definition does not work here, 

and this for several reasons. 

For the purpose of the discussion below it is sufficient to restrict 

our attention to correctness phrases of the form <Ej{p}S{q}>. The defini­

tion proposed above says that <Ei{p}S{q}> is valid if for all 8 E 0 

<Ei{p}S{q}>(G) holds, where <Ej{p}S{q}>(B) holds if for all EE Env 

defined for all variables occurring free in E,p,S,q and for all states 

a and 0 1 

T(p)(s,o) = I and M(E!S)(B)(E,a) cr' implies T(q) (E,a') = T. 

With this definitions at hand we clearly violate the first of the 

above three requirements. Namely the invariance axiom becomes then invalid. 

Observe that due to the restrictions imposed in the axiom on P, for all 

8 E e M(E IP) (6) = e (P). Now, let p be such that for some E E Env defined 

for all relevant variables and states a and a' T(p)(E,a) = T and 

T(p)(E,cr') = f. Unless the domain D has exactly one element -an uninteres­

ting case- we can always find such a p. If we now assume that e(P)(E,o) =a' 
then we have M(E IP) (0)(s ,o) = a', which shows that indeed <E ! { p}P{ pl> is 

invalid. The invariance axiom usually will be used in the form f ➔ <E{p}P{q}> 

for some non-empty r which does not include {p}P{p}, but the above argu­

ment still retains its validity. 

Since we cannot delete the invariance axiom, because it is needed in 
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the proof of the completeness theorem, we have to refine the above proposed 

definition of validity so that this axiom becomes valid. Before we do this 

it will be helpful to have a closer look at the role played by the undecla­

red procedure variables. 

All free occurrences of procedure variables in <E j{ p}S{ q}> an.se from 

the subproofs dealing with calls of recursive procedures. Our system is so 

constructed that the declarations of these procedures are always recorded 

in E. That is why in the rule of procedure calls we used the new procedure 

variables Pi,···,P~ and retained the system E' while not adopting the 

following seemingly equivalent rule 

r,{pl}pl{ql}, .•. ,{p }p {q} + <Ej{p.}S.{q.}._o > 
n n n i i ii- , ••• ,n 

where in the upper line the system E' is not recorded. Thus even though 

these new procedure variables do not have here any semantic meaning we know 

at least that they are related to procedures declared in E,E'. In the proof 

of soundness of the rule of procedure calls we shall need to assign to 

h d . bl . h . . E 'E ', e f t ese new proce ure varia es as a meaning t e approximations nk o 

the meaning of procedures declared in E,E'. And this is the only place 

where we shall "manipulate" with the meaning of the new procedure variables. 

So we shall always be dealing with meanings which are related to those of 

procedures declared in E,E'. This suggests that in the definition of vali­

dity we do not need to quantify over all 8 e: 0 but only over those 8-s which 

are in some way related to the meaning of the procedures declared in E. 

The whole problem is now to find the class 0E c 0 over which we should 

quantify. , 

Call a variable accessible by a procedure P if it occurs as a global 

variable either in the body of P or in a body of a procedure which can be 

called by P. One of the essential properties of a parameterless procedure 

is that its call cannot change the values of the simple or array variables 

which are global to its body but not accessible by it. We want now to use 

this property in the definition of 0E. To be more precise we introduce the 

following definition. 
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DEFINITION 2. Let F ~ SV, G ~ AV and 0 E 0. 

(i) We call 8 F-bowui if for all P E PV, e E En.v such that F S:: dom(e) and 

o, o' EL S(P)(e,0) = 0 1 implies that o(s(y)) = o' (s(y)) for all simple 

variables y such that y E dom(e)\F. 

(ii) We call 8 G-bound if for all P E PV, e E En.v such that G x D ,'.::. dom(e) 

and o, 0 1 EL 8(P)(s,o) = o' implies that o(s(a,d)) = o' (s(a,d)) for 

all d ED and array variables a such that (a,d) E dom(E:)\(GXD). 

We shall now require that all 8 E 0E should be var(E)-bound and array(E)­

bound. This will insure that the invariance axiom will be valid because 

by the assumption none of the free variables of p occurs in var(E) or 

array(E). In this way we shall satisfy the first of our three requirements 

which we imposed on the notion of validity. 

The above restriction however, does not yet imply that the second 

requirement is satisfied. Namely if we quantify in the definition of valid­

ity over all 8 E 0 which are var(E)-bound and array(E)-bound we run into 

troubles with the variable declaration rule. To see this take for R1 the 

statement P;x:=x where Pis not declared in E and for p the formula x 1 =x2 
where x 1 and x2 are some simple variables which occur in E. Let y be the 

second simple variable which does not occur in E or R1 and let r be 

{ p}P{ pAy=y}. 

Clearly the correctness phrase 

f + <Ej{p}P;y:=y{p}> 

is valid in the above proposed sense (where, by definition f(0) holds if 

< jr> (6) holds). On the other hand the correctness phrase 

r ➔ <Ej{p}var x;P;x:=x{p}> 

is not valid. 

Indeed, lets E En.v and o,o' EL be such that T(p)(s,o) = T, 

T(p)(s,cr') = F and dom(s) = var(E) u array(E)xD. Let u be the first 

simple variable not in dom(s) (so y $ u) and let a be the first address not 

in range(s). Finally, let 8 E 0 be such that 8(P)(su<u,a>,cr) = a' and 



8(P) (E 1,a 1) = a 1 whenever y E dom(E 1). Clearly e can be chosen to be 

var(E)-bound since we can also assume that o(a) = a' (a). 
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Now obviously f(8) holds, but <E[{p}var x;P;x:=x{p}>(8) doesn't because 

M(E Ivar x;P;x:=x) (8) (E,v) M(EjP;u:=u)(8)(EU<u,a>,0) = 

= 0(P)(Eu<u,a>,cr) =a'. 

Observe that the essential property of 8 needed for the above argument 

was that 8(P) (Eu<y,a>,cr) * 8(P) (Eu<u,a>,cr). In our next refinement of the 

definition of validity we shall quantify over a subclass of 0 to which the 

above 8 does not belong. In an analogous way we shall take care of the 

similar problems resulting from the array declarations rule. Let us intro­

duce the following definition. 

DEFINITION 3. Let F ~ SV, G ~ AV and 8 E 0. 

(i) We call 8 F-invariant if for all PE PV, EE Env such that F c dom(E), 

y,y' E SV\dom(E), a E A\range(E) and cr EI 

8(P) (EU<y,a>,cr) = 8(P)(EU<y' ,a>,0). 

(ii) We call 0 G-invariant if for all PE PV, EE Env such that 

G x D ~ dom(E), b,b' E AV such that {b,b'}xn n dom(E) = ~. 

ad E A\range(E) ford ED and a E I 

It turns out that if we quantify in the definition of validity only 

over those e E 0 which are var(E)-invariant and array(E)-invariant then we 

insure that the variable declaration rule and array declaration rule pre­

serve the validity of correctness phrases. 

However, there are some further problems to be dealt with. Consider 

the consequence rule. Even if we restrict our attention in the definition 

of validity to those 8 E 0 which satisfy the four so far mentioned restric­

tion~ the consequence rule does not preserve the validity of correctness 
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phrases. The following simple example gives evidence for it. 

Let P be a procedure variable not declared in E and let y be a simple 

variable which does not occur in E. Let p be the formula x 1 = x2 , where x 1 

and x 1 are some simple variables which occur in E. The correctness phrase 

is obviously valid whereas 

is not. The proof is similar to the one which concerned the variable de­

clarations rule and we leave the details to the reader. 

The problem is that for EE Env such that dom(s) = var(E) u array(E)XD 

and y ~ dom(s), a E I and a E A\range(E) the states 8(P) (s,a) and 

6(P) (su<y,a>,a) are in general completely unrelated to each other even if 

we impose on 6 the four above mentioned restrictions. What we need here is the 

existence of a a1 EI for which T(p)(s,a) = T(p)(su<y,a>,0 1), such that if 

8(P)(s,a) -isdefined, then 6(P)(su<y,a>,a 1) is defined and T(p)(s,6(P)(s,o))= 

T(p) (rn<y,a>,6(P) (su<y,a>,a 1)). 

This leads us to the fifth and final restriction which we impose on 

6-s. Because of our way of dealing with variable declarations (by extending 

the environment) we cannot in general require a 1 to be simply a. 

DEFINITION 4. Let F ~ SV and Gs AV. 
(i) Let c,s' E Env and a,a' EI. We say that the pair (s,a) fits (s' ,a') 

over (F,G) if the following four conditions are fulfilled: 

1°. Fu G x D S dom(s), dom(s') 

2°. a(s(z)) = o'(s'(z)) for all z E SV such that z E dom(s), dom(s') 

3°. a(s(a,d)) = a'(s'(a,d)) for all a E AV and d ED such that (a,d) E 

dom(s), dom(s ') 

4°. for all k ~ l if a is the k-th address in A\range(s) and a' 1s the 

k-th address in A\range(s') then a(a) = a' (a'). 

(ii) Let 8 E 0. We say that 6 fits (F,G) if for all PE PV and all pairs 

(s,o) and (s',a') such that s,s' E Env, a,a' EI and (s,o) fits 



(E',a') over (F,G), S(P)(s,a) is defined iff 6(P)(E',cr') is defined 

and if they are both defined then (E,6(P)(E,cr) fits (E',S(P)(E',a')) 

over (F,G). 
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The notion of fitting is closely related to the notion of matching 

relative to the empty substitution which has been introduced in COOK [SJ. 

In turn the notion of F-boundness and F-invariance for F ~ SV is a modifi­

cation of the notion of E-invariance for EE E introduced in APT & DE 

BAKKER [ 2]. 

Finally, we introduce the following definition. 

DEFINITION 5. Let F ~ SV, G ~ AV and EE E. 

(i) By 0F,G we mean the set of all 8 E 0 which are F-bound, G-bound, F­

invariant, G-invariant and which fit (F,G). 
(ii) By 0E we mean the set 0var(E),array(E)~ 

Having defined the set 0E we can return to the definition of validity. 

DEFINITION 6. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

A correctness phrase r ➔ <Elf'> is valid if ·for all e E 0E whenever 

f(S) holds then <Ejf'>(S) holds. 

f(S) holds if< jr>(6) holds. 

<Elf>(6) holds if for ally Er <Ejy>(6) holds. 

<Elp>(6) holds if pis true. 

<Ej{p}S{q}>(6) holds if for all E € Env defined for all variables 

occurring in E,p,S,q and for all states cr and cr' T(p)(E,cr) = I and 

M(EjS) (6)(£,cr) = a' implies that T(q)(E,cr') = I. 
Al, ••• ,An 

A proof rule A is sound if the validity A1, .. ,An implies the 
n+I 

validity of An+!" 

To avoid some uninteresting considerations concerning variables which 

occur bound in statements or assertions, we required in the clause (v) of 

the above definition that Eis defined for all variables which occur in 

E,p,S,q instead only for those which are free. 

Observe that in contrast to the notion of proof the notions of 
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validity, soundness, truth of an assertion and meaning of a statement are 

all dependent on the interpretation I. 

The system H has been so constructed that each of the proof rules is 

of the form 

r,r 1 + <E,E' jr2> 

r + <El r 3> 

I E E E,E' . h . The reason for it is the fact that for any E,E E 0 ~ 0 whic in 

many proofs of soundness of a rule provides the desired link between the 

validity of the lower and upper line. 

To achieve this we did not incorporate into H the so-called extension 

rule (see CLARKE [4] and APT & DE BAKKER [2]) which is of the form 

f + <Ejf 1> 

r + <E,E' Ir > 
I 

and "shifted" all extensions to the axioms of H. Note that the extension 

rule is not sound in the sense defined above! 

It should be clear by now that with such complex definitions at hand 

the proofs of soundness and completeness of our system H will be long and 

tedious. The most complicated proofs result from the restriction in the 

definitions of validity to 8-s which are var(E)-invariant and array(E)­

invariant. We found that it was needed not only in the proofs of sound­

ness of the variable array declarations rules but also in the proofs of 

soundness of the consequence rule and the substitution rule. However, we 

did not find any example showing that the restriction to these 6-s is 

really necessary. The example given in the text is not satisfactory and 

we included it merely to motivate the need for introducing the notions 

of var(E)-invariance and array(E)-invariance. Observe at first that the 

variable y occurs there in r, so to prevent the exemplified difficulties 

we might simply assume in the formulation of the variable declaration rule 

that y does not occur in r. Secondly, the restriction to 8-s which fit 

over (var(E),array(E)) needed anyway for the consequence rule (and the 

substitution rule) takes care of this example, as well. If it turned out 
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that the restriction to 8-s which are var(E)-invariant and array(E)­

invariant is not necessary some of the proofs in this paper might be consi­

derably simplified. 

7. WHY NOT PROOFS FROM ASSUMPTIONS? 

Starting from HOARE [10] the so-called proofs from assumptions have 

been used to deal with recursion in the axiomatic systems concerning par­

tial correctness of programs. In order to be able to prove properties of 

a recursive procedure according to Hoare one should adjoin to the system 

taking care of other features of the language a special rule (or rules) 

dealing with recursion leaving the other rules and axioms intact. In the 

case of a declaration P<= <S> of one parameterless recursive procedure one 

should adjoin the rule 

{p}P'{q} ~ {p}S[P' /P]{q} 

{ p}P{ q} 

where P' is a procedure variable not occurring in S (so-called dummy pro­

cedure variable). The reasoning presented by this rule is the following: 

infer {p}P{q} from the fact that {p}S[p'/p]{q} can be proved (using other 

rules) from the assumption {p}P'{q}. Actually, Hoare does not use dummy 

procedure variables but their introduction makes it easier to distinguish 

between two different roles played by the procedure variable P. 

In GORELICK [7], CLARKE [4] and DONAHUE [61 a proof rule of this type is 

used for a programming language in which among others local variable decla­

rations are allowed. There are two problems concerning this type of rules. 

First, in the proof of {p}S[P'/P]{q} from {p}P'{q} one applies the 

other rules of proof to different constructs than before. In the case of 

non-recursive programs there were no dummy procedure variables which 

appear here. So even if the former rules of proof have been proved to be 

sound in the case of a language forbidding recursion we cannot conclude 

from it that they are sound in the case when dummy procedure variables 

appear as possible (substatements of) programs. Actually the whole notion 

of soundness changes then its meaning and, as we have already seen, to find a 
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proper definition of it in the case of a language allowing local variable 

declarations is not easy. To prove the soundness of a system obtained by 

incorporating the above rule one has not only to prove soundness (in an 

appropriate sense) of this rule but also to prove anew soundness (again 

in an appropriate sense) of the former proof rules and axioms now used for 

a bigger class of programs. 

Neither GORELICK [7] nor CLARKE [4] do this. The notion of soundness 

of a proof rule which they use actually is not sufficient to provide these 

proofs. Also (as noted by R. Milne) the proofs of soundness in DONAHUE [6] 

are incorrect. DONAHUE [6] uses a definition of validity which, roughly 

speaking, corresponds to our first proposal, so as we have seen he cannot 

succeed. 

The use of the rule of recursion in the above form makes it difficult 

to see what actually has to be proved because one simply thinks in terms 

of a new rule of proof and not in terms of a new notion of proof (namely 

a proof from assumptions). 

It should be also noted here that with the definition of soundness given in 

APT & DE BAKKER [2] the presented there rule of extension is not sound. 

The second problem is that if one admits local procedure declarations 

then in the proof of {p} S [P' /P]{q} from {p}P'{q} needed in the premise of 

the rule of recursion one is forced to use this rule for some other (local) 

procedures. The whole notion of proof becomes then extremely clumsy (try 

to define it!) and difficult if not impossible to study. How should one 

define (and prove) the soundness of a proof rule which is defined in terms 

of itself? 

In all four above mentioned papers local procedure declarations are 

allowed but the notion of proof is either not defined or it is simply too 

restrictive. 

8. AUXILIARY LEMMATA 

In this section we list some lemmata proved or indicated in APT [I] 

which will turn out to be needed in the proofs of soundness and complete­

ness theorems. 
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LEMMA I. Let E,E' €Ebe given systems of procedure decZal'ations such that 

no procedure variahZe declared in E' occurs in E. Then for aZZ S €Sand 
0 € 0 

M(E,E' js) (6) = M(E' js)(e{ µ~E,e /P}) 

where Pis the sequence of the procedU!'e variables declared in E. 

LEMMA 2. Let E and E' = <P ... <S.»~ be given systems of proaedure d.ecla-
1. 1. i.=I 

rations. Then for aZZ S € S, 6 E 0 and Q1, ••• ,Qn,Q;, .•. ,~ E PV such that 

for j = I, ... ,n Q. and Q~ do not occur in E,E' or S 
J J 

M(E,Q 1., <s/6/PJ>, ... ,Qn., <Sn[Q/P]> I S[Q/P]) (6) 

= M(E,Qi., <S 1 [Q' /P]>, •.. ,Q~., <Sn[Q' /P]> I S[Q' /PJ) (6) 

LEMMA 3. Let E,E' EE be given systems of procedure declarations such that 

no procedure variable declared in E' occurs in E. Then for alZ SES such 

that no procedure variable declared in E' occurs in Sand all 6 E 0 

M (E, E' IS)( 6) = M (EIS) ( 6) • 

We shall need a slightly stronger version of lemma 3, namely 

LEMMA 4. Let E and E' be as in lerrrna 3. Then for a ZZ S E S such that no 

procedure variable dee lared in E' occurs free Zy in S and a lZ e E 0 

M(E,E' js)(6) = M(EjS)(S). 

To prove lemma 4 we introduce the following notion. 

DEFINITION 7. We define a variant of a statement as follows. 

(i) Each SES is a variant of S. 
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(ii) If s1, •.. ,Sn' R3 are respectively variants o! Sj, 3 .. ,S~,Rf and for 

i = l, ... ,n Q. does not occur in <P. <= <Si>>i=l;R then 
- _1. n 3 - - ~ 

<Q. <= <S.[Q/P]>>. 1 ;R [Q/P], where Q = (Q 1, .•• ,Qn) and 
l. l. 1.= 

- · · S, n ·R3 p = (P 1, .•• ,P ), 1.s a vanant of <P. <= < .>>._ 1 , 1 • 
3 3 n . 1. 3 1.3 1.- 3 3 

(iii) If R1 ,R2 are respectively var~ants of R3 ,R4 then R1;R2 1.s a variant 

of R~;Ri and if e then R~ else R; fi is a variant of if e then R~ 

3 f' ~lse R4 -2· 
) l 2 . l (iv If R1,R1 are respective y 

. 2 d var~ant of array a;R2 an var 

I 2 variants of R2 ,R2 then array 
I x;R 1 is a variant of var 

The following lemma holds. 

LEMMA 5. Let EE E, e E 0 and let S be a variant of s1. Then 

2 . 
a;Rl l.S a 

x;R}. 

PROOF. Straightforward by induction on the structure of S using the defi­

nition of substitution and lemma 2. D 

Lemma 4 1s now an immediate consequence of lemmata 3 and 5. Namely let E 

and E' be as 1n lemma 3, let SES be such that no procedure declared in E' 

occurs freely in Sand let 8 E 0. Let s 1 be a variant of S such that no pro­

cedure declared in E' occurs in S. Then by lemma 3 M(E,E 1 [s 1) (0) = M(E[Si") (8), 

so by lemma 5 M(E,E' fs)(8) M(E/S)(8). 

Finally we shall need the following lemma. 

LEMMA 6 F E E S S 8 0 P (P P) nd - E Hn ____ . or every E , E , E -, = 1, ••. , n a nk 

(k = 0, 1, ••. ), where no ,S n I c ... , 

M(Els)(e{ u ri"k/p}) = u M(Ejs)ce{ri"k/P}). 
k=O k=O 

Observe that the continuity of ~E,e is a direct consequence of lemma 6. 

9. SOUNDNESS THEOREM - THE CASE OF THE VARIABLE DECLARATION RULE 

Our first task is to prove that the system His sound in the sense of 

the following theorem. 
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SOUNDNESS THEOREM. All axioms of Hare valid and all proof rules are sound. 

COROLLARY. Let T be a set of assertions. Assume that the interpretation I 

is such that each assertion from Tis true. Then for every correctness 

phrase A if t: A then A is valid. 
H,T 

Observe that the soundness of H, in contrast to the soundness of (H,T), 

is independent of I. We now proceed with the proof of the soundness theorem. 

To verify the validity of the selection axiom (Al) assume that y Er 

and that none of the procedure variables occurring in y is declared in E. 

We may assume that y is of the form {p}S{q} for some assertions p,q and a 

statement S. Suppose that f(0) holds for some e E 0E. Then< !{p}S{q}>(0) 

holds. We are to prove that <El{p}S{q}>(0) holds. To this end it is enough 

to show that M( [s)(0) = M(EjS)(8). In view of our assumptions it is an 

immediate consequence of lemma 3. 

The assignment axiom (A2) is proved to be valid in DE BAKKER [3]. The 

validity of the invariance axiom (A3) is an immediate consequence of the 

assumption that each e E 0E is var(E)-bound and array(E)-bound and of the 

following obvious lemma. 

LEMMA 7. Suppose that p E AST~a~a'E I and assume thats E Env is defined 

for all variables occurring in p. If cr(s(y)) = cr'(s(y)) and cr(s(a,d)) = 
cr(s(a,d)) for ally E SV and a E AV which occur free in p and all d ED 

then 

T(p) (s, cr) T(p)(s,cr'). 

PROOF. By induction on the structure of p. □ 

Five of the proof rules, namely (RI) , (R2), (R9), (RIO) and (RI l) are 

obviously sound. The rest of this section is devoted to the detailed proof 

of soundness of the variable declarations rule (R3). In the proof we shall 

need the following theorem whose proof we postpone for a moment. 
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THEOREM I. Assume that EE E, SES, var(E) s F c SV and Zet e E 0 be F­

invariant. Then for aZZ x,y,y' E SV, s E Env, a EA and a E I such that 

var(S) u F ~ dom(s), y,y' i dom(E) and a E A\range(s) 

M(EjS[y/x])(8) (su<y,a>,a) = M(E]S[y'/x])(8) (su<y',a>,o). 

Using this theorem we can easily prove the soundness of the variable 

declarations rule. Namely assume that r + <Ei{p}R 1[y/x]{q}> is valid where 

y does not occur in E,p,R 1 or q. Let 0 E 0E be such that f(B) holds. We are 

to prove that <Ej{p}var x;R1{q}>(8) holds. Let EE Env be defined for all 
. . . 1 d ' " variables occurring in E,p,~ x;R ,q an assume that for some 0,0 E ~ 

T(p) (s,a) = 1 and M(E]var x;R1)(8) (s,a) =a'. We are to show that 

T(q) (s,a') = .I- If y E dom(s) then for some a E A and s 0 E Env £ = s 0 u<y,a>. 

Since e is var(E)-invariant, by theorem 1 (taking F = var(E)) we get 

M(Ei (var x;R1)[y/x]) (8) (s u<y,a>,cr) 
-- 0 

= M (E I ( var x; R 1 )[ y' / x]) ( 8) ( E u <y ' , a> , o) 
0 

where y' i dom(s). This means that M(E[var x;R1)(8)(s u <y' ,a>,cr) = cr'. 
-- 0 

y and y' do not occur in p or q, so T(p) (s u <y' ,a>;a) = T(p) (s ,er)= 
0 0 

T(p)(s,o) = I and similarly T(q)(s 0 u <y',a>,cr, = T(q)(s,cr'). Thus without 

loss of generality we can assume that y i dom(s). We have 

where y' is the first variable E SV not in dom(E) and a is 

the first address not in range(s) 

= (by theorem I) 

M(E IR1[y/x]) (8) (su<y,a>,o). 

y does not occur in p, so T(p)(s u <y,a>,o) = T(p)(s,o) = I· By the 

definition of validity <Ei{p}R 1[y/x]{q}>(8) holds, so by the above 

T(q)(s u <y,a>,cr') = I· y does not occur in q, so T(q)(s,a') = 

T(q)(s u <y,a>,a') = I what was to be proved. 
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The proof of theorem I is so complicated that it took us more time 

than all of the rest of the paper. The appreciate the difficulties encoun­

tered let us have a look why some of the simpler approaches fail. 

First observe that the proof by i_-induction with respect to c(EjS) 

does not work. Indeed, for S = E';R3 we cannot apply the induction hypo­

thesis. One could remedy ~his trying to prove a stronger result namely that 

for all E,E' E E and SES such that no procedure variable declared in E' 

occurs in E 

M(E,E'[y/x] ls[y/x J) (8) (e:u<y,a>,cr) 

= M(E,E' [y' /x] I S[y' /x]) (8) (e:u<y' ,a>,cr), 

where var(E' ,S) u F £ dom(e:) and 8,F,x,y,y',a and cr are as in theorem I. 

One might be tempted to prove the above by--<l-induction with respect 

to c(E,E' Is). However, for S = P where Pis declared in E' one starts to 

consider on the left and right hand side different procedure calls, since 

in general E'[y/x] -~ E'[y'/x]. This leads to constructs with different 
8-s b ~E'[y/x],8 ~ ~E'[y'/x],8 ecause ';f .,.. ';f • 

To remedy this one is forced once again to strengthen the claim and 

try to prove that if 8 and 8 1 are in some sense congruent then 

M(E,E'[y/xJ!s[y/x])(8) (e:u<y,a>,cr) 

= M(E,E'[y'/xJ!s[y' /x])(8')(e:u<y' ,a>,cr) 

for all E,E' ,S,y,y' ,x,e:,a and cr as above. 

The last refinement is still not strong enough in order to prove it 

directly by...,<l-induction. To tackle the case S = ~ x;R3 one is forced 

to resort to iterated substitutions instead of a single one. Now in turn 

the problem arises how to define the congruency of 6 and 8'. The actual 

difficulties start here. The above tactics of gradual refinements finally 

leads to lemma 9 which can be directly proved by-<l-induction. 

If there is any place in this paper where the use of substitution 

took vengeance on us it is there. 

To formulate the above lermna we have to introduce a couple of notions 



30 

and some notation. 
n 

By we denote a concatenation of two sequences. Instead of saying that 

k is a sequence of elements from a set A we simply write k EA. Similarly 

we write k i A. lkl denotes the length of k. 

DEFINITION 8. Let y,y' E SV be such that lyl = ly' I and all variables in y, 

as well as in y', are different. 

(i) Let £,£ 1 E Env. sands' are called congruent over <y,y'> if for some 

£0 E Env and~ EA 

s = s 0 u <y,a> ands' 

(ii) Let 8,0' E 0 and let F ~ SV be such that y,y' i F. 8 and 8' are called 

F-congruent over <y,y'> if for all PE PV, y1,y1 E SV\F, s,£ 1 E Env and 

o EI such that F ~ dom(s), dom(s') ands ands' are congruent over 
-n- - n-

<y y I' y I y; > 

8(P) (s,cr) = 8' (P) (s' ,cr). 

Observe that if 8 and 8' are F-congruent over <y,y'> then for all 

y 1,yi E SV such that 
- n-

- - -n-iy1 I = ly; I and all variables in y y 1, as well as in 

y' y1, are different, 8 and e' are -n- - n-G-congruent over ~y y 1,y' yi> for any G 

such that F ~ G ~ SV\y,y1,y',y1 • 
Let y = (y 1, ... ,y1) and x = (x 1, ... ,x1 ) 

as S[y/x1J ... [y,e_/x1 J. If l = 0 then S[y+xJ 

define E[y+x], p[y+x], try+x] and v[y+x]. 

where l 2'. 0. We define S[y+x] 

is simply S. In a similar waywe 

Observe that in general S[y+x] is not simply S[y/x], the result of 

simultaneous substitution of y for x. The latter is for example not defined 

when some of the x.-s are the same variables. 
l. 

The following lemma connects the introduced notions. 

LEMMA 8.Let x,y,y' E sv, s,s' E Env and a EI be such thats and £ 1 are 

congruent over <y, y' > and [xi = !Y[ = IY' , . Then 

(i) L(v[y+xJ)(s,o) = L(v[y'+x])(s',o) 

(ii) R(t[y+xJ) (s,o) = R(t[y'+x])(s' ,o) 

( i ii ) T ( e[y+x] ) ( S , G) = I ( e[ Y '+x] )( S ' , 0) 

for au V E IV' t E .IE and e E BE. 
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PROOF. By simultaneous induction. 0 

Now we prove a lemma from which theorem I trivially follows. 

LEMMA 9. Suppose that E,E' EE are such that no procedure variahle declared 

in E' occurs in E. Let SES, 0,8' E 8, y,y' E SV and F c SV. Assume that 

8 and 8' are F-congruent over <y,y'>, 
( 1) 

y,y' i var(E,E' ,S) u F. 

Then for au i, Y1, Yi E sv such that Ix[ = J"tyl J = IY' n-::;; J and 

y1,yi i var(E) u Fu (var(E' ,S)\{xEx: x does not occu.:r bound in E' or S}), 

E, e:' E E11v such that var (E) u F u ( var (E' , S) \ { XEX: x. does not occur bound in 
} -n- -n-E' or S) ~ dom(s), dom(s') ands and s'are congruent over <y y 1 ,y y;> and 

0 E L 

(2) 

PROOF. We proceed by~-induction with respect to c(E,E' !s). Let 

x,yl,y; E sv, E,E' E Env and a be as defined above. We are to prove that (2) 
holds. 

Our induction hypothesis is that the lemma holds for all E1 ,E; EE 

and s1 ES such that c(E 1 ,Ei JsJ-<t c(E,E' js). We have to consider various 

cases depending on lhe form of S. 

CasP I. Sis v:=t. 

Straightforward by lemma 8. 

Case n.s is P0 • 

Let 

and lemma 1 we have 

(3) M (E , E' [ y1y I +x] j PO) ( 0) ( e: , a) 

E 8 -where e1 = 8{µ1 ' /P}. 

-n- -
= el{µg:,E'[y Y1+xJ,e1/p'}(Po)(E:,O), 
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Similarly 

where e1 = 6'{µ~E• 81 /P}. 

We prove first that 

(5) e1 and e; are var(E) u F-congruent over <y,y'>. 

(7) 

Clearly it is sufficient to prove that for each k ~ 0 

We prove it by induction with respect to k. It is clearly true for 

k = 0 since we assumed (I). Assume now that (6) holds for some 

k ~ o. Let u,u' E sv, El,sj E Env be such that u,u' l var(E) u F, 

var(E) u FE dom(E 1), dom(sj) and E1 ands; are congruent over 
-n- - n-

<y u,y' u'> and let cr 1 t I: bearbitrarilyfixed. Weare to prove that 

for all P E PV 

In view of (I) we can assume that n ~ 

that I$ i $ n. We have 

I and P - P. for some i such 
1 

= (by the induction hypothesis of the lemma) 



(8) 

sincec( ,!Si)-<.t c(E,E' Is) and we assumed that (6) holds 

by a similar string of equalities. 

In a similar way using (5) instead of (1) one can prove that 

are var(E) u Fu (var(E' ,S)\{xE x: xis not bound in E' ors})-
---n- - n­congruent over <y y1,y' yi>· 
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Now (8) in conjunction with (3) and (4) settles the proof for this 

case. 

I Case III. S is var u; R. 

0 
Suhcase 1 • u does not occur in x. 

By assumption u does not occur in y,y1,y',y;, so by the definition 
I ----n- - - n- -of substitution S[01+x] is 

1 - n- -var u;R [y' y'+x]. We have 
- I 

~ u;R [y y1+x] and S[y' y1+x] is 

where y is the first variable E SV not in dom(s) and a is the first 

address not in range(e) 

where u1 E SV and u1 is completely fresh, 

since R1[y~1+x][y/u] ~ R1[u1/u][yny 1+x][y/u 1] due to assumptions 

concerning y,y 1, u,u 1 and E 
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-n- -
since u 1 does not occur 1.n E'[y y 1+x] 

= (by the induction hypothesis) 

where y' is the first variable E SV not in dom(E'), 

since c(E,E'IR1[u1/uJ)-<.e_c(E,E'ls), (])holds and EU<y,a.> and 
-n- n -, n-, n ( , ) E' u <y' ,a.> are congruent over <y y 1 (y), Y Y 1 Y > 

by a similar string of equalities. 

Subcase 2°. u occurs in x. 

Let x be the substring of x resulting from deleting from x all the 

occurrences of u and let y,y' be respectively the corresponding sub­

strings of y~1 and y'ny;. By the definition of substitution 
-n- - I ~ ~ - n- - I ~ ~ S[y Y(~xJ is var u;R [y+x] and S[y' y;+x] is ~ u;R [y'+x]. Observe 

I~~ l -n--that for any y E SV not in dom(E) R [y+x] [y/u] = R · [ u 1 /u][y y 1+x][y/u 1 ], 
~ - n-where u1 E SV and u 1 is completely fresh and similarly for y' and y' y;. 

Thus the argument used in subcase 1° works in this subcase,as well. 

Observe that if we used in the claim of the lemma the set var(E,E',S) u F 

instead of var(E) u F u (var(E' ,S)\{x Ex: x is not bound in E' or S}) then 

the above argument would not work. Indeed, we could not use then the induc­

tion hypothesis as we would have no guarantee that var (R 1[u 1 /u]) s. dom(E u <y ,a>), 

dom(E u <y' ,a>). The additional proviso saves the situation: u 1 E {x Ex n(u 1): x 

is not bound in E' or R1[u 1/u]}sowedonotneedheretohaveu 1 Edom(Eu<y,a.>), 

dom(E u <y' ,a>) to be able to use the induction hypothesis. 

The proof of other cases uses lemma 8 and is straightforward. D 

The proof of theorem I is now immediate. It is easy to see that if e is 

F-invariant then e and e are F-congruent over<, >. Choose now E' to be the 

empty system of procedure declarations, 8' to bee, and y and y' to be the 

empty sequences. Then (1) holds and clearly lemma 9 implies theorem I. 



This concludes the proof of soundness of the variable declarations 

rule (R3). 

In the sequel we shall need the following corollary to theorem I. 
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COROLLARY 1. Assume that EE E, var(E) ~ F ~ SV and e E 0. Let P be the 

sequence of the procedure variables declared in E. If e is F-invariant then 

for all k ~ o e{n!• 8/P} is F-invariant. 

PROOF. Straightforward by induction using theorem I. D 

IO. PROOF OF THE SOUNDNESS THEOREM (CONTINUED) 

The proof of soundness of the array declarations rule (R4) is analogous 

to that of the variable declarations rule reason why we omit it. The proof 

uses the following theorem analogous to the theorem 1. 

THEOREM 2. Assume that EE E, SES, array(E) ~ G ~ AV and let e E 0 he 

G-invariant. Then for all a,b,b' E AV, £ E Env, ad E A(d ED) and a EL 

such that (array(S) u G) x D ~ dom(E), {b,b'} x D n dam(£)= 0 and 

ad E A\range(E) 

In the sequel we shall need the following corollary to theorem 2. 

COROLLARY 2. Assume that EE E~ array(E) ~ G ~ AV and 6 E 0. Let P be the 

sequence of the procedure variables declared in E. If e is G-invariant then for 
E 8 -all k ~ O S{nk' /P} is G-invariant. 

PROOF. Straightforward by induction using theorem 2. 0 

An observation that for any E,E' c E 0E ~ 0E,E' together with lemma 2 

clearly implies the soundness of the procedure declarations rule (RS). 

In the proof of soundness of the consequence rule and the substitution 
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rule we shall need the following lemma and theorem. 

LEMMA 10. Suppose that t E IE, p EAST, var(p,t) _ F ~ SV and array(p,t) ~ 

G ~AV.If (s,a) fits (s',0 1 ) over (F,G) then 

(a) R(t)(s,a) = R(t)(E:',a') 

(b) T(p)(s,a) T(p)(E:',cr'). 

PROOF. Straightforward by induction on the structure oft and p. 0 

THEOREM 3. Let E E E, S E S, F .S SV and G .S A!/ be such that var (E,S) .s, F and 

array(E,S) .s G. Assu~e that e is F-invariant, G-invariant, fits (F,G) and 

that ( s, er) fits ( s ' , a' ) over (F, G) . Then ( E: , H (E l S) ( e) ( s, a)) fits 

(s' ,M(E!S)(8)(E:' ,er')) over (F,G). 

More precisely: M (E JS) (8) (s, a) is defined iff H(E JS) (8) (s', a') is defined 

and if both sides are defined then (s,H(Ej S) (e) (s,o)) fits (E:' ,M(E[ S) (8) (s' ,a')) 

over (F ,G). 

PROOF. We proceed by ~-induction with respect to c (E j S). 

Case I.Sis v:=t. 

Letcr 1 =a{R(t)(E:,a)/L(v)(s,cr)} and a; =o'{R(t)(s',a')/L(v)(s',a')}. 

By lemma 10 R(t)(s,cr) = R(t)(s' ,a'). Clearly L(v)(s,a) E range(s) 

and L(v)(s',cr') E range(s'). 

If vis a simple variable, say z, then L(z)(s,a) = s(z) and 

L(z)(s',o') = E:'(z). Thus in this case a 1(s(z)) = erj(s'(z)). 

If vis a subscripted variable, say a[s], then L(a[s])(s,a) = 

s(a,d) and L(a[s])(E',a') = s'(a,d),where d = R(s)(s,o) = 

R(s) (s' ,a'). Thus in this case cr 1 (E:(a,d)) = crj (s' (a,d)). 

This together with the definition of er 1 and erj implies that (e,a 1) 

fits (s' ,cr;) over (F,G). 

1 Case II. S is var x;R 

We have 

where y is the first variable E SV not in dom(E:) and a is the first address 

in A\range(s), 
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where y' is the first variable E SV not in dom(s 7 ) and a' is the 

first address in A\range(s'). 

Let z be a simple variable which does not occur in dom(s) or 

dom(s'). By theorem I and the above equalities 

Clearly (s u <z,a>,cr) fits (s' u <z,a'>,0 1 ) over (Fu {z},G), so by 

the induction hypothesis (s u <z,a>,M(EjR 1[z/x]) (0) (Eu .<z,a>,0)) 

fits (s' u <z,a.'>,M(EjR 1[z/x])(e)(s' u <z,a'>,0')) over (Fu {z},G). 

This implies that (s,M(EjR 1[z/x])(8)(su <z,a>,0)) fits 

(s' ,M(EjR 1[z/x])(6) (s' u <z,a.'>,0 1 )) over (F,G) which settles the 

proof in this case. 

Case III.Sis array a;R 
2 

The proof uses theorem 2 and is analogous to the proof in the 

previous case so we omit it. The only problem arising here is that 

we have not specified how the addresses ad(dED) needed for the 
? 

definition of M(Ejarray a;R~)(e)(s,a) are actually chosen from 

A\range(s). We can assume that Dis well-ordered. Ford ED being 

the k-th element of D define ad to be the 2k+l-address in 

A\range(s). This choice is clearly satisfactory both for the proof 

in this case and for the requirements entering the definition of 

environments. 

Case IV. s is p. 

Eis of the form <P.<=<S.»1: Let P = (P 1, ... ,P ). The straight-
i i i= I n E 8 -

forward proof by induction on k shows that for all k 2 0 e{nk' /P} 

fits (F,G). The proof uses the induction hypothesis of the theorem 

· 2 • • E 8 { E 8 /-} and corollaries and . Hence by continuity of¢ ' 8 µ¢ ' P 

fits (F,G), which clearly settles the proof in this case. 

The proof of other cases is straighforward. D 
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In the sequel we shall need the following corollary to theorem 3. 

COROLLARY 3. Assume that EE E, var(E).::. F S, SV, array(E).::. G:::. AV and 0 E 0. 

Let P be the sequence of the procedure variab Zes declared in E. If e is 

F-invariant, G-invariant and e fits (F,G) then for aZZ k ~ 0 e{n!' 8/P} fits 

(F,G). 

PROOF. Straightforward by induction using theorem 3 and corollaries 1 and 2. D 

To prove the soundness of the consequence rule (R6) assume that 

( l ) 

Let e E 0E be such that r(e) holds. We are to prove that <E!{p}S{q}>(0) 

holds. Let e E Env be defined for all variables occurring in E,p,S,q and 

assume that for some cr,cr 1 EI T(p)(s,cr) = I and M(E!S)(e)(e,cr) = cr 1• We 

are to show that T(q)(s,cr 1) = I-

Let s' E Env be an extension of E defined for all variables occurring 

in p 1 and q 1• Let cr' EI be such that cr' (a)= r(a) if a E range(s) and 

cr'(a) = cr(a') if a is the k-th address in A\range(s') and a' is the k-th 

address in A\range(s). Let F = var(E,p,S,q) and G = array(E,p,S,q). Clearly 

(2) (s,cr) fits (s',cr') over (F,G). 

Since T(p)(s,cr) = I, by lemma 10 and (2) T(p)(s' ,cr') = T. Hence by (I) 

T(p 1)(s' ,cr') = I-

e E 0E so e is F-invariant, G-invariant and e fits (F,G). Thus by 

(2) and theorem 3 

where crj = M(EJS)(0)(s',cr'). T(p 1)(s',cr') :I so (l) implies T(q)(s',crj)=I­

By lemma 10 and (3) T(q)(s,cr 1) = I what was to be proved. 

We now prove the soundness of the substitution rule (R7). Assume that 

r + <Ej{p}P{q}> is valid. Suppose that y,z,b and C satisfy the conditions 
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1° - 4° of the substitution rule. Clearly by 1° p[y/z][b/c] = p[y+-z][b+-c] 

and q[y /z] [b/c] = q[y +- z][b +- c]. Let now z E sv and C E AV be some variables 

which do not occur in E. To prove the soundness of the substitution rule it 

is sufficient to prove validity of the following four correctness phrases 

(a) r + <El{p[y/z]}P{q[y/z]}>, 

where y E SV and y does not occur in E,p or q. 

(b) r + <El{p[y/zJ}P{q}>, 

where y E SV and z does not occur in q. 

(c) r + <El{p[b/c]}P{q[b/c]}>, 

where b E AV and b does not occur J.n E,p or q. 

(d) r + <El{p[b/cJ}P{q}>, 

where b E AV and c does not occur in q. 

Indeed, if we prove that the validity of r + <Ej{p{P{q}> implies the validity 

of (a) - (d) then by the repeated use of this implication we finally get that 

r + <EI {p[y+ zJ[i:i+ cJ}P{q[y+- zJCb+ cJ}> 

is valid. In view of the above syntactic equalities this will show that the 

substitution rule is sound. So let us prove the validity of the above four 
E correctness phrases. Let e E 0 be such that r(e) holds. 

ad (a). 

Suppose that y E SV and y does not occur in E,p or q. We prove that 

<El{p[y/z] A y = y A z = z}P{q[y/z]}>(6) 

holds which together with the soundness of the consequence rule will imply 

that (a) is valid. So assume that for some s E Env defined for all variables 

occurring in E,p[y/z]Ay = y A z = z and q[y/z] and some cr,cr' EI: we have 

T(p[y/z] A y = y A z = z)(E,cr) = T and M(EIP)(9)(E,cr) = cr'. We are to prove 

that T(q[y/z])(E,cr') = T. 

Thereise: 1 EEn.vanda.,SEAsuchthat E=e: 1 u<y,cx>u<z,S>. Let x and u be 
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completely new simple variables. Let p' = p[u/zJ. 11'e have 

)(s 1 L z,a> <x,>,a) 

= T(p' 

since p'[z/u] = p 

)( 0 ) since z and y do not occur in p' [ 1 u<y,a>u<x,,-,>,o, 

u <y,ac> u <z,6>,a), sincex and z do not occur in p'[y/u] 
I 

= T /z])(s,a) =!,since p[y/z] = p'[y/ul. 

Also, due to theorem l 

(s u <z,a> u <x, S> ,o) 
I 

== M(EJP)(e)(s 1 u <y,a> u <x,6>,o) 

== M(EjP)(B)(s 1 <y,a> u <z,B>,a) 

== M(E)P)(B)(s,o) = 

since P = P[z/u] = P[y/u] = P[x/u] = Pfz/u]. 

r ➔ <El{p}P{q}> is valid so <EJ{p}P{q}>(8) holds. By this and the above we 

get that T(q)(s 1 u <z.a> u <x,~>.o') = I· By the identical string of equali­

ties as that concerning p we get that T(q[y/z])(2,0') = I what was to be proved. 

ad (b). 

Suppose that z does not occur in q. We prove that 

<El{p[y/z] A y = y A z = z}P{q}>(e) 

holds which together with the soundness of the consequence rule will imply 

that (b) is valid. So assume that for some s E Env defined for all variables 

occurring in E,p[y/zl A y = y A z = z and q and some o,o' EL we have 

T(p[y/zJ A y = y A z = z)(s,o) = 1: and ;ll(E!P)(8)(€,o) = o'. We are to prove 

that T(q)(s,o') = I· Let o 1 = o{a(s(y))/s(z))}. 

Clearly T(p[y/z])(2,o) = T(p)(s,a 1), so T(p)(s,o 1) =I-Let F=var(E,q) 
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and G = array(E,q). Since z i F, (E,a) fits (E,a 1) over (F,G). By theorem 3 

(E,a') fits (E,aj) over (F,G), where a 1 = M(EIP) (8)(E,a 1). <El{p}P{q}>(8) 

holds, so T(q)(E,ai) = 1- Now by lennna 10 and the above T(q)(E,a') = I what 

was to be proved. 

ad (c), (d). 

The proofs use theorems 2 and 3 and are analogous to the above ones so 

we omit them. 

This conciudes the proof of soundness of the substitution rule (R7). 

11. PROOF OF THE SOUNDNESS THEOREM - THE CASE OF THE PROCEDURE CALLS RULE 

We now turn to the proof of soundness of the procedure calls rule (RS). 

In the proof we shall use the following theorem which we shall prove later. 

THEOREM 

aU k 2: 

F G 
4. If E E E, var(E) s_ F .s, SV, array(E) ,S:. G .s AV and 6 E 0 ' then for 

O 8 { 11 E' 8 /P} E 0 F 'G, where P is the sequence of the procedure varidb les 
k 

declared in E. 

Let now E and E' - <P.<=<S.>>1: be given systems of procedure decla-1. 1. i=l 
rations such that for i = l, ... ,n P. does not occur in E. Let r be a 

1. 
correctness formula and let s0 be a statement. Assume that P;, ... ,P~ are 

some procedure variables which do not occur 1.n r,E,E' or s0 • Let 

P = (P 1, ••• ,Pn) and P' = (P1, ... ,P~). Assume that 

is valid, where 

r ➔ <E, E' Ir 0>, 

So assume that 

for i = O, ••• ,n S! = S.[P'/P]. We are to show that 1. l. 

wherefo ={p O}s0{qO},{p 1}P 1{q 1}, ••• ,{p }P {q}, is valid. 
EE' n n n 

8 E 0 ' and suppose that r(e) holds. We are to prove that 

<E,E' lr0>(8) holds. Due to assumptions about E and E' and lemma l it amounts 

to showing that <E' Ir >(e') holds, where e' = e{µ¢E,e/Q} and Q is the 
0 

sequence of procedure variables declared in E. By lemma 2 it 1.s equivalent 

to show that <E 1 lr 1>(e') holds, where E1 = <P'.<=<S'.»1: and r 1 = 1. 1. i=l 
{p0 }S0{q0},ip1~~j{q 1}, ... ,{pn}P~{qn}. By lemma l it is enough to prove that 

<Jr1>(8'{µq:, I• /P'} holds or, due to lemma 6, that for all k;:: 0 
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(2) 

holds. To prove (2) we shall need the following lemma. 

LEMMA 11. For every EE E, s ES, e E 0 

M(EIS)(e) = M(EIS)(e{n/P}) 

for all P = (P 1, ..• ,Pn) such that P1, ..• ,Pn do not occur in E or Sand all 
- n n E H • 

PROOF. Straightforward by-<..e.-induction with respect to c(Ejs). In the case 

when Sis of the form E';R3 one uses lemma 2 to be able to apply the induc­

tion hypothesis. D 

COROLLARY 4. For every EE E, 8,6 1 E 0 if e 1 = 8{n/P\ where P = (P 1, ••. ,Pn), 

n E Hn and for 1 = 1, ..• ,n P. does not occur in E, then 
1 

PROOF. By lemma 11. 0 
E 8 1 -Let fork~ 0 ek = e{nk 1' /P'}. Observe now that for all k ~ 0 

E1 8' E 8 - EJ 8 1 -8'{nk' /P'} = 8{µ~' /Q}{nk' /P'} = (by corollary 4) 

8 E 0E,E' so by continuity of µ~E,e and 

0E,E1. Once again by theorem 4 for any k 

theorem 4 we have e' E 0E,E' = 

~ O e'{nE 1' 81 /P 1 } F 0E,Ei, 1.e. 
E 8k - E E1 by the above ek{µ~' /Q} E 0' . Since 8 E E Ek! E E1 • 

0' ,wegetthatElkE0 '· ~i.e. 

for every k ~ 0 

(3) 8 E 0E,E' 
k 

Let now S be a statement and let S' denote S[P'/P]. We have 
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I E 8 -= (by the above) M( S')(Sk{µ~ 'k/Q} 

= (by lemma I) M(E[S')(8k) 

= (by lemma 4) M(E,E' [S')(8k). 

So we have proved that for any statement Sand k ~ 0 

We prove now that for every k ~ 0 

implies 

Suppose that for some k ~ 0 (51 ) holds. We assumed that r (8) holds. Since 
K 

Pj,·•·,P~ do not occur in r, by lennna 11 f(8k) holds, so 

(f,{p 1}Pj{q 1}, ... ,{pn}P~{qn})(ek) holds. We assumed that (1) 1.s valid, so by 

(3) we get that for i = O, ... ,n <E,E' f {p.}S!{q.}>(8k) holds. This in view of 
]_ ]_ 1. 

(4) implies that (6k) holds. 

Observe now that for i = 1, ... ,n 

M( [si)Cs'{nkE1,e' /P'}) = ~/I ( n! I ' 8 ') = ( Ei,8') 
nk+l i = 

-- MC I P ! ) ( e ' { n EI • 8 ' /P' } ) 
1. k+l 

(by (4)) M(E,E'JPl)(8k+l) 

= (by lemma 3) M( JPl)(8k+l). 

This shows that for every k ~ 0 (6k) implies (Sk+l). Since (Sk) implies (6k) 

we see that for every k ~ 0 (Sk) implies (Sk+l). Obviously (5 0) holds, so by 

induction for all k ~ 0 (Sk) holds. Thus for all k ~ 0 (6k) holds. 

In particular for all k ~ 0 
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holds. 

Observe that for i = l, ••• ,n and k ~ 0 

M ( IP p ( e' { n! 1 ' 8 ' iP'} 

= (by (4)) M(E,E' IPi)Cek) 

= (by lemma 3) M( IPi)(ek). 

Since for all k ~ 0 (5k) holds, this shows that for all k ~ 0 

holds. (7) and (8) imply (2) so we have proved that the procedure calls rule 

(R8) is sound. 

To prove theorem 4 we have to check all 5 properties entering the 
F G definition of 0' . Assume that EE E, var(E) s F s SV, array(E) s Gs AV 

and e E 0F ,G. Let P be. the sequence of the procedure variables declared in E. 

LEMMA 12. If e is F-bound then for aZZ k ~ o e{n!' 8/P} is F-bound. 

PROOF. Straightforward by induction using the following lemma. 

LEMMA 13. For aZZ F's SV, E' E E, S ES such that var(E',$) s F', e E 0 which 

is F-bound; EE Env such that F's dom(E) and a,a' EI if 

M (E ' I s) ( e) ( E , a) = a ' 

then for aZZ y E dom(E)\F' 

cr(E(y)) = cr'(dy)). 

PROOF. The proof proceeds by-<t-induction with respect to c(E']S). All cases 

are straightforward with theexceptionof these of variable and array declara­

tions. These two cases are easily handled thanks to the observation that if 



F's F" s_ SV and e is F'-bound then e is F"-bound. □ □ 

LEMMA 14. If e is G-bound then for aZZ k ~ O e{n!• 8/P} is G-bound. 

PROOF. Straightforward by induction using the following lemma. 

LEMMA 15. For aU G' s AV, E' E E, S ES such that array(E' ,S) s; G', e E 0 

which is G'-bound, EE Env such that G'xD s dom(E) and 0,0 1 EI if 

M(E' I s)(e) (E,0) = 0 1 

then for aZZ a E AV and d ED such that (a,<l) E dom(E)\(G'xD) 

cr(E(a,d)) = cr'(E(a,d)). 

PROOF. Similar to the proof of lemma 13. DD 

Theorem 4 is now a direct consequence of corrollaries 1,2,3 and 

lernmata 12 and 14. 

12. THE PROBLEM OF COMPLETENESS 
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Having proved the soundness of H we now turn to the question of comple­

teness of H. COOK [5] was the first to define a completeness of a Hoare­

like system in a way which, among others, avoids the well-known consequences 

of Godel's Incompleteness Theorem. Before presenting his definition let us 

introduce some notions. 

DEFINITION 9. A pair Els where EE E and SES is called normal if the 

correctness phrase <E!{true}S{true}> is normal (see def. I). 

Observe that if a pair EIS is normal then for any 8 E 0 , E E Env and 

0 EI the state M(EIS)(e)(E,0) does not depend one, so we shall simply 

write M(EIS)(E,0) to denote it. 

DEFINITION 10. Let p be an assertion and let Els be a normal pair. We say 

that an assertion q expresses the strongest post condition corresponding to 

p and EIS if var(p,E,S) s var(q) array(p,E,S) s array(q) and for all 
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e: E Env defined for all variables occurring in q and all a EI 

T(q)(e:,cr) = I iff for some a' Er M(EIS)(e:,cr') = a and T(p) (e:,cr') = I-

We now introduce Cook's notion of expressibility slightly adopted to our 

particular situation. 

DEFINITION 11. (COOK [5]). The assertion language is expressive relative to 

the interpretation I if for every assertion panda normal pair Els there 

exists an assertion q which expresses the strongest post condition corre­

sponding top and Els. 
Let now Tr denote the set of all true assertions. 

DEFINITION 12. The proof system His complete in the sense of Cook if, under 

the assumption that the assertion language is expressive relative to I, for 

every normal valid correctness phrase A, ~H,TrA. 

In the next section we prove that the system His complete in the sense 

of Cook. Before presenting the proof let us discuss the introduced notions. 

We observed already before that the system His too weak to prove 

all valid normal correctness phrases because it lacks any means to prove 

necessary facts about assertions. Supplementing H by an axiomatic system 

concerning assertions is of no help because Godel's Incompleteness Theorem 

trivially implies that no axiomatic extension of H can be complete. 

The best one might hope for would be to prove that His complete provided 

one can use an oracle that can supply answers to all questions of the form 

"is an assertion p true?". However even this cannot be proved. WAND [14] 

exhibited a particular interpretation for which the usual Hoare system for 

while programs is not in this sense complete. The incompleteness comes from 

the fact that the first order language with this interpretation is not 

powerful enough to express the necessary intermediate assertions. COOK [57 

took care of this problem by restricting the question of completeness to such 

interpretations I that the assertion language is expressive relative to I. 

A natural question now arises how restrictive is the assumption of 

expressiveness. In the case of our programming language if we take for the 

primitive symbols {f 1, ..• ,fl
0
,re 1, •.. ,rem

0
} of the language the non-logical 
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symbols of Peano arithmetic and take their standard interpretation IN in the 

domain of the natural numbers then the assertion language is expressive 

relative to IN. This can be proved in the same way that COOK [5] proved the 

expressiveness of the corresponding assertion language relative to IN in the 

case of a corresponding fragment of Algol 60. The fact that Cook used an 

operational semantics is not a real issue since we proved in APT [I] the 

equivalence of both semantics for all normal pairs E!S. 

Also, as observed in CLARKE [4], if the domain of I is finite then the 

expressiveness is guaranteed. 

This might suggest that expressiveness is not a serious restriction. 

However, as a theorem of DeMillo, Lipton and Snyder shows, actually the 

converse is true. An interested reader can find more informations in LIPTON 

[ 1 1 ] • 

COOK [5] proved that a Hoare system for a subset of Algol 60 including 

while statement and non-recursive procedures is in the above sense complete. 

The paper by GORELICK [7] attempts to extend Cook's result to a class of 

programs allowing recursive procedures. 

Neither COOK [5] nor GORELICK [7] keep track in their proof systems of 

the procedure declarations accessible to programs. In the case of Cook's 

system, as Cook himself observes, the problem is not created by the assumption that 

a given procedure name cannot refer to more than one declaration in a given 

program. However in the case of Gorelick's system, despite of Gorelick's 

claim, the omission of the context of procedure declarations does result in 

a confusion. The proof he gives is actually the proof of completeness for 

a language which does not allow local procedure declarations. As already 

mentioned before both papers incorrectly deal with scope problems. CLARKE 

[4] claims without proof that Gorelick's result can be modified to a lan­

guage with a proper scope treatment by simple changes in semantics and the 

rule of variable declarations. The system Clarke proposes also differs from 

the Gorelick's one in that it does keep track of the procedure declarations 

accessible to programs. 

It should be noted that in the above three papers procedures with 

parameters are allowed (subject to some restrictions) and much work is de­

voted there to the study of the parameter mechanisms. The same concerns 

APT & DE BAKKER [2] where procedures can call their parameters by value or 
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by variable. In the last paper no claims about completeness are made. 

13. COMPLETENESS THEOREM 

In this section we prove the following theorem. 

COMPLETENESS THEOREM. The proof system His complete in the sense of Cook. 

To prove it we generalize Gorelick's completeness proof to the case of a 

language admitting local procedure declarations. To achieve this we have 

to consider nested systems of procedure declarations. The key notion rele­

vant to the proof is that of a stable sequence (see definition 13). The main 

step in the proof is lemma 19 which is a generalization of lemma 6 from 

GORELICK [7]. 

Throughout this section we assume that the assertion language is ex­

pressive relative to I. If EIS is a normal pair and pis an assertion then 

by sp(p,EIS) we denote a particular assertion which expresses the strongest 

post condition corresponding top and EIS (say, the one with the smallest 

Godel number). Instead of "f-H,TrA" we simply write "t--A". In the proof of 

lemma 19 we do not mention the use of the collection rule and the selection 

rule. We shall need below the following two lemmata. 

LEMMA 16. Suppose that <El{p}yg x;R1{q}> is a valid correctness phrase and 
l y is a simple variable which does not occur in E,p,var x;R or q. Then 

<El{p}R1[y/xl{q}> is valid. 

PROOF. We prove at first that 

( 1) <El{pAx = xAy = y}R 1[y/x]{q}> is valid. 

Suppose that 6 e: eE and assume that for some Ee: Env defined for 
I 

all variables occurring in E,p Ax= x A y = y, R [y/x] and q and 

a,a' e: Ewe have T(p Ax= x A y = y)(E,o) = I and M(EIR1[y/x])(e)(E,o) = 

We are to show that T(q)(E,cr 1) = T. 

There is El e: Env and a 1 e: A such that E = e 1 u <y,a 1>. By theorem I 

a 1 = M(E[R 1[y'/x])(6)(e 1 u <y',a 1>,cr), where y' is the first variable e: SV 

not in dom(c: 1). Let 6 be the first address not in range(E 1). Define cr' e: r 
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if a E range(s 1) 

if a = i3 
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if a is the k-th address in A\range(s 1 u <y' ,S>) 

and a. 0 is the k-th address in A\range(s 1 u<y',a{) 

Clearly 

(2) 

(3) 

(s 1 u<y',a 1>,o) fits (s 1 u <y',S>,o') over (F,G), 

l 1 
where F = var(E,R [y'/x],p,q) and G = array(E,R [y'/x],p,q). 

By theorem 3 and (2) 

(s 1 u<y',a 1>,o 1) fits (s 1 u<y',S>,oi) over (F,G), 

I 
where o1 = M(E!R [y'/x])(6)(s 1 u<y',S>,0 1 ). 

By the definition of M we have M(Ejvar x;R 1)(8)(s 1,o')=oj. Also 

T(p)(s 1,o') =T(p)(s 1 u <y',B>,0 1 ) =T(p)(s 1 u <y',a(,o) = T(p)(i;:,-cr) =!,where 

the second equality is implied by lennna 10 and (2). 

Since <Ej{p}var x;R1{q}> is valid, T(q)(s 1,oj) = I holds. We have now 

T ( q) ( s , o 1 ) = T ( q ) ( s I u < y ', a 1 >, a 1 ) = T ( q ) ( s I u <- y ', S > , o 1 ) = T ( q) ( s 1 , o ; ) = I, 

where the second equality is implied by lennna 10 and (3). 

This shows that (1) holds. Now the lennna follows from (1) due to the 

soundness of the consequence rule. D 

In a similar way usin3 theorem 2 one can prove the following lemma. 

LEMMA 17. Suppose that <El{p}array a;R2{q}> is a valid correctness phrase 

and bis an array variable which does not occu1' in E,p,array a;R2 or q. 

Then <EJ{p}R2[b/a]{q}> is valid. □ 

We shal 1 also need the following lemma proved 1.n APT [ 1]. 

LEMMA 18. Suppose that E 

i E {l, ••• ,n} 

- <P. ~ <S. » ~ E E. Then for all e E 0 and 
l. l. i=I 

M(EjP.)(8) = M(EjS.)(8). 0 
l. l. 
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Assume now that l ~ O. Let for i = I, .•• ,l +IE. = 
l. 

i i n· 
<P · <= <S. >>. 1 be 

J J ·J=l 
a system of procedure declarations and let SES. Denote (P1I, •.• ,P1 ) for 

ni 
i = I, ••. ,l + 1 by P .. 

l. 

DEFINITION 13. The sequence EI• ..• •El•El+I·S (where dots signify separators 

and are used instead of commas in order to avoid ambiquities) is called 

stabZe if 

(i) for all i = 2, ..• ,l + I and J 

El, ... ,Ei-I 0 

l. 
= I, ••• ,n. ~- does not occur in 

l. J 

(ii) the pair E1, ... ,El,El+I Js is normal. 

The above notion is closely related to the -notion of a nested sequence 

introduced in APT [I]. 

We assumed that the sets AV and SV are well-ordered. If F s SV and F 

is finite then by F we denote the sequence of all elements of F ordered 

according to the well-ordering of SV. In an analogous way we define G for 

GE AV. If F,G S SV and F = (xI, .•. ,xk) and G = (zI, ..• ,zm), where k ~ m, 

then by F = G we denote the formula xI = z 1 A ••• A xk = zk, If F,G S AV and 

F = (aI, .•. ,ak)' G = (cI, .•. ,cm), where k ~ m, then by F = G we denote the 

formula 

l. 
Let E1• ••• •E 0 •E 0 1•S be a stable sequence and let {Q.}i<"<o 1 )<"<. be 

,c_ -c..+ • • J -l.--c..+ , -J-n1. 
different procedure variables. Denote (Q11, ... ,Q1 ) for i = l, ... ,l+l by Q .. 

n· l. 
,-...,1-,-..,,J - - - -

For i = O, ••• ,l + I and s0 ES define s0[Qi+Pi] as s0[Q/ P 1] ... [Q/Pi]. 

If i = 0 then s0[Q.+P.] is simply s0. Similarly we define E[Q.+P.l for 
l. l. l. l. 

E E E. 

Suppose now that 

F S SV \ var(EI, .•. ,El+l'S), GE AV\ array(E 1, ... ,El+l'S~ 

card(F) =. card (var(E 1 , ... ,El+l )) , card(G) = card(array(E 1, .•• ,El+I )), 

where card(A) is the cardinality of the set A. 
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For i = O, ..• ,l + l define a correctness formula r(E 1, ... ,E.,Q.,F,G) 
1. 1. 

as follows: 

If 1. = 0 then r(E 1, ••• ,E.,Q.,F,G) is the empty set. 
1. 1. 

If i > 0 then 

r (EI , .•• , E., Q. , F, G) = 
1. 1 

where for j = l, ... ,n. 
1. 

1. 
P· -

J 

1. 
q. -

J 
i I i sp(p.,E 1, ••• ,E. S.). 
J 1. J 

The above correctness formulas correspond to the most general formulas intro­

duced in GORELICK [7]. They can be viewed as a complete description of the 

procedures declared in E1, ••• ,El. 

Now we prove a lemma which trivially implies the completeness theorem. 

LEMMA 19. Assume that the assertion language is expressive. Suppose that for 

some stable sequence E1• ••• •Ei·El+l•S (l~O) and assertions p and q 

(4) 

Then 

where {Q:} 1 . o 1 1 . are different procedure variables which do not 
J sis~+ , SJSUi 

occur in E1, ... ,El+I or Sand F and G satisfy (*), 

PROOF. We proceed by-<_t-inductionwith respect to c(El+lls). So 

the lemma holds for all stable sequences E;:-···Ek•Ek+l•S'(k~O) 

c(Ek+lls')-<.tc(El+lls). Denote r(E 1, •.. ,E,e,Q..e_,F,G) by r 0 and 

assume that 

such that 
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Case I. Sis v:=t. 

By the results of DE BAKKER [3] (4) implies that the assertion 

p + q[t/v] is true. Thus by the axiom (A4), assignment axiom and 

the consequence rule (5) holds. 

Case II. Sis Rf;R~. 

(4) imp.lies that <E 1 , ••• ,El+!J{p}Rf{rt and <E 1 , ••• ,El+!J{r}R;{q}> 

areval1.d3 where r= sp(p,E 1 , ••• ,El+l IR 1). 

c(El+l IR 1) ~ c(El+l Js), c(El+l !R~)-<.l c(E.t+l js) and both 

E1•.· •• •El•E,.e_+l•Rf and E1• ••• ·E,.e_•E,.e_+l•R~ are stable sequences, so 

by the induction hypothesis we have 

and 

Now by the rule of composition we get (S). 

C . . f h R3 1 R3 - . ase III. S 1.s 2:__ e t en I e se 2 ~-

Case IV. 

(4) implies that <E 1,.
3 
.• ,El+ll{pAe}Ri{q}> and 

<E 1 , ... ,El+l I {p A 7 e}R2{q} > are valid. Analogously to the case II 

by the induction hypothesis and the rule of conditional statements 

(5) holds. 

S is <P. <= <S. » r:1 ; R3 
i 1. i=l 

Let P'1, ••• ,P' be some procedure variables which do not occur in 
n . . 1. -

E1, ... ,E,t+J, S and are different from all Qj-s. Denote (P 1, ... ,Pn) by P 

and (Pi,. ·.:__•P~) by P'. Let Pk1, •.. ,P~ be the list of those 

sequences P.-s which do not contain any P. as an element and let 
l. J 

Qk , ... ,Q~ be the corresponding list of Q.-s. For any statement 
l ~ i 

s0 denote s0[Qk 1/Pk1J ••• [Q~/Pk J by s0 . Observe that by the defini-

tion of substitution and our as:umptions about procedure variables 



~ n ~3 - <P.<=<S.>>. ;R 
i i i=l ' 

s /P' /PJ CQ,e_ + P ,e_ J = s. [P' /PJ, 1. 

3 - - ~ ~ 
R / P' /P J [ G,e_ + P ,e_ J -

By ({f) and lemma 2 

. . -- n 3--
1.s valid. E 1• ••• •E 0 I' <P'.<=<S.[P'/P]». ·R [P'/P] is a stable ~+ i i i=I 
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sequence and c (El+ 1 , <Pi<= <S /P' /P] » ~= 1 I R3[p' /P]) --<,e_ c (Et+ 1 IS), so 

by the induction hypothesis and the above identities 

Now by the rule of procedure declarations 

which due to the above identities proves (5). 

C V S . I ase . 1.s var x;R. 

Let y be a simple variable which does not occur in E1, ••• ,El+l'S,p 

or q. Since (4\holds, by lemma 16 <E 1, ••• ,El+ll{p}R 1[y/xl{q}> is 

valid. c(El+l IR [y/x])~l c(El+l Is), so by the inductive assumption 

Now by the rule of variable declarations we get (5). 

2 Case VI. S is array a;R 

Analogous to the case V using lemma 17 and the rule of array decla­

rations. 

Case VII. S is P. 

Since E1• ... •E,e_•E,e_+l•S 1.s a stable sequence, Pis declared 1.n 
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Subaase 1°. Pis declared in El+!. 

(7) 

Let¢ denote the empty system of procedure declarations. (4) 

implies that <E 1, ••• ,El+l'¢l{p}P{q}> is valid. E1• ••• •El+l•~•P is 

a stable sequence and c(¢!P)-<l c(El+l Is) since El+! is not empty. 

Hence by the induction hypothesis 

I- r(El, ... ,El+l'Ql+l'F,G) -1,-

<E,El+ /Q,e_ +pl J '¢[QR.+ I + pl+ I JI { p }P[Ql+ I +pl+ I ]{q}>, 

i.e. 

where 

r = { l+I}Ql+I{ l+I} ... { l+l }Ql+l { l+l }. 
I p I I q I ' ' p n n qn 

l+I l+I l+I 

. . . f l+ I d l+ 1 f By the def1n1t1on o p. -s an q. -s or 
1 1 

I{ l+l} l+l{ l+l} . l"d <E 1, ••• ,Eo 1,¢ p. S. q. > 1s va 1 . ,<,.+ 1 1 1 

so by the inductive assumption for i = 1, •.• ,nl+l 

i.e. 

Now by (6) and (7) using the rule of the procedure calls we get 

what was to be proved. 

Suhaase 2°. Pis declared in E1, ••• ,El. 

Observe that the proof from the previous subcase does not work here 

because El+! can now be empty and then c(¢,P) = c(El+J !s). In fact, 



(8) 

(9) 

we cannot use now any induction 

and j E {l, ..• ,n.} P = P:. Since 
1 J 

(4) in conjunction with lennna 3 
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hypothesis. For some i E { l , ••• ,f} 

E1 • .•. •E,e_•E,e,+i •P is a stable s_equence, 

implies that <E 1, ... ,E. l{p}P:{q}> 
1 J 

is valid. Let p' and q' be assertions obtained from respectively p 

and q by renaming all bound occurrences of variables from 

var(E 1, .•. ,Ei) and F. Since I= p' +-+ p and I= q' ++ q, by the sound­

ness of the consequence rule we get that 

<E 1, ... ,E. I {p' }P:{q'}> is valid. 
1. J 

Let F 0 be a sequence of completely new, different simple variables 

of the same length as F and let c0 be a sequence of completely new, 

different array variables of the same length as G. Let 

Po = p'[Fo/F][Go/G] and qo = q'[Fo/F][Go/G]. (8), the soundness of 

the substitution rule and lemma 18 imply that 

To shorten notation let z = var(E 1, ... ,Ei) and c = array(E 1, ... ,Ei). 
1. By the definition p. = z =FA c = G. We are to prove that 
J 

(I o) ~ r0 -+ <E, E ,e, + 1 [ Q,e_ + P ,e_ J I { P} Q j { q} >. 

(12) 

By the invariance axiom 

By the selection axiom 

(I J) and (12) imply by the consequence rule and conjunction rule that 

Observe that I= (p0 A pj) 

consequence 

- - - - 1 
-+ (p0[F/z][G/c] A pj), so by the rule of 
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(14) 

We now show that 

Let e E Env be defined for all relevant variables and let a Er. 

i Assume that T(po[F/z][G/c] A qj)(e,a) = T. We are to show that 

(15) T(q0 )(e,a) = !• 

Since T(q~)(e,o) = I, by the definition of ~J~ there exists a' Er 
J i 1 

such that M(E 1 , ••• ,E.jS.)(e,a') = a and T(p.)(e,a') = T. In view 
1 J J 

of (9) to show (15) it is enough ~o prove that T(p0 ~(e,a') = J. 
Observe that F (po[F/z][G/c] /\ pj) + Po• Since T(pj) (e,a') = I, 

it is sufficient to show that T(po[F/z][G/c])(e,a') = r. By lemma 

13 for ally E dom(e)\var(E 1, ... ,Ei) wehaveo'(E(y))=a(E(y)). By 

lemma 15 for all a E AV\ array(E 1 , ••• ,E~) and d ED such that 
• .L 

(a,d) E dom(s) we have a'(e(a,d)) = o(s(a,d)). If y E SV is free in 

Po[F/z][G/c] then y l var(E1,···,Ei). If a€ AV is free in 

Po[F/z][G/c] then a i array(E1,···,Ei). We assumed that 

T(p 0[F/zJ[G/cJ)(s,a) = I, so the above in view of lemma 7 implies 

that T(p0[F/z][G/c])(s,a') =!,which proves (15). Thus (14) holds. 

(13) and (14) imply by the rule of consequence that 

By the substitution rule 

because the variables from F and G do not occur in q0 • But 
1 -- -- - - - -

(p0 A pj)[z/F][c/G] = Po A z = z Ac= c, so by the consequencerule 

f-- ro-+ <E,E.e.+1 CQ,e. +- P,e.J I {po}Q}{qo}>. 

Since p' = Po[F/Fo][G/Go] ,q' = qo[F/Fo][G/Go]' F p +--+ p' and 

f q +--+ q', by the substitution rule and the consequence rule we get 

(10) what was to be proved. D 

The proof of the completeness theorem is now immediate. Namely suppose 



that <E J {p}S{q}> is normal. Then E•S is a stablEi sequence. Hence, if 

<Ej{p}S{q}> is valid then by lermna !9 (taking f = 0) ~ ·:Ej{p}S{q}. So if 

<Elr> is a valid normal correctness phrase then by the above or bytheaxiom 

(A4) [- <E!Y> for each y c r. By the collection rule we get I- ,.:EiI'> what 

was to be proved. 

An inspection of the proof of lemma l 9 (case \'II. 1°) shows that to 

prove the completeness theorem actually a weaker rule of procedure calls is 

sufficient: 

where j E {l, ... ,n}, 

with the former restrictions and notation. 

14. CONCLUSIONS 

Since the proofs of this paper are so long and complex it would be 

useful to find a way of simplifying them. One possibility of achieving this 

could be by choosing a semantics better suited for this type of proofs. The 

fact that we have used a variant of a denotational semantics led us to very 

tedious considerations concerning the class 0E of meanings of procedure 

variables. To avoid it one could use the operational semantics defined in 

COOK [5] but with suitable changes concerning declarations to get a static 

scope. We would have then to consider an appropriate class CE of functions 

assigning bodies to procedure variables needed for the definition of vali­

dity. We suspect that this class can be defined in a very simple way, namely: 

CE= {K:K E PV ➔ Sand for all PE PV all variables (including procedure 

variables) occurring in K(P) occur in E}. 

Another candidate is the operational semantics defined in CLARKE f4 7 • 

The advantage of this semantics is that it does not use environments. They 

are needed in our framework to deal with variable declarations and the use 

of them adds significantly to the complexity of proofs. 

It would be interesting to investigate whether the use of any of the 
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above two semantics would simplify the proof of the soundness theorem. 

ACKNOWLEDGEMENT. 

I am grateful to J.W. de Bakker for a number of useful comments. 

REFERENCES 

[1] APT, K.R., Equivalence of operational and denotational semantics for 

a fragment of PASCAL, in: Formal Description of Programming 

Concepts (edited by E.J. Neuhold), pp. 139-162, North Holland 

(1978). 

[2] APT, K.R., & J.W. DE BAKKER, Semantics and proof theory of PASCAL proce­

dures, in: Proc. of the Fourth Colloquium Automata, Languages 

and Programming, Lecture Notes in Computer Science 52, pp. 30-44, 

Springer (1977). 

[3] DE BAKKER, J.W., Correctness proof for assignment statements, Report 

IW 55/76, Mathematisch Centrum (1976). 

[4] CLARKE, E.M., Programming language constructs for which it is impossible 

to obtain good Hoare-Zike axioms, Proc. of the Fourth ACM Sym­

posium on Principles of Programming Languages, pp. 10-20 (1977) 

(first version: Technical Report No. 76-287, Computer Science 

Department, Cornell University (1976)). 

[5] COOK, S.A., Soundness and completeness of an axiom system for program 

verification, SIAM Journal on Computing, vol. 7, nr. 1, 

pp. 70-91 (1978). 

[6] DONAHUE, J.E., Complementary definitions of programming language 

semantics, Lecture Notes in Computer Science 42, Springer (1976). 

[7] GORELICK, G.A., A complete axiomatic system for proving assertions 

about recursive and non-recursive programs, Technical Report nr. 

75, Department of Computer Science, University of Toronto (1975). 



59 

[8] HAREL, D., A. PNUELI & J. STAVI, A complete axiomatic system for 

proving deductions about recursive p1•ograms., in: Proc. of the 

Ninth ACM Symposium on Theory of Computing, pp. 249-260 (1977). 

l9J HOARE, C.A.R., An axiomatic basis for corrrpute1° progrcurming., Comm. ACM 

12, pp. 576-580 (1969). 

[JO] HOARE, C.A.R., Procedures and parameters: an axiomatic approach., in: 

Symposium on Semantics of Algorithmic Languages (edited by E. 

Engeler), Lecture Notes in Mathematics 188, pp. 102-116, Springer 

(1971). 

[ I J J LIPTON, R. J., A necessary and sufficient condition for the existence 

of Hoare Logics., in: 18th Symposium on Foundations of Computer 

Science, pp. 1-6 (1977). 

[ 12] SCHWARZ, J., Generic commands - a tool for partial correctness formalisms, 

The Computer Journal, vol. 20, nr. 2, pp. 151-155 (1977). 

[13] SCOTT, D. & J.W. DE BAKKER, A theory of programs., Notes of an IBM 

Vienna seminar, unpublished (1969). 

[14] WAND, M., A new incorrrpZetenss result for Hoare's system, Journal of 

ACM, vol. 25, nr. J, pp. 168-175 (1978). 


