stichting

mathematisch

centrum MC
AFDELING INFORMATICA IW 98/78 SEPTEMBER

(DEPARTMENT OF COMPUTER SCIENCE)

H.B.M. JONKERS
A FINITE STATE LEXICAL ANALYZER FOR THE STANDARD

"~ HARDWARE REPRESENTATION OF ALGOL 68

Preprint

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boethaavestraat, Amstendam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
pro it institution aiming at the promotion of pure mathematics and its
applications. 1t is sponsored by the Netherlands Governmment through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0).

AMS (MOS) subject classification scheme (1970): 68Al15

ACM-Computing Reviews-categories: 4.12

A finite state lexical analyzer for the standard hardware representation

*)
of ALGOL 68
by

H.B.M. Jonkers

ABSTRACT

A finite state lexical analyzer for ALGOL 68 programs written in the
standard hardware representation is described. The analyzer is written in
a very simple language, allowing semi-mechanical translation to an
arbitrary language. The whole language, including format-texts, is dealt

with.

KEY WORDS & PHRASES: ALGOL 68, lexical analysis, finite staté machine,

semi-mechanical translation.

*)

This report will be submitted for publication elsewhere

1. INTRODUCTION

For two reasons the lexical analysis of ALGOL 68 programs is not as
trivial as might be expected. First of all at some places (e.g., TAO-
symbols) the lexical structure of ALGOL 68 is rather awkward. Secondly
ALGOL 68 programs can be represented in different stropping regimes [I]. A
lexical analyzer for ALGOL 68 featuring all three stropping regimes has
already been published [2]. Apart from the deviations from [1] mentioned in
the next paragraph, the lexical analyzer described here differs from [2] in
the following points:

(1) It basically is a finite state machine. This allows a wide range
of implementation methods to be applied and adds to efficiency.

(2) It is described in a very simple language, allowing semi-
mechanical translation to an arbitrary language (e.g., machine
language). The lexical analyzer was in fact tested by translating
it into an ALEPH program using a text editor.

(3) All parts of programs are dealt with, including format-texts.

(4) The description is hopefully more accessible and more readable
than [2].

The lexical analyzer takes as its input program texts representing
ALGOL 68 particular-programs in the standard hardware representation [1],
allowing the following deviations from [I1]:

(1) Besides worthy characters all characters occurring in section
9.4.1. of [3] are allowed; for a list of all characters accepted
by the lexical analyzer see appendix 1. If only worthy characters
are to be accepted, this can be achieved by adding a preprocessor
to the lexical analyzer accepting worthy characters only.

(2) Besides the three stropping regimes defined in [1], a fourth
regime is provided, the STROP regime. In the STROP regime, tags
and bolds are represented as they are in POINT stropping, with the
addition of the following rule:

-~ A bold word may be written as a strop ("’"), followed, in
order, by the worthy letters or digits corresponding to the
bold-faced letters or digits in the word, followed by a
strop. If the bold word is followed by a disjunctor other
than a strop, the last strop may be omitted.

(3) In the RES regime the point may be omitted from a bold word if it
is preceded by a digit from an integral-, real- or bits—denotation
(cf. [4]).

The output of the lexical analyzer consists of "tokens", which we shall
call "words" (as in [2]) to prevent confusion, since there already is an
ALGOL 68 paranotion "token'. The exact definition of a 'word" is given in
section 3. Roughly speaking a "word" corresponds to an ALGOL 68 denotation,
comment or NOTION-symbol. Each time the lexical analyzer is activated, it
delivers a word. By repeated activation of the lexical analyzer the program
text will be transformed into a stream of words. If the program text
corresponds to an ALGOL 68 particular program in the standard hardware
representation (augmented as above), the stream of words will correspond to
this particular program in a way more fully described in section 2. If the
program text does not satisfy the specifications of the standard hardware
representation, the lexical analyzer will generate one or more error

messages. Otherwise the program text, and consequently the stream of words,
does not correspond to an ALGOL 68 program. If the lexical analyzer is part
of a compiler, this will lead to an error message at a higher level in the

compiler.

The lexical analyzer itself consists of four separate lexical
analyzers, one for each stropping regime. The first advantage of this is an
increase of efficiency: it is no longer necessary to inspect the
environment continually during lexical analysis to determine which
stropping regime we are in. Second, if we don’t want to allow all of the
stropping regimes, we can simply omit the lexical analyzers for one or more
of the stropping regimes. In this way, we are not burdened with the details
of stropping regimes which are not allowed anyway, as would be the case
with a lexical analyzer in which all stropping regimes are integrated. A
disadvantage seems to be the size of such a lexical analyzer when allowing
more than one stropping regime. However, since the lexical analyzers for
the different stropping regimes differ from each other at only a limited
number of places, large parts of them can be combined. This combination of
the separate lexical analyzers is not difficult and is left to the
implementer (see also note 1 in section 7). The coordination of the
separate lexical analyzers during lexical analysis must be taken care of by
the global routine using them (e.g., a parser). We shall call this routine
the "supervisor".

As the lexical analyzer is composed of four lexical analyzers, one for
every stropping regime, so is in turn each lexical analyzer made up of two
analyzers: the "unit level lexical analyzer'" and the "format level lexical
analyzer'". The unit level lexical analyzer is designed to analyze program
text at the unit and pragmat level, assuming that the interior of pragmats
has a somewhat ALGOL 68-like structure. Comments are automatically skipped
by the unit level lexical analyzer. The format level lexical analyzer is
designed to analyze program text at the format—-text level, comments also
being skipped automatically. A considerable part of the unit and format
level lexical analyzer coincides, so they can partially be combined. The
supervisor must coordinate the unit and format level lexical analyzer. We
shall often use 'the lexical analyzer" to mean one of the separate (unit or
format level) lexical analyzers.

For reasons of efficiency, the model of a finite transducer has been
chosen for the lexical analyzer, i.e., the lexical analyzer can be viewed
as a program for a finite state machine. The description of this machine is
found in section 3. The machine is completely described in ALGOL 68 by a
number of data structures and a number of operations on these data
structures, which we shall call "instructions'". Moreover, a number of
predicates on these data structures is given, which we shall call
"conditions". These 'conditions" are used to enable conditional state
transitions. We point out here beforehand, that this method of description
has only been chosen for the sake of clarity and is not the best way to
implement the machine (see section 7). To describe the program which is to
run on this machine, we use a mini language called ALEX, defined in
sections 4 and 5. Programs in ALEX are closely related to right-linear
(transduction) grammars. The entire lexical analyzer was in fact
constructed by transforming context—free grammars for the different words
into right-linear grammars and subsequently combining these into an ALEX
program. The lexical analyzer program itself is listed in section 6.

2. WORDS

A word is a value with a structure (a "mode") described by the
following ALGOL 68 declaration:

mode word = struct (int mark, string info);

The words generated by the lexical analyzer are described below. For each
value of the mark field the corresponding paranotion(s) is (are) given. For
each value of the info field the corresponding representation of the
paranotion in the reference language is given, omitting typographical
display features (the Greek letter "g" is used to indicate a character).
Values of the mark field are indicated by names in upper case letters.
Values of the info field are indicated by strings (without embracing

quotes), "e¢" indicating the empty string.

Remarks:

(1) It is not always possible for a finite state machine to determine

whether an "=" at the end of a TAO-symbol belongs to this TAO-
symbol or not (see also [2]). In case of doubt the TAO-symbol and
the "=" are packed together into one word with mark = SHORTOP

EQUALSETY (in contrast with the algorithm in [2]). Words with mark
= SHORTOP EQUALSETY are the only words that may correspond to a
sequence of more than one symbols (see the second column in the
table below).

(2) For some applications the filling of the info field of some words
might have to be changed. For example, if comments should not be
discarded, the info field of a word with mark = COMMENT could be
filled with the comment text. In general, no fundamental changes
in the lexical analyzer are needed for this. In most cases the
insertion and/or deletion of a few "instructions'" in the lexical
analyzer program will suffice.

(3) For the value "EOF" of the mark field no corresponding paranotion
is given since there is none. A word with mark = EOF is used to
indicate the end of the word stream.

mark paranotion info representation

TAG TAG-SymbOl ° g] e 0 .gn E] L) ogn

BOLD bOld—TAG-SymbOl. gl o e ogn g] o0 cgn
except:

bold-comment-symbol;
style-i-comment-symbol;
bold-pragmat-symbol;
style-i-pragmat-symbol.

INT integral-denotation. Ep ety Epeetp

REAL real-denotation. E1+°€En €1 ooty

BITS bits—denotation. €1 ee€p €] oookp

SHORTOP DOP-BECOMESETY-symbol. Ep++€p EleeeEp
except:

equals-symbol;
tilde-symbol.
SHORTOP - DYAD-cum—-equals-symbol; El...£n= &1...6 =
EQUALSETY DYAD-symbol,

is—defined-as-symbol;

DYAD-cum-equals-cum-
becomes—-symbol;

DYAD-cum—-assigns—-to-symbol,
is-defined-as-symbol.

STRING string-denotation. E1e%En "gl...gn
CHAR character~denotation. £ ngh
BECOMES becomes-symbol. € =
IS is-symbol. € =
ISNOT is-not-symbol. € t#:
€ i/=:
STICKCOLON brief-else-~if-symbol; € |:
brief-ouse-symbol.
EQUALS equals-symbol; € =
is-defined-as-symbol.
TILDE tilde-symbol; > =
skip-symbol. _
STICK brief-then-symbol; €
brief-else-symbol;
brief-in-symbol;
brief-out-symbol.
COLON label-symbol; € :
colon-symbol;
up—-to-symbol;
routine-symbol.
COMMA and-al so-symbol. € s
SEMICOLON go—-on-symbol. € 3
OPEN brief-begin-symbol; € (

brief-if-symbol;
brief-case-symbol;
style-i-sub-symbol.
CLOSE brief-end-symbol; I)
brief-fi-symbol;
brief-esac-symbol;
style-i-bus-symbol.
SUB brief-sub-symbol. € [
BUS brief-bus-symbol. €]

AT at-symbol. € @
NIL nil-symbol. € o
DOLLAR formatter-symbol. € $
COMMENT comment. ¢ L SRR
comment comment £,...¢ comment
co LOEjeeeE CO
. # Fe oo ol H
PRAGSYM bold-pragmat-symbol; pragmat pragmat
style-i-pragmat-symbol. pr pPr
EOF €

The following words can be generated by the format level lexical analyzer
exclusively:

CHARROW string-denotation; Epeeely "E el "
character—denotation.
FIXNUM fixed-point-numeral. €198y E1ee€p
ASYM letter—a-symbol. € a
BSYM letter-b-symbol. € b
CSYM letter-c-symbol. € c
DSYM letter-d-symbol. £ d
ESYM letter—e-symbol. €. e
FSYM letter-f-symbol. € f
GSYM letter-g-symbol. € g
ISYM letter-i-symbol. € i
KSYM letter-k-symbol. £ k
LSYM letter-1-symbol. € 1
NSYM letter-n-symbol. £ n
PSYM letter-p-symbol. >)
QSYM letter—q-symbol. € q
RSYM letter-r-symbol. > r
SSYM letter~s—-symbol. € s
XSYM letter-x-symbol. € X
YSYM letter-y-symbol. € y
ZSYM letter-z-symbol. € z
POINT point-symbol. € .
PLUS plus—-symbol. €
MINUS minus-symbol. €

3. MACHINE

The lexical analyzer programs are described in a language called ALEX
(see sections 4 and 5). ALEX programs describe a series of actions of a
"machine". This machine is described below by a set of ALGOL 68
declarations. The machine consists of a number of data structures, a number
of actions on the data structures, called "instructions", and a number of
predicates on the data structures, called "conditions". The "instructions"
are used in ALEX programs to denote primitive actions of the machine. The
"conditions'" are used to make decisions dependent upon the value of the
machine data structures.

1. Data structures.
struct (int state, string buffer) status;

The variable "status'" represents the status of the machine.
The "state" field holds the current state of the machine.
The "buffer" field is used to cope with lookahead. #

string input;
char head;

The variable "input" represents the input file.
The variable "head" is used to temporarily save the first character of
"input". #

struct (int mark, string info) word;

The variable 'word" is used to pass information on the token which has
been read to the outside world. #

int match index;
bool match possible;

The variables "match index" and "match possible' are used for pattern
matching purposes inside comments, thus allowing an efficient skipping of
comments. #

2. Auxiliary definitions.
char eof = ...

"eof" is used as an end of file marker and must be some character that
cannot occur in the input. #

op norm = (char ch) char:
j;f Ch = IlAll then llall
elif ch = "B" then "b"

®

elif ch = "Z" then "z"

else ch
£1;

We need the operator "norm" because of the fact that with a few
exceptions the two cases of a letter are equivalent. #

proc write = (string s) void: info of word +:= s;

op head = (string s) char: s[1];

op tail = (string s) string: s[2 : upb s];
proc reserved = (string s) bool:
(s = "at" or s = "begin" or ... or s = '"while");
proc comment = (string s) bool:
(s = "co" or s = "comment");
proc pragmat = (string s) bool:
(s = nprn or s = "pragmat");

3. Instructions.

]

oc put = void: write(norm head);

putitem = void: write(head);

oc save = void: buffer of status +:= norm head;

oc clear = void: buffer of status := "";

oc append = void: begin write(buffer of status); clear end;

oc reread = void: begin buffer of status +=: input; clear end;

oc read = void: head := if input = "" then eof else head input fi
next : input := tail input;

weo

]
<
@]
=
Q.

point = void: write(".'");

proc zero = void: write("0");
proc quote = void: write("""");
proc strop = void: write("’"");
proc equals = void: write("=");
proc tilde = void: write("™");
proc colon = void: write(":");

roc differs = void: write("#");
divided = void: write("/");

R
{Z
0

roc reset = void: begin match index
roc match void:

if match possible

then if match index < upb info of word

]
o
we

match possible := true end;

then match index +:= 13

match possible := norm head = info[match index]
else match possible := false
fi

fi;
proc error = (int n) void: ...;

What should be done when an error occurs is left to the implementer.
For error diagnostics, see appendix 2. #

4. Conditions.

[0 2]

proc
proc
proc
proc
proc
proc
proc
proc
proc

proc
proc
proc

reservedinfo = bool: reserved(info of word);

reservedbuffer = bool: reserved(buffer of status);

commentinfo = bool: comment(info of word);

commentbuffer = bool: comment(buffer of status);

pragmatinfo = bool: pragmat(info of word);

pragmatbuffer = bool: pragmat(buffer of status);

two = bool: info of word = "2";

four = bool: info of word = "4'";
eight = bool: info of word = "8";
sixteen = bool: info of word = "16";
sizeone = bool: upb info of word = 1;
sizetwo of = 2;
sizethree = bool: upb info of word =

]
o
o
o
i
}8-
e
B
h
o
o
Hh
£
o
H
=}

3;

matching = bool:

(match possible and match index = upb info of

word);

4, SYNTAX OF ALEX

ALEX programs syntactically resemble right-linear grammars. The only
difference is that to every production rule a (possibly empty) "actiom",
and to every '"single production" rule a (possibly empty) '"condition" is
associated. If we omit the "actions" and "conditions", what remains is a
pure right-linear grammar. In the case of the lexical analyzer described
here, this grammar generates an (infinite) stream of ALGOL 68 symbols in
the standard hardware representation. The syntax of ALEX is given by a van
Wijngaarden grammar. The van Wijngaarden grammar is used here only in its
most simple form, viz. as an abbreviation mechanism for a context free
grammar., The syntax introduces a terminology, which is used in the next
section to define the semantics of ALEX.

PRODUCTIVITY::

productive;

nonproductive.
program:

transduction rule sequence.
transduction rule:

PRODUCTIVITY transduction rule.
PRODUCTIVITY transduction rule:

defined state, colon symbol, PRODUCTIVITY transduction rule body.
defined state:

state.
PRODUCTIVITY transduction rule body:

PRODUCTIVITY alternative sequence option, out alternative.
PRODUCTIVITY alternative:

PRODUCTIVITY condition, transduction, go on symbol.
productive condition:

charset.
nonproductive condition:

sub symbol, condition, bus symbol.
transduction:

curly open symbol, action, curly close symbol, applied state.
action:

empty;

mark;

instruction list;

instruction list, and also symbol, mark.
applied state:

state.
out alternative:

transduction.

Some notions are not defined in the syntax; we define them informally
below.

state : a state of the machine.

charset ¢ a set of characters.

condition : a predicate on the machine data structures.
instruction: an operation on the machine data structures.
mark ¢ a value of the mark field of a word.

In addition, an ALEX program must satisfy the following conditions:

10

()
(2)

(3)
(4)

Remarks:

)

(2)

All charsets in a productive transduction rule are disjoint.

All conditions in a nonproductive transduction rule are mutually
exclusive. :

All defined states are different.

All applied states occur as a defined state.

A termination condition for ALEX programs could be added without
great difficulty. However, since we only use ALEX for the
description of the lexical analyzer, we shall omit this.
Termination of the constituent programs of the lexical analyzer
(see section 6) can be verified rather easily.

A transduction rule with a body consisting of an out alternative
only can be parsed as a productive as well as a nonproductive
transduction rule. Since in this case both kinds of transduction
rules are semantically equivalent, the ambiguity causes no harm.

11

5. SEMANTICS OF ALEX

We shall define the semantics of an ALEX program by translating it

into a pseudo ALGOL 68 procedure operating on the machine described in
section 3.

TRANSLATION OF A PROGRAM:

Let P be an ALEX program.

P ="Rl ... Rn",

where RI, ... , Rn are transduction rules.
The translation TRANS(P) of P is defined as:

TRANS (P) = "proc p = void:
begin word := (skip, "");
goto state of status;
TRANS (R1) 3

TRANS (Rn) ;
exit:
end"

TRANSLATION OF A TRANSDUCTION RULE:
Let R be a transduction rule.

(1) R is a productive transduction rule.
R="S: Cl Tl; ... 3 Cn Tn; TO.",
where S is a state,
Cl, «.. , Cn are charsets,
TO, ¢+« , Tn are .transductions.
The translation TRANS(R) of R is defined as:

If n = 0:

TRANS (R) = "S: TRANS(TO)"

If n > O:

TRANS (R) = "S: read;
if head in Cl then next; TRANS(T1)
elif head in C2 then next; TRANS(T2)
elif head in Cn then next; TRANS (Tn)
else TRANS (TO)
£i"

N.B.

The instruction "read" does not remove a character from the string

12
"input" ("next" does). It merely assigns the head of "input" to
"head".
(2) R is a nonproductive transduction rule.
R ="S: [B1] T1; «+. 3 [Bn] Tn; TO.",
where S is a state,
Bl, ««» , Bn are ponditions,
TO, «¢. , Tn are transductions.
The translation TRANS(R) of R is defined as:
If n = 0:
TRANS (R) = "S: TRANS(TO)"
If n > 0:

TRANS (R)

"S: if Bl then TRANS(TI)
elif B2 then TRANS (T2)

elif Bn then TRANS (Tn)
else TRANS (TO)
£i"

TRANSLATION OF A TRANSDUCTION:
Let T be a transduction.

(1) T="1I1, «oe , In} S",
where Il, ... , In are instructions,
S is a state.
The translation TRANS(T) of T is defined as:

TRANS(T) = "Il; e.. ; In;
state of status := §;

goto S"

(2) T = "{I1, ees , In, M} S",
where Il, ... , In are instructions,
M is a mark,
S is a state.
The translation TRANS(T) of T is defined as:

TRANS(T) = "I]; ese 3 In;

mark of word := M;
state of status := S;

goto exit"

13

6. PROGRAMS

There are eight ALEX programs constituting the lexical analyzer, one
for each pair (level, regime), where level is UNIT or FORMAT and regime is
POINT, UPPER, RES or STROP. Large parts of these programs are textually
equal. Rather than listing them all in their full length, we shall combine
them in a single listing and use two variables "level" and '"regime" inside
the text to indicate what part of the text belongs to what program. So the
program for level = 1 and regime = r can be constructed by simply erasing
all text with level # 1 or regime # r.

Remarks:

(1) The names of the states have been chosen so as to indicate the
string of characters that has been read so far.

(2) All charsets occurring in the transduction rules are listed in
appendix 1, except for the charset "other". The latter is not a
fixed charset but, if it occurs in a transduction rule T, it is
equal to the set of all characters (except "eof'") that are not
element of a charset of T (other than "other").

(3) The state "STRINGESCAPE" has been provided to enable the use of
the strop character as an escape character inside character and
string denotations. If the strop character is to be used this way,
the transduction rule for this state must be modified.

(4) Before the first activation of a program the machine must be
initialized properly. This initialization should be done by the
supervisor and should read:

status := (EMPTY, "");

LISTING OF THE PROGRAMS

14

level = UNIT

regime = POINT

EMPTY:
letter {put} TAG;
point {} POINT;
digit {put} FIX;
quote {} QUOTE STRING;
equals {} EQUALS;
tilde {} TILDE;
dyad {put} DYAD;
stick {} STICK;
colon {} COLON;
comma {COMMA} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
sub {SUB} EMPTY;
bus {BUS} EMPTY;
at {AT} EMPTY;
nil {NIL} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEILCOMMENT ;
typo {} EMPTY;
other {error(1)} EMPTY;
{EOF} EMPTY.

regime = UPPER

EMPTY:
lowerletter {put} TAG;
upperletter {put} POINTETY UPPERBOLD;
point {} POINT;
digit {put} FIX;
quote {} QUOTE STRING;
equals {} EQUALS;
tilde {} TILDE;
dyad {put} DYAD;
stick {} STICK;
colon {} COLON;
comma {COMMA} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
sub {SUB} EMPTY;
bus {BUS} EMPTY;
at {AT} EMPTY;
nil {NIL} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(l)} EMPTY;

I
I
|
|
I
|
I
|
I
I
|
|
|
|
I
|
I
|
|
|
I
|
I
I
I
|
I
I
I
[
I
|
|
I
I
|
I
I
i
|
I
I
I
|
|
I
I
|
I
|
|
|
:
| {EOF} EMPTY.

regime = RES

EMPTY:

letter {put} TAGBOLD;
point {} POINT;

digit {put} FIX;

quote {} QUOTE STRING;
equals {} EQUALS;

tilde {} TILDE;

dyad {put} DYAD;

stick {} STICK;

colon {} COLON;

comma {COMMA} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;

close {CLOSE} EMPTY;

sub {SUB} EMPTY;

bus {BUS} EMPTY;

at {AT} EMPTY;

nil {NIL} EMPTY;

dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;

other {error(l)} EMPTY;
{EOF} EMPTY.

regime = STROP

I
I
I
I
I
I
I
I
I
I
[
I
I
I
I
I
I
I
I
I
I
I
[
I
I
I

EMPTY:

letter {put} TAG;

point {} POINT;

strop {} STROP;

digit {put} FIX;

quote {} QUOTE STRING;
equals {} EQUALS;

tilde {} TILDE;

dyad {put} DYAD;

stick {} STICK;

colon {} COLON;

comma {COMMA} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;

close {CLOSE} EMPTY;

sub {SUB} EMPTY;

bus {BUS} EMPTY;

at {AT} EMPTY;

nil {NIL} EMPTY;

dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;

other {error(l)} EMPTY;
{EOF } RMPTY.

15

16

regime = POINT, STROP

I
I
I
I
I
I
I
I
I
I

TAG:
letgit {put} TAG;
typoscore {} TAG TYPOSCORE;
{TAG} EMPTY.

TAG TYPOSCORE:
letgit {put} TAG;
typo {} TAG TYPOSCORE;
{TAG} EMPTY.

regime = UPPER

I
[
I
[
I
I
I
[
I
[
I
I
I
I
I
I
I

TAG:
lowerletgit {put} TAG;
underscore {} TAG UNDERSCORE;
typo {} TAG TYPO;
{TAG} EMPTY.

TAG UNDERSCORE:
lowerletgit {put} TAG;
upperletter {save, error(5), TAG} POINTETY
typo {} TAG TYPO;
{TAG} EMPTY.

TAG TYPO:
lowerletgit {put} TAG;
typo {} TAG TYPO;
{TAG} EMPTY.

regime = RES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I

TAGBOLD:
letgit {put} TAGBOLD;
underscore {} TAG UNDERSCORE;
typo {} TAGBOLD TYPO;
{} TAGBOLD END.

TAGBOLD TYPO:
[reservedinfo] {} BOLD;
{} TAG TYPO.

TAGBOLD END:
[reservedinfo] {} BOLD;
{TAG} EMPTY.

TAG:
letgit {put} TAG;
underscore {} TAG UNDERSCORE;
typo {} TAG TYPO;
{TAG} EMPTY.

UPPERLETTER;

I
I
I
I
I
[
I
I
I
I
[
I
I
I
I
I
I
I
I
I
I
[
I
I
I
I
I

TAG UNDERSCORE:
letgit {put} TAG;
typo {} TAG TYPO;
{TAG} EMPTY.

TAG TYPO:
letter {save} TAG BOLDETY;
digit {put} TAG;
typo {} TAG TYPO;
{TAG} EMPTY.

TAG BOLDETY:
letgit {save} TAG BOLDETY;
underscore {append} TAG UNDERSCORE;
typo {} TAG BOLDETY TYPO;
{} TAG BOLDETY END.

TAG BOLDETY TYPO:
[reservedbuffer] {TAG} SAVEDBOLD;
{append} TAG TYPO.

TAG BOLDETY END:
[reservedbuffer] {TAG} SAVEDBOLD;
{append, TAG} EMPTY.

SAVEDBOLD :
{append} BOLD.

regime = POINT, RES, STROP

POINT:
letter {put} POINT BOLD;
digit {point, put} VAR;
typo {} POINT TYPO;
{error(3)} EMPTY.

POINT TYPO:
digit {point, put} VAR;
typo {} POINT TYPO;
{error(3)} EMPTY.

POINT BOLD:
letgit {put} POINT BOLD;
underscore {error(6)} BOLD;
{} BOLD.

regime = UPPER

POINT:
lowerletter {put} POINT LOWERBOLD;

upperletter {put} POINTETY UPPERBOLD;

digit {point, put} VAR;
typo {} POINT TYPO;
{error(3)} EMPTY.

17

POINT TYPO:
digit {point, put} VAR;
typo {} POINT TYPO;
{error(3)} EMPTY.

I

I

I

[

!

{ POINT LOWERBOLD:

| lowerletgit {put} POINT LOWERBOLD;
| underscore {error(6)} BOLD;
I {} BOLD.

l

I

I

I

|

POINTETY UPPERBOLD:
upperletgit {put} POINTETY UPPERBOLD;
underscore {error(6)} BOLD;
{} BOLD.

regime = STROP

STROP:
letter {put} STROP BOLD;
{error(4)} EMPTY.

|

|

|

[

|

| STROP BOLD:
| letgit {put} STROP BOLD;

| strop {} BOLD;

| underscore {error(6)} BOLD;

I {} BOLD.

regime = POINT, UPPER, RES, STROP

|

| BOLD:

| [commentinfo] {} BOLDCOMMENT ;
| [pragmatinfo] {PRAGSYM} EMPTY;
| {BOLD } EMPTY.

regime = POINT, RES, STROP

|

| FIX:

| digit {put} FIX;

| point {} FIX POINT;

| ten {put} STAG POWER;

| letter e {save} FIX E;

| letter r {save} FIX R;

| typo {} FIX;

[{INT} EMPTY.

|

| FIX POINT:

| digit {point, put} VAR;

| letter {save, INT} POINT LETTER;
| typo {point} FIX POINT TYPO;
| {point, zero, error(8)} VAR.

regime = UPPER

FIX:
digit {put} FIX;
point {} FIX POINT;
ten {put} STAG POWER;
lowerletter e {save} FIX E;
lowerletter r {save} FIX R;
typo {} FIX;
{INT } EMPTY.

FIX POINT:
digit {point, put} VAR;
lowerletter {save, INT} POINT LOWERLETTER;
upperletter {save, INT} POINTETY UPPERLETTER;

typo {point} FIX POINT TYPO;
{point, zero, error(8)} VAR.

regime = POINT, UPPER, RES, STROP

| FIX POINT TYPO:

[
I
I
[
I
I
I
I

digit {put} VAR;
typo {} FIX POINT TYPO;
{zero, error(8)} VAR.

FIX E:

digit {append, put} FLO;

sign {append, put} STAG POWER SIGN;
typo {append} STAG POWER;

{INT } LEGGLE.

regime = POINT, UPPER, STROP

| FIX R:

I
I
I
I
I

[two] {} RADIX R(l);
[four] {} RADIX R(2);
[eight] {} RADIX R(3);
[sixteen] {} RADIX R(4);
{INT } LEGGLE.

regime = RES

| FIX R:

[
I
I
I

[two] {} RADIX R(1);

[four] {} RADIX R(2);
[eight] {} RADIX R(3);
[sixteen] {} HEXBITS LEGGLE;
{INT } LEGGLE.

20

regime = POINT, RES, STROP

I
I

I
I
I
I

| VAR:

digit {put} VAR;

ten {put} STAG POWER;
letter e {save} VAR E;
typo {} VAR;

{REAL } EMPTY.

regime = UPPER

I
I
I
I
I
I

regime = POINT, UPPER, RES, STROP

| VAR:

digit {put} VAR;

ten {put} STAG POWER;
lowerletter e {save} VAR E;
typo {} VAR;

{REAL } EMPTY.

I
I
[
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
[
I
I

VAR E:

digit {append, put} FLO;

sign {append, put} STAG POWER SIGN;
typo {append} STAG POWER;

{REAL} LEGGLE,

STAG POWER:

digit {put} FLO;

sign {put} STAG POWER SIGN;
typo {} STAG POWER;

{zero, error(9), REAL} EMPTY.

STAG POWER SIGN:

digit {put} FLO;
typo {} STAG POWER SIGN;
{zero, error(9), REAL} EMPTY.

FLO:

digit {put} FLO;
typo {} FLO;
{REAL } EMPTY.

regime = POINT, RES, STROP

I
I
I
I
I
I
|
I
I
I
I
I

RADIX R(n):

radigit(n) {append, put} BITS(n);
noradletgit(n) {save, INT} LEGGLE;
typo {append} RADIX R TYPO(n);
{append, zero, error(10), BITS} EMPTY.

RADIX R TYPO(n):

radigit(n) {put} BITS(n);
typo {} RADIX R TYPO(n);
{zero, error(10), BITS} EMPTY.

| BITS (n):

| radigit(n) {put} BITS(n);
l typo {} BITS(n);

| {BITS} EMPTY.

regime = UPPER

|

| RADIX R(n):

| lowerradigit(n) {append, put} BITS(n);
lowernoradletgit(n) {save, INT} LEGGLE;
typo {append} RADIX R TYPO(n);
{append, zero, error(10), BITS} EMPTY.

|

I

|

I

| RADIX R TYPO(n):

| lowerradigit(n) {put} BITS(n);
| typo {} RADIX R TYPO(n);

| {zero, error(10), BITS} EMPTY.
I .
|

|

I

I

BITS (n):
lowerradigit(n) {put} BITS(n);
typo {} BITS(n);
{BITS} EMPTY.

regime = RES

l
| HEXBITS:

| digit {put} HEXBITS;
hexletter {save} HEXBITS LEGGLE;
nohexletter {save} HEXBITS LEGGLE END;
typo {} HEXBITS;
{} HEXBITS END.

HEXB ITS END:
[sizethree] {zero, error(10), BITS} EMPTY;
{BITS} EMPTY.

l

I

[

|

I

[

I

I

|

| HEXBITS LEGGLE:

| digit {append, put} HEXBITIS;
| hexletter {save} HEXBITS LEGGLE;

| nohexletter {save} HEXBITS LEGGLE END;
| typo {append} HEXBITS;

| {append} HEXBITS END.

I

I

I

|

|

HEXB ITS LEGGLE END:
[sizetwo] {INT} LEGGLE;
[sizethree] {zero, error(10), BITS} LEGGLE;
{BITS} LEGGLE.

regime = POINT, UPPER, STROP

[
| LEGGLE:

| {append} TAG.

21

3N
N

regime = RES

I
I
I

LEGGLE:
{append} TAGBOLD.

regime = POINT, RES, STROP

POINT LETTER:
{append} POINT BOLD.

regime = UPPER

POINT LOWERLETTER:
{append} POINT LOWERBOLD.

POINTETY UPPERLETTER:
{append} POINTETY UPPERBOLD.

regime = POINT, UPPER, RES, STROP

I
[
I
I
[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

STRINGRETURN:
[sizeone] {CHAR} EMPTY;
{STRING} EMPTY.

EQUALS:
equals {equals, equals} DYAD EQUALS;
nomad {equals, put} DYAD NOMAD;
colon {} EQUALS COLON;
{EQUALS } EMPTY.

EQUALS COLON:
equals {equals, colon, equals, SHORTOP} EMPTY;
{EQUALS} COLON.

TILDE:
equals {tilde, equals} DYAD EQUALS;
nomad {tilde, put} DYAD NOMAD;
colon {tilde} DYAD NOMADETY COLON;
{TILDE} EMPTY.

DYAD:
equals {equals} DYAD EQUALS;
nomad {put} DYAD NOMAD;
colon {} DYAD NOMADETY COLON;
{SHORTOP} EMPTY.

DYAD EQUALS:
equals {} DYAD NOMAD EQUALS;
colon {colon} DYAD EQUALS COLON;
typo {} SHORTOP EQUALSETY TYPOSETY;
{SHORTOP EQUALSETY} EMPTY.

DYAD EQUALS COLON:
equals {equals} SHORTOP EQUALSETY TYPOSETY;
{SHORTOP } EMPTY.

DYAD NOMAD:
equals {} DYAD NOMAD EQUALS;
colon {} DYAD NOMADETY COLON;
{SHORTOP} EMPTY.

DYAD NOMAD EQUALS:
colon {equals, colon, SHORTOP} EMPTY;
{SHORTOP} EQUALS.

DYAD NOMADETY COLON:
equals {colon, equals, SHORTOP} EMPTY;
{SHORTOP} COLON.

SHORTOP EQUALSETY TYPOSETY:
equals {SHORTOP} EQUALS;
typo {} SHORTOP EQUALSETY TYPOSETY;
{SHORTOP EQUALSETY} EMPTY.

STICK:
colon {STICKCOLON} EMPTY;
{STICK} EMPTY.

|

I

[

|

l

l

|

|

|

l

l

|

l

I

|

l

I

|

I

|

l

|

| COLON:
| equals {} COLON EQUALS;
| differs {} COLON DIFFERS;
| divided {} COLON DIVIDED;
| {COLON} EMPTY.
I

| COLON EQUALS:
l

[

|

[

[

|

I

l

|

I

|

|

|

|

l

[

l

|

l

|

I

l

|

|

|

colon {IS} EMPTY;
{BECOMES } EMPTY.

COLON DIFFERS:
colon {} COLON DIFFERS COLON;
{COLON} DIFFERS.

COLON DIFFERS COLON:
equals {COLON} DIFFERS COLON EQUALS;
{ISNOT } EMPTY.

COLON DIVIDED:
equals {} COLON DIVIDED EQUALS;
. {COLON} DIVIDED.
COLON DIVIDED EQUALS:
colon {ISNOT} EMPTY;
{COLON} DIVIDED EQUALS.

DIFFERS:
{differs} DYAD.

DIFFERS COLON EQUALS:

{differs, colon, equals, SHORTOP} EMPTY.

23

24

| | DIVIDED:

! {divided} DYAD.

||

| | DIVIDED EQUALS:

| | {divided, equals} DYAD EQUALS.

level = FORMAT

regime = POINT

EMPTY:
letter {save, reread} LETGITS;
point {} POINT;
digit {put} FIX;
quote {} QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2)} EMPTY;
{EOF} EMPTY.

EMPTY:
lowerletter {save, reread} LETGITS;
upperletter {save} POINTETY UPPERTAGGLE;
point {} POINT;
digit {put} FIX;
quote {} QUOTE STRING;
plus {PLUS} EMPTY;
"minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2)} EMPTY;
{EOF} EMPTY.

|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
| regime = UPPER
|
|
|
|
|
|
|
|
|
|
|
l
l
|
|
|
|
|
I

regime = RES

EMPTY:

letter {save} TAGGLE;
point {} POINT;

digit {put} FIX;

quote {} QUOTE STRING;
plus {PLUS} EMPTY;

minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;

close {CLOSE} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;

other {error(2)} EMPTY;
{EOF} EMPTY.

regime = STROP

EMPTY:

letter {save, reread} LETGITS;
point {} POINT;

strop {} STROP;

digit {put} FIX;

quote {} QUOTE STRING;
plus {PLUS} EMPTY;

minus {MINUS} EMPTY;

comma {COMMA} EMPTY;

open {OPEN} EMPTY;

close {CLOSE} EMPTY;

dollar {DOLLAR} EMPTY;

cent {put} BRIEFCOMMENT ;
cross {put} STYLEIICOMMENT;
typo {} EMPTY; :
other {error(2)} EMPTY;
{EOF} EMPTY.

regime = RES

I
I
I
I
I
I
I
I
I

TAGGLE:

letgit {save} TAGGLE;
{} TAGGLE END.

TAGGLE END:

[commentbuffer] {append} POINTETY
[pragmatbuffer] {append} POINTETY
{reread} LETGITS.

COMMENT ;
PRAGMAT ;

25

regime = POINT, RES,

STROP

LETGITS:
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
hjmotuvw

N X oRROTDPZIHFEXRFMWQHD AN TP

regime = UPPER

{ASYM}
{BSYM}
{CSYM}
{DSYM}
{ESYM}
{FSYM}
{GSYM}
{ISYM}
{KSYM}
{LSYM}
{NSYM}
{PSYM}
{QsyM}
{RSYM}
{SsyM}
{XsSyM}
{YSyMm}
{zZsyM}

LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;
LETGITS ;

{error(2)} LETGITS;

digit {put} FIX;
{} EMPTY.

l

| LEIGITS:

| lowerletter a {ASYM} LETGITS;
| lowerletter b {BSYM} LETGITS;
| lowerletter c¢ {CSYM} LETGITS;
| lowerletter d {DSYM} LETGITS;
| lowerletter e {ESYM} LETGITS;
| lowerletter f {FSYM} LETGITS;
| lowerletter g {GSYM} LETGITS;
| lowerletter i {ISYM} LETGITS;
| lowerletter k {KSYM} LETGITS
| lowerletter 1 {LSYM} LETGITS;
| lowerletter n {NSYM} LETGITS;
l lowerletter p {PSYM} LETGITS;
| lowerletter q {QSYM} LETGITS;
| lowerletter r {RSYM} LETIGITS;
| lowerletter s {SSYM} LETGITS;
| lowerletter x {XSYM} LETGITS;
| lowerletter y {YSYM} LETGITS;
| lowerletter z {ZSYM} LETGITS;
| lowerhjmotuvw {error(2)} LEIGITS;
i digit {put} FIX;

i {} EMPTY.

regime = POINT, RES, STROP

[
| POINT:

| letter {save} POINT TAGGLE;
| {POINT} EMPTY.
!

POINT TAGGLE:
letgit {save} POINT TAGGLE;
{} POINT TAGGLE END.

I
I
I
I
| POINT TAGGLE END:
| [commentbuffer] {append} POINTETY COMMENT ;
| [pragmatbuffer] {append} POINTETY PRAGMAT;
| {reread, POINT} LETGITS.

regime = UPPER

POINT:
lowerletter {save} POINT LOWERTAGGLE;
upperletter {save} POINTETY UPPERTAGGLE;
{POINT} EMPTY.

POINT LOWERTAGGLE:
lowerletgit {save} POINT LOWERTAGGLE;
{} POINT LOWERTAGGLE END.,

|

I

I

I

I

I

I

[

|

[

| POINT LOWERTAGGLE END:

| [commentbuffer] {append} POINTETY COMMENT ;
| [pragmatbuffer] {append} POINTETY PRAGMAT;
| {reread, POINT} LETGITS.

I
|
[
|
I
I
I
I
I

POINTETY UPPERTAGGLE:
upperletgit {save} POINTETY UPPERTAGGLE;
{} POINTETY UPPERTAGGLE END.

POINTETY UPPERTAGGLE END:
[commentbuffer] {append} POINTETY COMMENT;
[pragmatbuffer] {append} POINTETY PRAGMAT;
{clear, error(7)} EMPTY.

regime = POINT, UPPER, RES, STROP

I
| POINTETY COMMENT:

| underscore {error(6)} BOLDCOMMENT ;
{} BOLDCOMMENT.

underscore {error(6), PRAGSYM} EMPTY;

I

I

| POINTETY PRAGMAT:

I

| {PRAGSYM} EMPTY.

regime = STROP

STROP:
letter {save} STROP TAGGLE;
{error(4)} EMPTY.

STROP TAGGLE:
letgit {save} STROP TAGGLE;

I

I

I

|
I

I

I

I {} STROP TAGGLE END.
I

27

28

STROP TAGGLE END:
[commentbuffer] {append} STROP COMMENT ;
[pragmatbuffer] {append} STROP PRAGMAT;
{reread, error(4)} LETGITS.

|

|

|

I

|

| STROP COMMENT:

| strop {} BOLDCOMMENT ;
| underscore {error(6)} BOLDCOMMENT ;
I {} BOLDCOMMENT.

I

|

|

I

I

STROP PRAGMAT:
strop {PRAGSYM} EMPTY;
underscore {error(6), PRAGSYM} EMPTY;
{PRAGSYM} EMPTY.

regime = POINT, UPPER, RES, STROP

FIX:
digit {put} FIX;
typo {} FIX TYPO;
{FIXNUM} LETIGITS.

digit {put} FIX;
typo {} FIX TYPO;
{FIXNUM} EMPTY.

STRINGRETURN :
{CHARROW } EMPTY.

I
I
I
I
I
I
| FIX TYPO:
I
I
I
I
I
I

level = UNIT, FORMAT

regime = POINT, UPPER, RES, STROP

QUOTE STRING:
quote {} QUOTE STRING QUOTE;
strop {} QUOTE STRING STROP;
item {putitem} QUOTE STRING;
control {} QUOTE STRING;
other {error(11)} QUOTE STRING;
{error(13)} STRINGRETURN.

I

|

I

I

I

I

I

I

I

| QUOTE STRING QUOTE:
| quote {quote} QUOTE STRING;
| typo {} QUOTE STRING QUOTE TYPO;
| {} STRINGRETURN.
|

I

I

I

I

I

I

I

I

I

QUOTE STRING QUOTE TYPO:
quote {} QUOTE STRING;
typo {} QUOTE STRING QUOTE TYPO;
{} STRINGRETURN.

QUOTE STRING STROP:
strop {strop} QUOTE STRING;
{} STRINGESCAPE.

STRINGESCAPE:
{strop, error(12)} QUOTE STRING.

BRIEFCOMMENT:
cent {COMMENT} EMPTY;
other {} BRIEFCOMMENT ;
{error(14), COMMENT} EMPTY.

STYLEIICOMMENT :
cross {COMMENT} EMPTY;
other {} STYLEIICOMMENT;
{error(l14), COMMENT} EMPTY.

regime = POINT

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BOLDCOMMENT :
point {} BOLDCOMMENT POINT;
other {} BOLDCOMMENT ;
{error(l4), COMMENT} EMPTY.

BOLDCOMMENT POINT: :
letter {reset, match} BOLDCOMMENT POINT TAGGLEj;
point {} BOLDCOMMENT POINT;
other {} BOLDCOMMENT ;
{error(14), COMMENT} EMPTY.

BOLDCOMMENT POINT TAGGLE:
letgit {match} BOLDCOMMENT POINT TAGGLE;
underscore {} BOLDCOMMENT ;
{} BOLDCOMMENT ENDTEST.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

regime = UPPER

[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BOLDCOMMENT :
upperletter {reset, match} BOLDCOMMENT POINTETY UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore {} BOLDCOMMENT UNDERSCORE ;
other {} BOLDCOMMENT ;
{error(l4), COMMENT} EMPTY.

BOLDCOMMENT POINT:
lowerletter {reset, match} BOLDCOMMENT POINT LOWERTAGGLE;
upperletter {reset, match} BOLDCOMMENT POINTETY UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore {} BOLDCOMMENT UNDERSCORE;
other {} BOLDCOMMENT ;
{error(14), COMMENT} EMPTY.

29

30

BOLDCOMMENT POINT LOWERTAGGLE:
lowerletgit {match} BOLDCOMMENT POINT LOWERTAGGLE;
underscore {} BOLDCOMMENT UNDERSCORE;
{} BOLDCOMMENT ENDTEST.

BOLDCOMMENT POINTETY UPPERTAGGLE:
upperletgit {match} BOLDCOMMENT POINTETY UPPERTAGGLE;
underscore {} BOLDCOMMENT UNDERSCORE;
{} BOLDCOMMENT ENDTEST.

I

I

I

I

[

I

I

I

I

I

| BOLDCOMMENT UNDERSCORE:

| upperletter {} BOLDCOMMENT UNDERSCORE UPPERTAGGLE;
| point {} BOLDCOMMENT POINT;
| underscore {} BOLDCOMMENT UNDERSCORE;
| other {} BOLDCOMMENT ;

| {error (14), COMMENT} EMPTY.
I

I

I

I

[

I

I

I

I

I

I

BOLDCOMMENT UNDERSCORE UPPERTAGGLE:
upperletgit {} BOLDCOMMENT UNDERSCORE UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore {} BOLDCOMMENT UNDERSCORE;'
other {} BOLDCOMMENT ;
{error(14), COMMENT} EMPTY.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

regime = RES

BOLDCOMMENT :
letter {reset, match} BOLDCOMMENT TAGGLE;
digiscore {} BOLDCOMMENT LETGITSCORE;
other {} BOLDCOMMENT ;
{error(14), COMMENT} EMPTY.

I

|

I

|

|

I

|

| BOLDCOMMENT TAGGLE:

| letgit {match} BOLDCOMMENT TAGGLE;
| underscore {} BOLDCOMMENT LETGITSCORE;
[{} BOLDCOMMENT ENDTEST.
I

| BOLDCOMMENT LETGITSCORE:

| letgitscore {} BOLDCOMMENT LETGITSCORE;
I

|

I

|

|

I

other {} BOLDCOMMENT ;
{error(l4), COMMENT} EMPTY.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

31

regime = STROP

I
I
I
I
I
I
I
I
I
I
I
I
|
l
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I

BOLDCOMMENT :
point {} BOLDCOMMENT POINT;
strop {} BOLDCOMMENT STROP;
other {} BOLDCOMMENT ;
{error(l4), COMMENT} EMPTY.

BOLDCOMMENT POINT:
letter {reset, match} BOLDCOMMENT POINT TAGGLE;
point {} BOLDCOMMENT POINT;
strop {} BOLDCOMMENT STROP;
other {} BOLDCOMMENT ;
{error(l4), COMMENT} EMPTY.

BOLDCOMMENT POINT TAGGLE:
letgit {match} BOLDCOMMENT POINT TAGGLE;
underscore {} BOLDCOMMENT ;
{} BOLDCOMMENT ENDTEST.

BOLDCOMMENT STROP:
letter {reset, match} BOLDCOMMENT STROP TAGGLE;
point {} BOLDCOMMENT POINT;
strop {} BOLDCOMMENT STROP;
other {} BOLDCOMMENT ;
{error(l4), COMMENT} EMPTY.

BOLDCOMMENT STROP TAGGLE:
letgit {match} BOLDCOMMENT STROP TAGGLE;
strop {} BOLDCOMMENT ENDTEST;
underscore {} BOLDCOMMENT ;
{} BOLDCOMMENT ENDTEST.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

32
7. IMPLEMENTATION NOTES

Essentially the lexical analyzer described here is a finite state
machine. Implementation techniques for finite state machines are well
known, so we shall not discuss them here. Nevertheless there are some
details, largely pertaining to the method of description of the lexical
analyzer, that should get some attention. We discuss them below.

(1) The lexical analyzer consists of eight separate programs, one for
each pair (level, regime). If more than one such program is
needed, one might wish to combine coinciding parts of these
programs. An obvious way to do this, is to turn common sets of
states representing a submachine of the finite state machine into
procedures or subroutines. Such sets of states are, for instance,
the sets of states for the reading of short operators, strings and
comments. The degree of interweaving can even be increased by
combining "similar' states, such as the "EMPTY" states, into a
single state. Pushing this interweaving too far, however, can
easily lead to a loss of efficiency, because it requires a
frequent inspection of the current regime and/or level.

(2) The "append" instruction can be implemented by copying the
"buffer" to the "info" and subsequently clearing the buffer (as
described in section 3). However, it can be seen that if the
buffer is not empty, the only instructions executed on info and
buffer are "save'", "append" and 'clear". So the concatenation of
info and buffer behaves like a stack. Therefore we can implement
them as:

string infobuff;
int sep;

where
infobuff[1 : sep]

represents the info, aﬁd
infobuff[sep+l : upb infobuffl]

represents the buffer. An "append" instruction now boils down to:
sep := upb infobuff;

(3) In the description of the machine the input is represented as a
string, while in fact it most likely is a file. This can give some
problems implementing the 'reread" instruction. The "reread"
instruction appends the contents of the buffer to the head of the
input and clears the buffer. This instruction is only used in the
format level programs (so if we only need the unit level programs,
the problem does not exist). It can be implemented by copying the
buffer to a special lookahead buffer and (after clearing the
buffer) start reading from this lookahead buffer instead of the
input file. It can easily be seen that as long as the lookahead
buffer is not empty, no characters are "saved'", i.e. put in the
buffer. So one might be tempted not to copy the buftfer at all and

33

use the buffer itself as the lookahead buffer. By doing so,
however, the stack behavior of the concatenation of info and

buffer will
instruction
possible to
tricky). So
in (2), one

get lost, because it is possible that a "put"

must be executed with a nonempty buffer (it is
restore the stack behavior though, but this is rather
if the info and buffer are concatenated as described
should not use the buffer as the lookahead buffer.

REFERENCES

[1] HANSEN, W.J. and H. BOOM,
Report on the Standard Hardware Representation for ALGOL 68,
Algol Bulletin 40 (1976) 24-43.

[2] BELL, R.,
A Token Recognizer for the Standard Hardware Representation of ALGOL 68,
Algol Bulletin 41 (1977) 47-70.

[3] WIJNGAARDEN, A. VAN, et al. (eds.),
Revised Report on the Algorithmic Language ALGOL 68,
Acta Informatica 5 (1975) 1-236.

[4] HANSEN, W.J.,
Trouble Spots in the Standard Hardware Representation for ALGOL 68,
Algol Bulletin 42 (1978) 11-13.

APPENDIX 1:

35

All worthy characters (including both upper and lower case letters)
plus all characters of the reference language (including some control
characters) may occur in the input, i.e. the following characters are

allowed:

Bk OB P
By — WO
sONO N0

The charsets
denoted by a list of

~ w o
T~
Jo o
RN ==l

ijklmnopgqrstuvwzxysz
IJKLMNOPQRSTUVWXYZ
89 .10" space . VA & #<<>> /
YA+ -=x* 5 () [1@e$
newpage

in section 6 are defined below. A set of characters is
its elements surrounded by curly brackets, each

element separated by a blank. Furthermore we use "+'" for set union and "-"
for set difference. The charset "item" is not defined; it must be equal to
the set of all characters that are allowed as a string item.

at

bus

cent

close

colon

comma
control
cross
differs
digiscore
digit
divided
dollar

dyad

equals
hexletter
hjmotuvw
letgit
letgitscore
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter
letter p
letter q
letter r

H R0 MO AD O

=]

n

I

I

I

= {@}

{1}

{¢}

2

{:}

{,?}

{newline newpage}

{it}

{#}

digit + underscore

{01 2345678 9}

{/}

{$}

nomad + {V.A & # <>+ 72 0L [| T+ ++ -}
{=}
{abcdefABC
{hjmotuvwH
letter + digit
letgit + underscore
lowerletter + upperletter
{a A}

{b B}

{c C}

{d D}

{e E}

= {f F}

{g G}

{1 1}

{k K}

{1 L}

{n N}

ip P}

{q @}

l

E F}
MOTUVW}

D
J

= {r R}

36

letter
letter
letter
letter
lowerhjmotuvw
lowerletgit
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowernoradletgit(n)
lowerradigit(1)
lowerradigit(2)
lowerradigit(3)
lowerradigit(4)
minus

nil

nohexletter

nomad
noradletgit(n)

open

plus

point

quote

radigit (1)
radigit(2)
radigit(3)
radigit(4)
semicolon

sign

stick

strop

sub

ten

tilde

typo

typoscore
underscore
upperletgit
upperletter

N< X 0

N<Y X oROUTUSHFEFX®HEWGHAHAODAO O

{s S}

{x X}

{y Y}

{z 2}

{h jmo tuvw}
lowerletter + digit

{abcdefghijklmnopgqrstuvwzxyz}

{a} '
{b}
{c}
{d}
{e}
{f}
{g}
{i}
{k}
{1}
{n}
{p}
{q}
{r}
{s}
{x}
{y}
{z}

lowerletgit - lowerradigit(n)

= {0 1}

[l

I

{012
{012
{01 2
{-}
{o}
letter - hexletter
{<>/x *}

letgit - radigit(n)
{G
{+}
{.}
{"}

{0 1}
{0123
{01 234
{01 234
{1}

{+ -}

{1}

{"}

{0

{10}

{7}

{space .} + control

typo + underscore

{_}

upperletter + digit
{ABCDEFGHIJKLMNOPGQUQRSTUUV W

by

456 7}
45 6

7
789 abocdef}

wwWw

8 9abcdef ABCDETF;}

¢

Y

7

4

b

APPENDIX 2: ERROUR DIAGNOSTICS

error

1

11

12

13

14

Illegal character at the unit level.

Character skipped.

Illegal character at the format level.
Character skipped.

Unidentified point.

Point skipped.

Unidentified strop.

Strop skipped.

Bold preceded by underscore.

Underscore skipped.

Bold followed by underscore.

Underscore skipped.

Illegal bold word at the format level.

Bold word skipped.

No digits in fractional part of real denotation.
Zero inserted.

No digits in exponent part of real denotation.
Zero inserted.

No radix digits in bits denotation.

Zero inserted.

Illegal string item.

Character skipped.

Strop not followed by strop in character or string denotation.
Strop inserted.

End of file in character or string denotation.
Quote inserted.

End of file in comment.

Comment symbol inserted.

ONTVANGEN 3 T QKT 1978

