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We consider the systems of ordinary differential equations (ODEs) obtained by spatial discretization of multi­
dimensional partial differential equations. In order to solve the initial value problem (IVP) for such ODE systems 
numerically, we need a stiff IVP solver, because the Lipschitz constant associated with the right-hand side 
function f becomes increasingly large as the spatial resolution is refined. StiffIVP solvers are necessarily implicit, 
so that we are faced with the problem of solving large systems of implicit relations. In the solution process of 
the implicit relations one may exploit the fact that the right-hand side function f can often be split into functions 
fi which contain only the discretizations of derivatives with respect to one spatial dimension. In this paper. we 
analyze iterative solution methods based on approximate factorization which are suitable for implementation on 
parallel computer systems. In particular, we derive convergence and stability regions.© 1998 Elsevier Science B.V. 
and !MACS. All rights reserved. 
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1. Introduction 

The systems of ordinary differential equations (ODEs) obtained by spatial discretization of initial­
boundary value problems in d spatial dimensions (the method of lines), are often of the form 

dy(t) d 
- =f(t, y(t)) = ~fi(t,y(t)), y, f Effi.G, 

dt i=I 

(1.1) 

where G is a usually large integer depending on the number of spatial grid points used and where the 
splitting of the right-hand side function f is such that the function /; contains only the discretizations 
of derivatives with respect to the ith spatial dimension. In order to solve the initial value problem (IVP) 
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for the system (1.1) numerically, we need a stiff IVP solver, because the Lipschitz constant with respect 
toy associated with the right-hand side function f becomes increasingly large as the spatial resolution is 
refined. Stiff IVP solvers are necessarily implicit, so that we are faced with the problem of solving large 
systems of implicit relations. In this paper, we construct and analyze iterative methods for solving these 
implicit relations which exploit the fact that the right-hand side function f can be split according to (1.1). 
Our analysis applies to IVP solvers that fit into the wide class of General Linear Methods introduced by 
Butcher in 1966 (see [2, p. 335] for a detailed discussion). These methods are of the form 

Y n+I - .6.t(A ® J)F(etn + c.6.t, Y n+d = (B ® l)Y n + .6.t(C ® /)F(etn-1 + c.6.t, Y11), 

n =0, 1, .... (1.2) 

Here A, B and C denote s-by-s matrices, I is the identity matrix whose order equals that of the system 
(1.1), e is ans-dimensional vector with unit entries, c = (c;) is an s-dimensional abscissae vector, .6.t is 
the stepsize tn+I - t11 , and® denotes the Kronecker product, i.e., if A= (aij). then A® I denotes the 
matrix of matrices (au/). Furthermore, for any vector Y 11 = (y 11;), F(et11 _ 1 + c.6.t, Y11 ) contains the 
derivative values (fCtn-1 + c;.6.t, y11 ;)). The s vector components Yn+l.i of Yn+I represent numerical 
approximations to the s exact solution vectors y (t11 + c; .6.t). The quantities Y 11 are usually called the 
stage vectors and their components Yni the stage values. We assume that the step point value Yn is 
defined by the last component of Y 11 , i.e., y 11 := (eJ ® J)Y 11 , where es is the sth unit vector. 

Each step by the method ( 1.2) requires the solution of the nonlinear system R 11 (Y) = 0 with 

R 11 (Y) := Y - .6.t(A ® l)F(et11 + c.6.t, Y) - (B ® l)Y11 - .6.t(C ® l)F(et11 _1 + c.6.t, Y 11 ). (1.3) 

In order to solve this system, we consider the modified Newton iteration process: 

M(YUl - yU-Il) = -R11 (YU-ll), j = 1, 2, ... , 

where M is an approximation to the Jacobian matrix of Rn(Y). Evidently, Mis given by 

1 d 
M = I - A ® .6.t J = - L (I - d A ® .6.t l;)' 

d i=I 

(1.4) 

(1.5) 

where J and l; are approximations to the Jacobian matrices off and f; with respect toy, respectively. 
This expression shows that solving the multi-dimensionally linear Newton systems (1.4) by a direct 
method is quite costly. It is the aim of this paper to reduce these costs by designing a parallel iterative 
linear system solver based on an approximate factorization of the matrix M. This linear solver may be 
considered as the inner iteration process and the Newton process (1.4) as the outer iteration process. 
For the inner iteration process, a number of convergence results are derived and for a.finite number of 
inner and outer iterations in the inner-outer iteration process, we derive the stability matrix and the order 
of accuracy. For two- and three-dimensional problems, we compute stability regions for the 2nd-order 
backward differentiation method, the 3rd-order Radau IIA method, and a 3rd-order diagonally implicit 
general linear method (that is, A is diagonal in (1.2)). For numerical results obtained by the approach 
analyzed in the present paper, we refer to the references [7,10]. 
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2. Iteration methods based on approximate factorization 

Consider the outer-inner iteration process 

ll(Y(}.v) - yu.v- 11 ) = -MfU.v-tJ + MYU-l.r> - R11 (yU-l.r>), v =I, 2, ... , r, 
I 

n :=IT(! - A*® 6..tJ;), 
i=d 

247 

(2.1) 

where A* is a "convenient" matrix which "approximates" the matrix A. Evidently, if the iterates y<J.v) 
converge, then they can only converge to the Newton iterate yW, irrespective the choice of A*. 

Each inner iteration in (2.1) requires the solution of d linear systems with system matrix I - A*® 6..t Ji 
of order sG. The d LU-decompositions of the system matrices I - A*® 6..t Ji can be done in parallel, 
irrespective the choice of A*. Moreover, the matrices Ji each correspond with a one-dimensional 
differential operator, so that solving these linear systems is relatively cheap. 

We consider two options for choosing the matrix A*, viz. (i) A* = A and (ii) A* similar to a diagonal 
matrix with real positive diagonal entries. If A* = A, then the matrix n is called the approximate 
factorization of the matrix M [3, p. 439]. If A* is similar to a diagonalizable matrix D, then we can 

diagonalize the iteration method (2.1) by means of a transformation yU. v) = ( Q @ I) Yu. v), where Q is 
such that D : = Q-1 A* Q is diagonal. Thus, 

n(Y(j.v) _ :ru.v-11) 

= -(Q- 1 ® !)M(Q ® l)Y(j.v-I) + (Q- 1 ® !)(MY(j-l,r) - Rn(y(}-l.r))), (2.1') 
1 

ii:= ( Q- 1 ® !)n(Q ® n =IT u - D ®flt Jd. v = 1, 2 .... .r. 
i=d 

Evidently, the factor matrices I - D @ 6..t Ji of the system matrix n are block-diagonal. Hence, the 
diagonalized iteration method (2.1 ') allows for a considerable amount of additional parallelism, because 
the diagonal structure of D enables us to decouple each of the linear systems into s subsystems which 
can be solved concurrently. 

Remark 2.1. If only one inner iteration is performed with initial iterate yU.O) = Y u-1. I), then the outer­
inner iteration process { ( 1.4), (2.1)} reduces to 

n(y<JJ _ yU- 1l) = -Rn(yU-ll), j = 1,2,.... (2.2) 

This method is related to the PDIRK and PTIRK methods proposed in [9,8], which arise if we set 
n =I - A*@ 6..t J, where J is the full Jacobian of the right-hand side in (1.1) with A* respectively 

a diagonal and triangular matrix. 

2.1. Region of convergence 

The iteration error y<J.v) - y<JJ associated with (2.1) satisfies the recursion 

yU.vJ _ y<il = z(y<J.v-IJ - yUJ), Z :=I - n-1 M, v = 1, 2, .... (2.3) 
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Insight into the convergence of the inner iteration process is obtained by applying a normal mode analysis 

by assuming that the Jacobian matrices l; share the same eigensystem [3]. For briefness of notation, we 

introduce the following definition. 

Definition2.1. Let E(Ml1, ••• ,b,.tlt1) be a matrix depending on b,.tJ1, ••• ,b,.tJd. Then E(z) is the 

s-by-s matrix obtained by replacing the matrices b,.t l; by the scalars z; and z = (z 1 , •.• , zc1). 

Thus, with the matrices M defined in (1.5), n defined in (2.1), and Z defined in (2.3) we associate the 

matrices 
I 

n(z) =II (I - z;A*), Z(z) :=I - n- 1 (z)M(z). (2.4) 

i=d 

Evidently, if we choose z; := A. (11) b,.t where A. (Ji) denotes an eigenvalue of l;, then the eigenvalues of 

the amplification matrix Zin (2.3) are given by those of the matrix Z(z). The region of convergence 

is now defined by the region in the z-plane where Z(z) has its eigenvalues A.(Z(z)) within the unit 

circle. Assuming that the eigenvalues of the "partial" Jacobians l; are in the nonpositive halfplane, 

we shall call the iteration method (2.1) A-convergent if the region of convergence contains the region 

{z: Re(z;) ~ O} and A(a)-convergent if it contains the region {z: I arg(-z;)I ~a}. Furthermore, if llJJ is a 

domain in the complex plane and if z = (z 1, ••• , zc1) lies in the convergence region whenever z; lies in llJl 

for i = 1, ... , d, then we shall call the iteration method (2.1) A(llJJ)-convergent. The eigenvalues A.(Z(z)) 

of Z (z) will be called the ampl(fication factors of the inner iteration method. 

2.2. Iteration with A* = A 

For A*= A the amplification factors A.(Z(z)) are given by 

d 

J...(Z(z)) = 1 - n- 1 (z)1i(z). µ(z) := 1-A.(A)(eTz), rr(z) :=II (1-A.(A)z;), (2.5) 
i=l 

where A.(A) denotes an eigenvalue of A. 
Let us first consider the amplification factors for small values of I z.; I. It is easily verified that we may 

write A.(Z(z)) = 0((b,.t)2 ), so that our first conclusion is: 

Theorem 2.1. If A*= A, then the ampl(ficationfactors A.(Z(z)) of the inner iteration method (2.1) are 

second-order in b,.t. 

This result implies that the low frequencies in the iteration error are strongly damped (we remark that 

for A* i- A, the amplification factors are in general only of 0(6.t), as may be seen from (2.4)). 

2.2.1. The two-dimensional case 

We first consider the convergence region of (2. l) in the two-dimensional case. Then, the amplification 

factor can be factorized according to 

A(Z(z)) = A.(A)z1 (1 -A.(A)zi )-\(A)z2(l -A.(A)z2r 1• 

This immediately leads to the result: 

(2.5') 
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Theorem 2.2. Let the eigenvalues of A be written in the form A.(A) = ~ ± i17. Then the inner iteration 
method {(2.1), A*= A} is A(ID)-convergent ford= 2 with 

!DJ:= n W(~. 17), W(~. 17) := {z: ~Re(z) ± 1171 Im(z) < ~}. 
A(A} 

If A has its eigenvalues in the right halfplane (as is the usual situation), then it is easily verified that 
we have A(a)-convergence with a= min(arctan(~ 1111- 1 )). Thus, we have the corollary: 

Corollary 2.1. lfReA.(A) ~ 0, then the inner iteration method {(2.1), A*= A} is A(a)-convergentfor 
d = 2 with a= min(arctan(~l1Jl- 1 )). 

For example, for the L-stable, third-order 2-stage Radau IIA method defined by 

c=(t). A=/2 (~ ~1 ). B=(~ ~). C=O, (2.6) 

we have ~ 1171- 1 = ,J2, so that the generated iteration method is A (54. 7° )-convergent. A second example 
is a one-parameter family of 3-stage methods based on Lagrange interpolation formulas, defined by (cf. 
[9]) 

c - ( ~) A = 1 ( 3c - 4~2 + c3 
- 1 ' 60 - c) -c- 1 +4 - 3c 

B=(~ ~ ~). C=O, 
0 0 l 

c(3 ~ 2c) -~3 ) 

c- 1 2-3c ' 
(2.7) 

where c i= 0 and c i= 1. This method is (at least) third-order accurate and A-stable for c ~ 1/2. For 
c = 1/2 it equals the fourth-order Lobatto IIIA method and for c > 1/2 it is strongly A-stable. The 
eigenvalues of A are given by A.(A) = 0 and A.(A) = iCl + c ± JO+ c)2 - 6c). Hence, we have 

A-convergence ford= 2 if c ~ 2 - .J3 or c ~ 2 + .J3. In the Lobatto case, we have ~1111- 1 = ,J3, 
yielding an A(60°)-convergent method. We remark that the method (2.7) also could have been formulated 
as a two-stage method with c = (c, 1) T by exploiting the matrix C (see, e.g., [2, Section 402] for an 
equivalence of both formulations). 

2.2.2. The case A.(A) ~ 0 
lt often happens that all eigenvalues of A are real and nonnegative. Examples are the L-stable, second­

order backward differentiation formula (BDF) defined by 

c = ( ~) , A = t ( ~ ~) , B = t ( ~ l ; ) , C = ( ~ ~) , (2.8a) 

and the strongly A-stable, third-order accurate method [6] 

1 (462 0 ) (0 
A = 660 0 1430 ' B = 0 

483) 
230 

1 (21) C=10 10 ' 

I ( 441 c = 660 -1000 

~). 
(2.8b) 
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Table 1 
Values of ro such that { (2.1), A*= A, A.(A) ~ 0} is convergent in !l))(ro, a) 

ro ~ 00 

lln 40 

8.5 

p(A) 
4.0 

p(A) 
2.5 

p(A) 

12 rr 40 

1.5 

p(A) 

1 

p(A) 

0.5 

p(A) 

(other examples where A has only nonnegative eigenvalues are the methods of Orel [5] and Bendtsen 
[1]). In such cases, more general convergence results can be derived. If A.(A) ~ 0, then it follows from 
(2.5) that A(O)-convergence is achieved if 2:rr(z) - µ(z) > 0 for Zi ~ 0. Since we may write 

:rr(z) = µ(z) + P2A 2(A) + p3A.3(A) + ... +Pd Ad (A), 

where the coefficients Pi are nonnegative whenever z; ~ 0, we see that 

2:rr(z) - µ(z) = µ(z) + 2(p2A 2(A) + p3A.3 (A)+ ... +Pd Ad (A)) 

is positive for A.(A) ~ 0 and z; ~ 0. Thus, we have: 

-

Theorem 2.3. If A has only eigenvalues A.(A) ~ 0, then the inner iteration method {(2.1), A*= A} is 
A (0)-convergent for all d. 

In order to draw conclusions on the A-convergence of the iteration method, we first observe that for 
A.(A) ~ 0 and Re(z;) ~ 0, A.(Z(z)) is analytic in each of its arguments z;. Hence, we may restrict Z; to 
purely imaginary values. In this way, the following result is straightforwardly verified: 

Theorem 2.4. If A has only eigenvalues A.(A) ~ 0, then the inner iteration method {(2.1). A*= A} is 
only A-convergent ford~ 2. 

In a number of important applications, we do not need A-convergence with respect to all spatial 
dimensions. For example, in 3-dimensional hydrodynamical applications, the vertical mesh size is an 
order of magnitude smaller than in the horizontal dimensions. Hence, the "stiffness" of the linear Newton 
systems (1.4) comes from the vertical direction, so that we only need unconditional convergence with 
respect to this direction. Let us consider the 3-dimensional case where A has real eigenvalues and where 
we require A(a)-convergence with respect to only one spatial direction, say with respect to z3. Then, 
defining the region 

TIJ)(ro.a):={Cz1.z2,Z3): larg(-z;)l~a(i=l,2,3), lz1l~ro, lz2l~ro, lz3l~oo}, (2.9: 

we want to compute the value of r0 such that the region of convergence in the (z 1, z2. z3)-plane contain~ 
the domain 1DJ(r0 , a). Table I lists these values for a few values of a. 

Thus, these numerical calculations indicate that we have A(:rr/4)-convergence ford= 3. In fact, thi~ 
result can be proved analytically by means of the following lemma: 

Lemma 2.1. Let z := (z1, ... , ZJ), m(z) := 1 - eT z and p(z) := (1 - z1)(1 - z2) · · · (1 - Zd)· If d = 3 
then 1 - p-1 (z)m(z) assumes values within the unit circle in the region {z: I arg(-zk)/ ~ :rr /4}. 
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Proof. If [p(z) 12 - [p(z) - m(z) 12 > 0, then the function l - p- 1 (z)m(z) assumes values within the unit 
circle. Let us write Zk = rk exp(iak). It can be verified that 

IP(z)l 2 
- lp(z) - m(z)l 2 =I+ r? + ri +rf + 2£1 +4£2 + 2£3 + 2£4 , 

where 

E1 := -r1 cos(a1) - r2 cos(a2) - r3 cos(a3), 

£2 := r1r2 cos(a1) cos(a2) + r1r3 cos(a1) cos(a3) + r2r3 cos(a2) cos(a3), 

£3 := -r1 (ri + r~) cos(ai) - r2 (r~ + rj) cos(a2) - r3 (r? + ri) cos(a3) 

- 4r1r2r3 cos(a 1) cos(a2) cos(a3), 

£4 := r1 r2r3 h cos(a1 + a2) + r2 cos(a1 + a3) + r1 cos(a2 + a 3)). 

If the expressions E; are nonnegative for rk ? 0 and for 3n /4:::;; ak :::;; Sn /4, then the assertion of the 

lemma is true. Because cos(ak) < 0 and cos(a j + ak) ? 0 for j, k = 1, 2, 3 provided 3n /4:::;; ak :::;; 5rr /4, 
it is immediate that we do have E; ? 0 for i = 1, ... , 4. This proves the lemma. o 

From (2.5) it follows that we may express A. (Z (z)) as l - p- 1 (z)m (z) with p = n, m = µ, and z 

replaced by A.(A)z. Hence, Lemma 2.1 can be applied showing that A.(Z(z)) assumes values within the 

unit circle in the region {z: I arg(-zk)[:::;; n /4} provided that A.(A)? 0. Thus, we have the result 

Theorem 2.5. If A has eigenvalues A.(A) ? 0, then the inner iteration method {(2.1), A*= A} zs 
A(n /4)-convergentfor d = 3. 

Analogous results for d > 3 can be obtained along the same lines, but the derivation becomes 

increasingly tedious. An alternative derivation might be the approach described by Hundsdorfer [4] who 

derives conditions such that the function I + p- 1 (z/2)(e T z) assumes values within the unit circle for 

arbitrary values of d. 

2.3. Iteration with A* =f. A 

It is only feasible to choose A* = A either if the dimension sG of I - A* Q9 /).t J; is sufficiently small 

(thereby restricting the size of the problem) or if A is similar to a diagonal matrix with real eigenvalues. 

Hence, for large scale problems we should resort to methods with a real-spectrum matrix A. However, in 

order to achieve both A-stability and higher-order accuracy with respect to time, the dimension s of the 

matrix A should be sufficiently large, implying an increased number of processors (we cannot use higher­

order BDFs requiring only one processor, because the third and higher-order BDFs are not A-stable). 

Hence, if we want a higher-order method and if we want to minimize the number of processors, then it 

is of interest to investigate what can be achieved by using matrices A* =f. A. Moreover, it is of interest to 

know whether the convergence region can be improved by widening the set of matrices A*. 

A first consequence of using matrices A* =f. A is that in general the amplification factors A.(Z (z)) 

for the nonstiff error components are not anymore 0((f).t)2) but O(f).t). Secondly, at infinity the 

behaviour of A.(Z(z)) may also be quite different. For example, along the zraxis, we have Z(z) = 
I - (I - ZjA*)- 1 (I - ZjA), so that Z(z)::::::: I - (A*)-1 A as Zj-+ oo. Hence, a necessary condition 

for A(a)-convergence requires A* to satisfy p(l - (A*)- 1A):::;; 1. Evidently, this condition is trivially 
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satisfied if A*= A. Let us also look at Z(z) as all components Zj tend to infinity. Then, it is readily 
verified that 

Z(z):;:::: I+ (-l)d ZI + ... +zd (A*rd A. 
Z1 • · · · •Zd 

In order to have A(a)-convergence, it is necessary that this matrix has its eigenvalues on the unit disk for 
Zj = rj exp(i</>) with 14>- rrl ~a and rj-+ oo, j = 1, ... , d. By writing 

r1 + · ·· + rd x·-----

and defining l/Jd := (1-d)<f> and J..((A*)-d A)= ~J ± i17j, the eigenvalues of Z(z) are given by 

>.(Z(z)):;:::: I+ x(- I)deil/td A.( (A *rd A) = l + x(-l)d ( cos(l/!d) + i sin(l/td) )(~J ± i17j). 

Hence, 

(2.10) 

IJ..(Z(z)) 1
2 :;:::: ( 1 - x(-l)d [-~J cos(l/td) ± 17j sin(l/!d)]) 2 + x 2 (~J sin(l/!d) ± 11j cos(l/td) )2. (2.11) 

At x = 0, we have A.(Z(z)) = 1. In order to achieve that IA.(Z (z))I does not immediately increase beyond 
l as x increases, we should require that 

( -1 )d [-~J cos( l/I d) ± I 11j I sin( 1/1 d)] ;?: 0. 

On substitution of l/Jd = (1 - d)(rr ±a), we find by an elementary manipulation that this inequality 
is satisfied if ±tan((d - l)a) ~ ~Jl11jl- 1 and 0 ~a~ rr/(2(d - 1)). Thus, together with the earlier 
condition p(I - (A*)- 1 A)~ 1, we arrive at the result: 

Theorem 2.6. Let ~J ± i17j := A((A*)-d A). Then necessary conditions for A(a)-convergence of the 
inner iteration method (2.1) are 

(i) -2~j + [~j]2 + [17j]2 ~ 0 for all eigenvalues A.((A*)- 1 A), 
(ii) ~J ;?: 0, 0 ~a~ (l/(d - 1)) arctan(~J 111:11- 1) for all eigenvalues J..((A *)-d A). 

From this theorem it follows that at best we may hope for A-convergence if d = 2 and for A(45°)­
convergence if d = 3. 

2.3./. The two-dimensional case 
Let us first look at the two-dimensional case. We have investigated the case where A is defined by the 

2-stage Radau IIA matrix in (2.6) and A* is the PDIRK matrix used in PDIRK methods (cf. [9], see also 
Remark 2.1), i.e., 

* I (20-5~ 0 ) 
A =30 0 12+3~ . (2.12a) 

The first condition of Theorem 2.6 is satisfied because this matrix was constructed such that (A *)- 1 A has 
eigenvalues l. In order to check the second necessary condition, we should consider the matrix (A *)-d A 
for d = 2. We find 

(A*)-2A:;:::: (6.24 -1.25) 
1.80 0.60 . 
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This matrix has two positive eigenvalues, so that the second condition of Theorem 2.6 is satisfied for 
0 ~a ~ n /2. By means of numerical verification, we found that we do have A-convergence. 

Result 2.la. If A is defined by the 2-stage Radau IIA matrix, then the inner iteration method { (2.1), 
(2.12a)} is A-convergent ford= 2. 

Note that the iteration method {(2.1), (2.6)} is not A-convergent but only A(54.7°)-convergent (cf. 
Corollary 2.1). Hence, this is an example which shows that the convergence region can be improved by 
widening the set of matrices A*. 

An alternative option for A* is such that the eigenvalues of Z(z 1, z2) are 0((t.t) 2), resulting in a strong 
damping of the nonstiff error components. This is achieved by requiring p(A - A*) = 0 and yields two 
potential matrices A*. However, the first necessary condition of Theorem 2.6 leaves us with the matrix 

A*=l(l 0) 
6 0 3 . (2.12b) 

In this case, the iteration method is not anymore A-convergent, because the matrix 

(A*)-2A= Ci ~3) 

has eigenvalues 8 ± ,J40. Hence, Theorem 2.6 implies that at best we have A(a)-convergence with 
a~ arctan(8/ ,J40) ~ 51.6°. In fact, a numerical calculation yields: 

Result 2.1 b. If A is defined by the 2-stage Radau IIA matrix, then the inner iteration method { (2.1 ), 
(2.12b)} is A(48°)-convergentfor d = 2. 

2.3.2. The three-dimensional case 
We conclude our convergence considerations with applying the approach described above to the 

2-stage Radau IIA method in a three-dimensional problem. Omitting the details, we state the result: 

Result 2.2. If A is defined by the 2-stage Radau IIA matrix, then the inner iteration method { (2.1), 
(2.12a)) is A (45°)-convergent ford= 3. 

2.4. Stability 

In actual computation, we often do not iterate the outer and inner iteration process until convergence, 
particularly in the case of three-dimensional problems. Consequently, the stability properties of the 
resulting integration scheme will not be identical to those of the underlying integration method (1.2). 
In order to see the effect of the number of inner iterations on the stability, we consider the stability test 
equation y' = J y. Let the predictor for the inner and outer iteration process be of the form 

yiJ,0) = y()-1,r), yiO,r) = PYn, (2.13) 

where P is the predictor matrix. From (1.4) it follows that for the test equation yUl = M- 1 NY n• so that 

by virtue of (2.3) 

yU.rJ =(I - zr)M- 1 NY11 + zryCJ-l,rJ, N := B 01+C0 L'\tl, (2.14) 
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where r is the number of iterations in the inner iteration process. Suppose that m outer iterations are 
performed and that Y n+I is identified with yvn.r). Then, we can write Y 11 +1 in the form 

Yn+t = SmrYn, Sm,.:= M- 1 N + zmr(P - M- 1 N). (2.15) 

We have stability if the stability matrix Smr has its eigenvalues on the unit disk. Assuming that the 
matrix P is an expression in terms of 6..t Ji, we find that the eigenvalues of Sm,. are given by the 
eigenvalues of the s-by-s matrix Srn,.(Z), where z = (z 1, ... ,Zd) with Zi :=A.(Ji)6..t and where Sm,.(Z) 

is defined according to Definition 2.1. Thus, we have the stability result: 

Theorem 2.7. Let the inner and outer predictors be of the form (2.13) and let the matrices M(z), fl(z) 

and Z(z) be defined by (2.4). Then, the outer-inner iteration process is stable at the point z if the s-by-s 
stability matrix 

Smr(Z) := M- 1(z)N(z) + Z"',.(z)(P(z)- M- 1(z)N(z)), N(z) := B + (eTz)C (2.16) 

has its eigenvalues on the unit disk. 

Thus, the region of stability is given by the region in the z-plane where Smr(Z) has its eigenvalues 
on the unit disk. Assuming that the eigenvalues of the "partial" Jacobians Ji are in the nonpositive 
halfplane, we shall call the outer-inner iteration process A-stable if the region of stability contains the 
region§ := {z: Re(zi) = 0} and A(a)-stable if it contains the region §(a) := {z: I arg( -z;) I ( a}. 

In the case of Runge-Kutta methods (RK methods) using the last step value (LSV) predictor as outer 
predictor, the stability matrix Sm,. (z) can be reduced to a scalar stability function. Formulating such 
a method with a zero C-matrix (see the discussion at the end of Section 2.2.1), we obtain that N(z) 
equals the matrix B and is of the form ee;. Furthermore, also the matrix P(z) corresponding to the LSV 
predictor is of this form. As a result, the stability matrix Smr (z) in (2.16) will have zero vectors in its first 
s - 1 columns, as well. Recalling that y n = ( e I 0 /) Y n, we see that we only need the last element in the 
last column of S111 , (z), resulting in a scalar stability function. 

Using the above observations, (2.15) takes the form 

Yn+1 = (e; 0 !)SmrYn = (eI 0 I) (M- 1 + zmr(! - M- 1))(e 0 l)yw (2.15') 

The eigenvalues of the matrix (e"f 0 /)(M- 1 + zmr(l - M- 1))(e 0 /)are given by the eigenvalues 
of e7'[M- 1 (z) + zmr(z)(l - M- 1 (z))]e. Observing that e':'M- 1 (z)e is the stability function of the 
underlying RK method, we obtain the result: 

Theorem 2.8. Let the outer predictor be the LSV predictor P = (ee; 0 /) and let R be the stability 
function of the underlying RK method. Then, the iterated RK method is stable at the point z if the stability 
function 

(2.17) 

assumes values on the unit disk. 

In the case of (2. I 7), more insight into the stability region can be obtained by considering the behaviom 
of the stability function at the origin and at infinity. At the origin, we obtain 

Rmr(Z) = R(z)- zmr+ie;'(A - A*+ O(z)t,. (A+ O(z))e, z := eTz. (2.18 
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To achieve that the stability region at least contains a "left" neighbourhood of the origin in all complex 
zrplanes, we write (2.18) as Rmr(Z) =I + z + az2 + bz3 + cz4 +···,and we require that this function 
has a nonzero imaginary stability boundary, that is there is a nonzero interval (0, i,8) on the zraxes 
where I Rmr (Z) I < 1. This leads to the condition 1 - 2a + {32 (a2 - 2b + 2c) + 0(,83) < 0, so that the first 
5 terms of Rmr(Z) determine whether f3 is zero or not. Hence, if A*= A and mr ~ 2 or if A* f. A and 
mr ~ 4, then we obtain a positive imaginary stability boundary ,8 whenever the stability function R of 
the underlying RK method has a nonzero imaginary stability boundary. 

In order to investigate the behaviour at infinity, we write z j = r j exp(i<P) with l<P - n I ~ a and r j -r oo, 
j = 1, ... , d. Writing the amplification matrix Z(z) for large r1 as I+ xB, where x and B follow from 
(2.10) and using the expansion 

M-1(z) = (I - (eT z)A)- 1 = -(eT zr 1 A-1 + O(z-2), (2.19) 

we find 

Rmr(z) ~ eY (M-1(z) + (1 + xsrr (I - M- 1 (z) ))e ~ eY(I + mrxB + O(xz- 1) )e. 
Hence, using (2.10), we obtain 

Rm,(Z) ~I +mrx(-l)dei(l-dl4>eY((A*rd A)e, 
r1 + ... + rd 

x:=-----
r1 • ... •rd 

1Rm,(z)l2 ~ (1 +mrx(-l)de:!"((A*rd A)ecos(1/td)) 2 + (mrx) 2 (e:!"((A*rd A)esin(1/td)) 2, 

(2.20) 

where 1/td := (1 - d)q,. Similar to our discussion of (2.11), we conclude that a necessary condition for 
A(a)-stability is that (- l)de!, ((A *)-d A)e cos(i/td) ~ 0. This leads to the result: 

Theorem 2.9. Let the conditions of Theorem 2.8 be satisfied. Then, 
necessary conditions for A(a)-stability of the iterated RK method are 

irrespective the value of mr, 

T(( *)-d ) TC es A A e~O, O~a~ 2(d-l) (2.21) 

It should be remarked that the condition on a is identical with the A(a)-stability condition obtained 
by Hundsdorfer [4] for the Douglas splitting method. 

Similar to the convergence behaviour (compare Theorem 2.6), we may only hope for A-stability if 
d = 2, but not anymore if d > 2, whatever the value of mr is. The actual value of a is expected to depend 
on mr. Furthermore, observing that e J' ((A *)-d A )e is the row sum of the last row in (A *)-d A, we see that 
the first condition of the theorem is always satisfied in the following two special situations: 

(i) A* diagonal, last diagonal entry of A* and last row sum of A positive, 
(ii) A*= A, last row sum of A l-d positive. 
As an example of the first situation, consider the 2-stage Radau IIA matrix in (2.6) with A* defined by 

(2.12a) or (2. l 2b ). In both cases, the first condition of Theorem 2.9 is satisfied, so that A (rr / (2d - 2) )­
stability may be possible. A numerical verification reveals that for d = 2 the choice (2.12a) leads to 
A-stability for all values of mr, while (2.12b) leads to A(a)-stability where a decreases as mr increases 
(see Table 2 for details). Ford= 3, the case (2.12a) yields A(45°)-stability (see Table 3). 

In order to illustrate the second situation, we consider the 2-stage Radau IIA matrix with A* = A and 
d == 2, to obtain 

(A*f2A=A- 1 =~(~9 ~)· 

I 
J . 
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Table 2 
Convergence and stability properties for two-dimensional problems 

Method Matrix A* Convergence 

3rd-order Radau (2.6) A A(54.7°)-convergent 

2nd-order BDF (2.8a) 

3rd-order method (2.8b) 

Table 3 

(2.12a) 

(2.12b) 

A 

A 

A (90°)-convergent 

A ( 48°)-convergent 

A (90°)-convergent 

A (90°)-convergent 

Convergence and stability properties for three-dimensional problems 

Method Matrix A* Convergence 

3rd-order Radau (2.6) A A (9°)-convergent 

2nd-order BDF (2.8a) 

3rd-order method (2.8b) 

(2.12a) A(45°)-convergent 

(2.12b) 

A 

A 

A (45°)-convergent 

A (45°)-convergent, 

see also Table 1 

A (45°)-convergent, 

see also Table 1 

Stability 

A(a)-unstable for mr ~ 1anda~0 

A(90°)-stable for all mr 

A(90°)-stable for mr = 1 

A(80°)-stable for mr :::::; 2 

A(70°)-stable for mr:::::; 10 

A(60°)-stable for mr :::::; 30 

A(48°)-stable for all mr 

A(90°)-stable for all mr 

A(70°)-stable for mr = l 

A(a)-unstable for mr > land a~ 0 

Stability domain contains llll(ro, a) 

A (a)-unstable for mr > 1 and a ~ 0 

a:::::; 45°, ro = {oo, ... , oo} 

a= 50°, ro = (11.7, 13.5, 15.1, 16.4, 17.7} 

a= 60°, ro = (3.4, 4.5, 5.5, 6.3, 7.1} 

a =70°, ro = {1.7, 2.5, 3.3, 2.3, 2.1} 

a= 80°, ro = { 1.0, 1.7, 1.2, 1.2, 1.2} 

a= 90°, ro = {0.3, 0.4, 0.3, 0.4, 0.4} 

a:::::; 45°, ro = {oo, ... , oo} 

a=50°, ro={ll.6, ... , 11.6} 

a= 60°, ro = {3.6, ... , 3.6} 

a= 70°, ro = {2.0, ... , 2.0} 

a= 80°, ro = {1.4, 1.4, 1.4, 1.1, 1.1} 

a= 90°, ro = {0.3, 0.3, 0.3, 0.3, 0.4} 
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Hence, it follows from Theorem 2.9 that there is no a-value for which we have A(a)-stability. However, 
if we take the 3-stage Radau HA method with A* = A and d = 2, then the last row sum of the 
matrix (A* )-2 A = A- 1 turns out to be 3 showing that the necessary A (a )-stability condition is satisfied 
for a ~ n /2. However, a numerical verification reveals that the iterated method is not A(a)-stable, 
irrespective the value of mr. Using for A* the matrix (2.12a) does yield an A(a)-stable process with 
a increasing as mr increases. 

2.5. Order of accuracy 

In order to derive the order of accuracy after a finite number of inner and outer iterations, we consider 
the iteration error £(j. v) := yU.v) - Yn+I. From (1.2), (1.3) and (2.1) it follows that we may write 

s<J.v) = Z£(j,v-I) + 6.tll- 1(A 0 J)G 11 (t:(j-l.r>), 
(2.22) 

G,,(£) := F(etn + c6.t, Y 11 +1 + £) - F(etn + c6.t, Y,,+1) - (/ 01)£, 

where J is the same approximation to the Jacobian matrix as used in ( 1.5). After r inner iterations, this 
recursion yields 

sU.rl = zr sU-l.r) + 6.t(I - zr)M-1(A 0 /)Gn(t:u-i.r>), (2.23) 

where we assumed that yU.Ol = yU-1.rl, i.e., sU- 0> = £(j-I.rl. Let G,, possess a Lipschitz constant 
Ln ( 6.t) in the neighbourhood of the origin (with respect to the norm II · Ii) and let 

zr=0((6.t) 111.), L,,(6.t)=0((6.t)u). (2.24) 

The value of e follows from the expansion 

zr =(CA -A*) 0 6.tJ +0(6.t2))'. 

Hence, e = I if A* i= A and e = 2 if A* =A. Furthermore, u = 1 if the Jacobian is updated every few 
integration steps, and u = O if very crude approximations to the Jacobian are used. Let the method ( 1.2) 
have step point order p. Then, after m outer iterations and r inner iterations in each outer iteration, we 
have for the local error at the step point t,,+1 

e yy<m.r) - y(t,,+ 1) = e:;, (Y(m.r) - Y n+1) + eYY 11+1 - y(t,,+1) = c<m.r) + 0( (~t)P+i). 

From (2.23) it follows that 

lliU.r>ll ~ (O((llt)lir) +O((~t)"+ 1 ))lli(j-l.r)ll· j?: l. 

Hence, 

i\s(m,r)ll ~ (0((6.t)i!r) +0((6.t)u+l))"111Y(O.r) -Y,,+111, 

so that 
e:,ry<m.r) - y(t,,+1) = O((~t)ml!r+q+I) + o( (~t)m(u+ll+q+I) + 0( (6.t)p+l)' 

where q denotes the order of the predictor. Thus, we have proved the result: 

Theorem 2.10. Let the underlying integration method have step point order p, let the predictor have 
order q, and let (2.24) be satisfied. Then, the step point order p(m, r) of the iterated method is given by 

p(m, r) = min {p, q + m · min{8r, u + l} }. 
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This theorem implies that for a given number of inner iterations r the order of the corrector is obtained 
if the number of outer iterations satisfies 

p-q 
m~-----

min{t9r, u + l} 

Since an inner iteration is cheaper than an outer iteration, it is a good strategy to choose r ~ e-1 (u + 1) _ 
Then, the order of the corrector is reached after r (p - q )(u + 1)-11 outer iterations. 

3. Summary of results 

We conclude this paper with a summary of convergence and stability results in two and three 
dimensions. The stability results were obtained in the case of the LSV predictor. We did also compute 
stability regions in the case of extrapolation predictors, but the results were relatively poor. For example, 
for two-dimensional problems, the two-step BDF was only A (0)-stable for all mr-values and only A ( 4 ° )­
stable for large mr. Therefore, we restricted our considerations to the LSV predictor. 

Table 2 lists convergence and stability results for the two-dimensional case. Table 3 presents results 
for the three-dimensional case. As to the stability, we restricted our computations to the 3rd-order Radau 
method (2.6) with A* defined by (2.12a) and the 2nd-order BDF method (2.8a) with A*= A. For these 
methods, we computed the values (r0 , a) for mr = 1, 2, ... , 5 such that the region 1Dl(r0 , a) defined in 
(2.9) is contained in the stability domain of the method. 

References 

[ 1] C. Bendtsen, Highly stable parallel Runge-Kutta methods, Appl. Numer. Math. 21 ( 1996) 1-8. 
[2] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear 

Methods (Wiley, New York, 1987). 
[3] C. Hirsch, Numerical Computation of Internal and External Flows, Vol. 1: Fundamentals of Numerical 

Discretization (Wiley, New York, 1988). 
[4] W. Hundsdorfer, A note on the stability of the Douglas splitting method, Preprint NM-R9606, CWI 

Amsterdam (1996); also: Math. Comp. (1998, to appear). 
[5] B. Ore!, Parallel Runge-Kutta methods with real eigenvalues, Appl. Numer. Math. 11 (1993) 241-250. 
[ 6] B.P. Sommeijer, W. Couzy, and P.J. van der Houwen, A-stable parallel block methods for ordinary and integro­

differential equations, Appl. Numer. Math. 9 ( 1992) 267-281. 
[7] B.P. Sommeijer and J. Kok, Domain decomposition for an implicit shallow-water transport solver, in: 

B. Hertzberger and P. Sloot, eds., Proceedings of the HPCN Europe 1997 Conference, Vienna, April 1997, 
Lecture Notes in Computer Science, Vol. 1225 (Springer, Berlin, 1997) 379-388. 

[8] P.J. van der Houwen and J.J.B. de Swart, Triangularly implicit iteration methods for ODE-IVP solvers, SIAM 
J. Sci. Comput. 18 (1996) 41-55. 

[9] P.J. van der Houwen and B.P. Sommeijer, Iterated Runge-Kutta methods on parallel computers, SIAM J. Sci. 
Statist. Comput. 12 (1991) 1000-1028. 

[10] P.J. van der Houwen, B.P. Sornmeijer and J. Kok, The iterative solution of fully implicit discretizations of 
three-dimensional transport models, Appl. Numer. Math. 25 ( 1997) 243-256. 


