
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

H.J. S INT

IW 102/78

ALGOL68G-O: PICTURES REPRESENTED IN ALGOL 68

~
MC

DECEMBER

2e boerhaavestraat 49 amsterdam

BlBLlOTHEEK M.ATHEM,\T!SCH CENTRUM
. ···~,~, .. ~ ---AMSTERDAM-

PJunte.d a;t .the. Ma.the.ma.Uc.al Ce.ntJLe., 49, 2e. Boell.ho.a.ve1i.tlc.a.a.t, Am6.te/f..dam.

The. Ma.the.ma.Uc.al Cent/Le, 6ou.n.de.d .the. 11-.th 06 Fe.b1tu.a.1Ly 1946, ..U a. non
p1to 6U .lntd,Ut.Ltlo n a.,im,lng a;t .the. pJtomo.tlo n o 6 pUll.e. ma.the.ma.:UC6 a.nd .it6
a.pp.Uc.a..tlon.-0. I.t ..U !ipon601te.d by .the. Ne..theJci_a.ndo Gove.Jtnme.nt .th/tough :the.
Ne..theJcl.a.ndo 01tga.n.lza.:Uon 601t .the. Adva.nc.e.me.nt 06 PUite Re1ie.a.1tc.h (Z. W. 0) •

AMS(MOS) subject classification scheme 68AIO, 68A30

ACM-Computing Reviews-categories: 4.22, 4.34, 8.2.

Algol68G-6: Pictures represented in Algol68

by

H.J. Sint

ABSTRACT

A method is explained to construct a set of Algol68 declarations which

are, in a well defined sense, equivalent with a given context free grammar.

The method is applied to the graphics language ILP. The result is a

library prelude which contains mode declarations allowing the representation

of graphical data, and procedures to translate data thus represented to ILP

and vice versa.

KEYWORDS & PHRASES: Computer graphics, ALGOL68, Za:nguage extension.

1 • Introduction

An important goal of the graphics project currently conducted at the

Mathematisch Centrum is the design of a well structured, high level

graphics language. The philosophy underlying this part of the project,

can be summarized by the following statements:

- The high level graphics language (HLGL for short) should borrow its

control structure entirely from an existing programming language, the

host language.

- The graphical part of the HLGL should consist of an interface with a

low level, but still device independent, intermediate graphics

language (IL) •

- The IL should contain graphical elements only. Familiar constructs

like assignments, conditional expressions, loops and procedures are

not included.

- The interface between the IL and the HLGL should be two-way: The HLGL

should be able to produce as well as to accept and process programs

in the IL.

Moreover, a first host language (Algol68) and implementation tech

nique (writing an extension in the form of a library prelude) were

chosen [1].

The first step toward the realisation of these ideas has been the

design of an intermediate language, ILP (Intermediate Language for Pic

tures), defined in [2].

In this report the interface between ILP and Algol68 is described.

Its main purpose is to establish a formal relationship between ILP and

the Algol68 extension defined at the end of the report. This is

achieved by first presenting a general method for embedding a context

free language into Algol68, and then applying that method to ILP, with

some extras to handle the non context free features. Readers who are

2

only interested in the language defined can turn immediately to section

3.3. They are warned however that only the kernel of the high level

graphics language Algol68G is defined here, providing nothing but a set

of graphical modes and translation procedures to and from ILP.

2. ~ embedding .Q!..a context free language .1nt.Q. Algol68

2.1. Preliminaries

If one uses a manipulator for some language L, which consists of a

set of operations on sentences of L, one would like to be sure that

whatever sequence of operations is applied, the final result is still a

sentence of L.

We propose to use the Algol68 mode mechanism to ensure that a set of

manipulator operations is closed under function composition. This is

achieved by defining some mode M, such that there is a one to one

correspondence between values of M (acceptable to M, in Algol68 jargon)

and sentences of L, and two procedures to translate sentences of L to

their corresponding M value and vice versa. A manipulator of L can then

be written completely in terms of operations on objects of mode M, ac

cording to the following scheme:

s e: L

translator

L--+- M

0 n
- m' e: M

s I € L

translator

M-L

3

4

(Of course, without further knowledge about the manipulator operators

themselves, nothing beyond the protection provided by the Algol68 mode

checking mechanism is guaranteed. If m' turns out to be uninitialized

for instance, the second translator will crash. But if the manipulator

terminates without crashing, then it is certain that the output of the

second translator is in L).

This chapter formalizes this method for the case that Lis non ambi

guous and context free.

The obvious way to produce .the desired mode declarations is to asso

ciate a new mode with~ symbol X in a grammar producing L, and to

make sure that there is a one to one correspondence between the values

of that mode and the terminal productions of X. But here we get in

trouble. If Xis a terminal, we want a corresponding mode having only

~ value. Algol68 provides exactly one such mode, namely VOID, and no

way to construct any other. In practice getting around this (not very

orthogonal) restriction is not much of a problem; we can use other modes

which have more values (two for instance) and then simply treat these

values as if they were indistinguishable. It does however obstruct a

clean definition of an embedding and an easy correctness proof of the

algorithm that constructs such an embedding from a given grammar.

Therefore, we will define and use an extension of Algol68 which has the

required feature.

We introduce an additional PLAIN mode, (denoted by ONE), and

that (like VOID) this mode has only one value (denoted by ONLY).

specify

Unlike

VOID however, this mode can be used freely for the construction of other

modes. One can write for example

MODE A= STRUCT(ONE a);

MODE B = STRUCT(ONE b);

thus obtaining two different modes both having one value.

denote this extension by Algol68 1 •

We will

2. 2. Definition

An embedding of a non ambiguous, context free language L into Algol68 1

consists of at least the following components:

- A declaration for a mode M;

- A declaration for a procedure ltoa68 of mode PROC(STRING)REF M;

- A declaration for a procedure.a68tol of mode PROC(M)STRING;

with the following properties: <1)

1 . F'or all strings W E L, ltoa68(w) E M

2. For all strings w ' L, ltoa68(w) : =: NIL;

3. For all strings w1, w2 E L, w1 = w2 <=> ltoa68(w1) = 1 toa68 (w2) ;

4. For all values m EM there is a string w EL such that

a6btol (m) = w;

5. For all values m E M and all strings W E L,

a68tol(m) = w <=> ltoa68(w) = m.

In the next section we present an algorithm that constructs an embed

ding for some language L, given a grammar G that produces L. In princi

ple this algorithm consists of' three parts:

A component that constructs a set of mode declarations, forming a

mode tree with root M;

2 A component that constructs a translator from mode M to L;

-------------"""1--
<1) The relations"=" and"E" cannot be defined as Algol68 operators. In

section 2. 4. 2 we will give formal definitions. E means something like

"accepted by" as used in [3].

5

6

3 A component that constructs a translator from L to mode M.

This translator has two tasks:

It has to decide whether a given sentence belongs to L, i.e. it

must contain a parser.

- It has to construct an appropriate value of mode M for each sen

tence that does belong to L.

We have chosen to separate the first task - parsing - from the

remainder of the algorithm. Parser generating is a thoroughly studied

problem that is not of particular interest in this context. Most

parser generators moreover impose restrictions on the input grammar

which also restrict the class of languages handled; and these res

trictions are not required for any other part of the algorithm.

Therefore, we will initially ignore the problem of generating a

parser altogether and only construct a translator from derivation

trees to M.

In section 2.4. we will consider the correctness of the algorithm.

In section 2.5. we will present a generator for a recursive descent

parser written in Algol68 which produces a derivation tree in the form

required by the algorithm.

2.3. An algorithm producing an. embedding fr.Qm. .a.Qfli

2.3.1. Input

The algorithm requires as input a context free grammar G of the fol

lowing form:

G = {T, N, P, S}
t is a set of terminals. where T = {T.}. 1 l. l.=

E: can be a member of T.

n N = {N.}. 1 is a set of nonterminals,
l. 1=

1ij mi n
p = {Ni ➔ {{Eijk}k:1 }j=1 }i=1

is a set of production rules,

m. is the number of alternative productions of the i-th non terminal,
l.

1. . is the number of symbols in the j-th al tern a ti ve of the i-th
l.J

nonterminal,

lij
{Eijk}k= 1 is the j-th alternative of the i-th nonterminal,

E. "k is the k-th symbol of that alternative and a member of N u T.
l.J

1. .
l. J

aij will be used as an abbreviation for {Eijk}k= 1,

S E N is the: start symbol.

The algorithm explicitly requires that each non terminal occurs only

once on the left hand side; i.e. that all alternative productions of

a non terminal are gathered into one member of P.

G must moreover meet the following requirements:

G is not a~biguous,

* - G can not give rise to productions of the form N. --.N ..
l. l.

2.3.2. Notation

The algorithm as presented here is a slightly less formal but slight

ly more readable transscription of a complete Algol68 program, without

the parser generator and all administrative procedures. The notation

used is a mixture of Algol68 and calls to two special, macro like pro

cedures. The arguments of those procedures are delimited by brackets

{}, to disti.nguish them from ordinary procedure calls.

The procedure gen serves as a pair of quasi-quotes. Gen literally

7

8

copies its argument to an output file, with the exception of elements

preceded by a dot (.), and of calls to the second macro. The dotted

elements (most of them are procedure calls) are first evaluated by the

Algol68 system, the result (if necessary converted to a string) replaces

the dotted element in the output of gen. The calls to the second macro

are first evaluated and then put in the input of gen.

The other macro used is denoted by var + lim:. This macro first has

the Algol68 system retrieve the value of lim (which should be an in

teger) and then copies its argument that number of times in succession,

leaving everything (including dotted elements) as it was except that the

parameter "var" is replaced by 1 in the first copy, by 2 in the second,

etc. Moreover, it skips the last character before the} the last time

(which is what you most of the time want for separators). An instantia

tion of this operator occurs in the second example given below:

k + times.

To discriminate as clearly as possible between the (Algol68-like)

language in which the algorithm is written, and the Algol68 statements

it produces, we use different conventions: In the algorithm bold words

will be surrounded by single quotes, and subscripts will be used instead

of indices (a .. instead of a[i, j]) . In the output bold words will ap-
lJ

pear in CAPITALS and variables will be indexed instead of subscripted.

Comment on the algorithm is given between #-signs.

A few examples will hopefully clarify this notation:

if i=1, T[1] = "a", B[1] = "A", and double is a procedure

PROC double= (STRING s)STRING: s + s;

then gen{MODE .B. = STRUCT(ONE .double(T.); } will generate
l l

MODE A= STRUCT(ONE aa);

If times= 3,

then gen{IF x =""THEN procO(x)

k -+ times:

{ELIF x = .(k * "a") THEN proc.k (x) }

FI}

will generate

IF X : 11 II THEN procO(x)

ELIF x = "a" THEN proc1(x)

ELIF x = "aa" THEN proc2(x)

ELIF x = "aaa" THEN proc3(x)

FI

There is a straightforward translation between the macro-notation and

Algol68 programs. The Algol68 equivalent of the last example for in

stance is:

'string' ifs := "IF x = 11111111 THEN procO(x)" + newl;

'for' k 'to' times

'do' ifs+:= "ELIF x = "+ k *"a"+" THEN proc" + whole(k,O)

+ 11 (x) 11 + newl

'od';

ifs+:= "FI";

pprintt(ifs);

9

pprintt is a function which interpretes the character newl as a newline#

This illustrates that programs in the macro-processor language are

more readable than their algol68-equivalent.

The algorithm uses the following (administrative) procedures:

- tag and boldtag have one argument and return a unj_que Algol68 tag and

boldtag associated with that argument:

tag(s1) = tag(s2) <=> s1 = s2;

boldtag(s1) = boldtag(s2) <=> s1 = s2.

JO

These two procedures achieve consistent naming.

- .§. (abbreviation for suffix) has a triple (i,j,k) as argument and re

turns some suffix uniquely associated with that triple. s has moreo

ver the following property: If aij = apq' then s(i,j,k) = s(p,q,k)

for all k <= 1 ...
1J

The triple (i,j,k) must be seen as pointing to a specific occurrence

of' a symbol in the grammar. Use of s guarantees that different (and

reproducable) field selectors are associated with different oc

currences of the same symbol in the same right hand side alternative.

In section 2.4.1. we will state some additional properties of tag,

boldtag ands.

'.QJ&' is an operator which has an ai. as argument and returns a . J
boolean: 'true' if the same production was found before in the gram-

mar, i.e. if there is an a such that p < i and a .. = a pq 1J pq

Appendix 1 contains an example of the output produced by the Algol68

version of the embedding algorithm.

2.3.3. The algorithm

1. # Generate mode declarations: #

Invent for each terminal a unique mode having only one value. #

'for' i 'to' t

'do' gen{MODE .boldtag(T.) = STRUCT(ONE .tag(T.))} 'od'·,
. 1 1

For each right hand side alternative a structured mode is genera-#

ted, provided that it consists of more than one symbol and that #

it did not occur in the grammar previously. #

'for' i 'to' n

'do' ' for' j 'to' mi

'do' 'if' lJ..j > 1 'and' 'not' 'old' a 'then' ij
gen{

MODE .boldtag(aij) =

STRUCT(k+lij: {REF .boldtag(Eijk) .tag(Eijk)s(i,j,k) ,}
}

'fi'

'od';

For nonterminals with one production an equivalence declaration #

is generated. For nonterminals with more productions, a union is #

generated. #

'if' mi= 1 'then'

gen{MODE .boldtag(Ni) = .boldtag(ai1)}

'else'

gen{MODE .boldtag(N.) = UNION(j+·mi: {.boldtag(a ..),});}]. J.J
'fi'

'od';

2. # generate a translator from Algol68 to L(G): fl

For each terminal an output procedure is generated which simply #

returns that terminal. The algorithm is supposed to be able to #

#handle£ correctly: #

I for I i I to I t

'do'

gen{

PROC a68to.tag(T.) = (.boldtag(T.) .tag(T.))STRING: ".T.";
].].].].

}

'od';

I I

12

For each right hand side alternative consisting of more than one#

symbol, a procedure is generated which calls the procedures #

generated for each symbol and concatenates the results: #

' for' i 'to' n

'do' 'for' j 'to' mi

'do' 'if' lij > 1 'and' 'not' 'old' aij 'then'

gen{

PROC a68to.tag(a ..) = (.boldtag(a ..) .tag(a ..))STRING:
1J 1J 1J

k+l..: {a68to.tag(E .. k)(.tag(E .. k).s(i,j,k) OF .tag(a ..)) +};
1J 1J 1J 1J

}

t fi I

'od';

For all nonterminals for which a united mode was invented, a #

procedure is generated which calls the procedure corresponding #

to the mode of its argument, and passes on its result. #

If there was only one right hand side, the procedure body is a #

simple procedure call. #

'if' m = 1 'then'
i

gen{

PROC a68to.tag(N.) = (.boldtag(N.) .tag(N.)) STRING:
1 1 1

a68to.tag(a. 1)(.tag(N.));
1 1

}

'else'

gen{

PROC a68to.tag(N.) = (.boldtag(N.) .tag(N.)) STRING:
1 1 1

CASE . tag(N.) IN
1

j +m.:
1

{ (.boldtag(a ..) .tag(a ..)): a68to.tag(a ..)(.tag(a ..)),}
1J 1J 1J 1J

ESAC;

}

I fi I

'od';

3. # Generate a translator from L(G) to Algol68:

As said before, we will for the moment assume that a parser for L(G)

is somehow available. This parser should accept a strings as input and

produce a value of mode REF PARSETREE: the nil-reference ifs i L(G), a

non-nil value ifs E L(G); where

MODE PARSETREE = STRUCT(STRING node,

FLEX (1:0] REF PARSETREE descendants);

The node field of a PARSETREE is either a terminal, a right hand side

production or a nonterminal.

If the node field is a terminal, the descendants field is the empty ar

ray (lower bound 1, upper bound 0).

If the node field is a right hand side production a .. , the descendants
1J

field contains 1 .. pointers to the parsetrees for all symbols in a ...
l.J 1J

If the node-field is a nonterminal, the descendant field contains one

element: a pointer to the parsetree for the successful alternative.

Example: A parser for the language produced by S ➔ aSb

the structure shown in figure 1 for the string "aacbb". fl

"a S b"

II all

"a .S b"

II a" "S II

1t C 11

figure 1

c, produces

13

14

fl Generate a translator from mode PARSETREE to Algol68:

For each terminal, a procedure is generated which returns the only #

value of the mode associated with that terminal. #

' for' i ' to' t

'do'

gen{

PROC .tag(T.)toa68 = (REF PARSETREE p) REF .boldtag(T.):
1 1

(HEAP .boldtag(T.) t;
1

.tag(T.) OF t := ONLY;
1

t);

}

'od';

fl For each right hand side alternative consisting of more than one

symbol a procedure is generated, which for each symbol calls the

procedure associated with it and assembles the results into a

fl structured value.

' for' i 'to' n

'do' 'for' j 'to' m.
1

'do' 'if' lij > 1 'and' 'not' 'old' aij 'then'

gen{

PROC

HEAP

.tag(a . .)toa68 = (REF PARSETREE parsetree) REF .boldtag(a ..):
1J 1J

• boldtag(a ..) : = (
1J

k-+ 1. .: { .tag(E .. k)toa68((descendants OF parsetree)[k]),}
1J 1J

) ;

}

'fi'

'od';

fl

fl

fl

fl

For each nonterminal a procedure is generated which finds out, #

which alternative production of that nonterminal actually occurs #

fl in the parsetree, and then calls the procedure associated with that fl

fl alternative. If there was only one production, no testing, derefe- fl

fl rencing and uniting is needed: the right procedure can be called 11

11 immediately and the result passed on. 11

'if' m. = 1 'then'
1

gen{

PROC .tag(N.)toa68 = (REF PARSETREE parsetree)REF .boldtag(N.):
1 1

.tag(ai1)toa68((descendants OF parsetree)[1));

}

'else'

gen{

PROC .tag(N.)toa68 = (REF PARSETREE parsetree)REF .boldtag(N.):
1 1

(REF PARSETREE child= (descendants OF parsetree)[1];

HEAP .boldtag(N.) :=
1

j + m. -1:
1

{IF node OF child= .a .. THEN .tag(a ..)toa68(child) ELSE}
1J 1J

• tag(a.)toa68(child)
1m.

j + m.-1!
1

{FI }

) ;

}

'fi'

'od';

Finally, a procedure is generated which accepts a string as input, #

calls the parser, returns NIL immediately if the parser returns #

NIL, otherwise calls tag(S)toa68 with the result as argument and #

returns the result of that call. #

gen{

}

PROC ltoa68 = (STRING w) REF .boldtag(S):

(REF PARSETREE parsetree = parser(w);

IF parsetree :=: REF PARSETREE (NIL)

THEN NIL

ELSE .tag(S)toa68(parsetree),

FI);

15

16

2.4. Correctness .Qf. the algorithm

There are two different kinds of considerations concerning the

correctness of the algorithm. First, we must convince ourselves that

syntactically correct Algol68 1 programs are produced. Second, we must

convince ourselves that the produced programs indeed constitute an

embedding.

2. 4. 1 • Synta:it of oroduced programs

We have not tried to proof formally that the produced programs are syn

tactically correct. We have considered a lot of potential errors and

have taken measures to circumvent them. Programs produced by the Algol68

version of the algorithm are accepted by the CDC Algol68 compiler,

(after we define "MODE ONE= BOOL" and "ONE ONLY= TRUE", surround the

program by a BEGIN/END pair and insert a dummy statement before this fi

nal END).

We give a list of potential errors, and an informal explanation how

they are circumvented. RR refers to [3 J •

No undefined modes:

One mode is defined for each terminal, nonterminal and unique right

hand side .. The procedure "boldtag" always has an argument belonging

to one of these three categories and hence always produces a mode in

dicator for a mode defined somewhere in the program (though not

necessarily before its first application).

2 No redefined modes:

Terminals and nonterminals are unique. "boldtag" is defined in such a

way that it never generates a reserved tag (i.e. any representation

of a bold symbol listed in RR 9.4.1.), nor will it generate "ONE" or

"PARSETREE". The use of the operator 'old' guarantees that no mode

for a right hand side production is generated twice.

3 No circular and/or infinite modes:

There are no productions of the form N. ~ N. . If N. is nevertheless
l l l

recursiv,e, we always have the case
* * Ni-+ x1Ni x2 , with x1, x2 E (N u T) and not both empty.

iii
There arie N . e N, and Y 1 , Y 2 E (N u T) , such that

* J *
Ni-+ Nj ·+ Y1NkY2-+X 1NiX2
(The left and right production chains can be empty). MODE

boldtag(N.) will be declared as a structure with a field of mode REF
J

boldtag(Nk): Hence, the spelling of Ni passes through at least one

STRUCT (preventing circularity) and at least one REF (preventing in

finity) between definition and application (RR 7.4.1.).

4 No incestuous unions:

After unraveling, all members of unions will turn out to be struc

tured modes, which cannot be coerced to anything (RR 4.7.)

5 No unions with one member:

We gave nonterminals with one production a separate treatment in ord

er to avoid unions with one member.

6 No double field selectors in structures:

Use of procedure "s" prevents that. It produces a suffix consisting

of the smallest number of "i"-s necessary. For a right hand side

production "aaabb" for example, the following mode definition is gen

erated (supposing boldtag("aaabb") returns "AAABB" etc):

MODE AAABB = STRUCT(REF A a, REF A ai, REF A aii, REFB b, REF B bi).

See also the next point.

7 No undeclared or redeclared identifiers:

The same arguments as for undefined and redefined modes; only "tag"

takes over the role of "boldtag". We have made sure that tag never

produces the identifier "lg", "child", "parsetree" or 11 a68 11 , nor any

special identifier generated by the parser generator, nor any iden

tifier whose last letter is an "i" (to avoid generating STRUCT(REF AI

ai, REF A a, REF A ai) for a right hand side production "ai a a 11).

8 No mode errors.

This point was treated more formally, as will be mentioned again in

the next section.

17

18

9 Array indexing.

All array indices occurring in the output of the algorithm are simple

constants. A superficial glance at the algorithm may suggest the op

posite, but closer inspection will learn that the algorithm itself

replaces all variable indices by constants.

2.4.2. QQ. produced programs constitute .sn. embedding?

We have formally proved that programs produced by the algorithm do

not contain mode errors and satisfy the embedding requirements as de

fined in 2.2. Constructing this proof was not difficult but the result

is rather long and tedious. Instead of reproducing the complete proof we

will only mention some points that came forward as a result of this ef

fort.

It will be clear that the following substitutions in the definition

should be made:

M -> .boldtag(S); (Sis the start symbol of the grammar G)

a68tol -> a68to.tag(S).

Equality. The notion of equality as used in point 3 needs a defini

tion, which is less straightforward than it may seem intuitively. Con

sider the following piece of program:

MODE INTCHAR = UNION(CHAR, INT);

INT CHAR IC = "c";

CHAR c = "c 11 ;

Whether or not ic equals c seems to be a matter of taste or of cir

cumstances. We first define an, equality relation on (MODE, value)

pairs.

Definition

Let M1 , M2 lbe mode declarers and v 1 , v 2 be values.

Then (M 1 ,v 1) = (M2,v2) iff

M1 and M2 specify equivalent modes,

and

either (M1 .and M2 are PLAIN modes and v1 = v2 where"=" denotes the

Algol68 equality operator),

or (M1 and M2 are of the form REF M3 and either v 1 : =: v 2 : =: NIL or

(M3, M3(v1)) = (M3, M3(v2))),

or (M1 and M2 are of the form STRUCT(F 1 t 1 , ••• , Fn tn) and

19

(F 1 , t 1 OF v· 1) = (F 1, t 1 OF v_2) and ... and (Fn' tn OF v 1) = (Fn' tn OF v2),

or (M1 and M2 are of the form UNION(M1 , ••• , Mn) and there is a member

Mi in the UNION such that (Mi, v1) = (Mi, v2)).

In all other cases (M1 , v1) = (M2 , v2) is undefined.

('We don't have to worry about arrays and procedures since they don't occur in

values delivered by lgtoa68).

Using this definition we can formulate an equality relation on values:

v1 = v2 iff there is a mode M such that (M, v 1) = (M, v2).

~ relatio11 E. In 2. 2. we circumscribed the relation E between values

and modes as "similar to the relation 'accepted by' as used in the Al

gol68 report". This formulation was deliberately vague; in order to

proof that produced programs satisfy the embedding property, we have to

restrict this relation in the way implied by the followirig definition:

Definition

Let M be a mode declarer and v be a value.

Then VE M :iff

Either Mis a PLAIN mode and v is acqepted by

or M is of the form REF M' and V :/:: NIL and

or M is of the form STRUCT (F 1 t 1 ' ... ' F tn) n
and t OF V E t .

n n'

M,

V E MI;

and t, OF V E F 1 , and ...

or Mis of the form UNION(M 1, •••• , Mn)

union such that v E M ..

and there is a member M. of the
l.

l.

In all other cases v EM is undefined.

20

The important restriction lies in the case that Mis of the form REF

M', where vis not allowed to be NIL. The reason for this restriction is

the following. Structured modes produced for right hand side productions

contain references in all fields. These references are necessary in ord

er to avoid the production of infinite modes for recursive grammars, but

they spoil the embedding property as envisaged: Each reference intro

duces additional values accepted by the mode which do not correspond to

terminal productions. Hence point 4 of the definition (For all m E M

there is aw EL such that a68to.tag(S)(m) = w) can only be proved under

the additional assumption that the value tree form does not contain any

NIL's.

A possible way to mend this rather serious flaw in the embedding

strategy was suggested by D. Grune: use PROC M instead of REF Min the

fields of structured modes. If we then also extend the definition of

equality on (MODE, value) pairs with the case "or M1 and M2 are of the

form FROC M3 and (M3, M3' v 1)) = (M3, M3 (v 2))" we can indeed replace the

relation E by "accepted by". we did not choose to do so for two rea

sons. First of all, the modification in the equality definition leads to

a rather unusual idea about equality of procedures: ignoring all side

effects; and second, it carries us away too far from reality, i.e. the

ILP embedding presented in the next chapter.

The only other point worth noticing is, that in order to proof point

5b, (for all m E .boldtag(S), a68to.tag(S)(m) = w => ltoa68(w) = m), the

non ambiguity of the grammar is needed: Suppose PT 1 and PT2 are two dif

ferent parsetrees for the same string w, Let .tag(S)toa68(PT1) = m1, and

.tag(S)toa68(PT2) = m2. Suppose that parser(w) = PT 1• Then, though

a68to.tag(S)(m2) = w, ltoa68(w) i m2. The non ambiguity of the grammar

however guarantees that there is only one parsetree.

2.5. A parser generator

In this section we present the parser generator as it is included in

the algol68 equivalent of the algorithm. The same notation is used.

Some properties of the produced parser are:

- The parser expects the sequence of symbols to be parsed in a global

variable subject. For simplicity we will assume that all terminal

symbols of G consist of a single character, so that there is no need

for a lexical scanner to produce subject.

- The parser is a simple recursive descent parser.

With each terminal, nonterminal and (unique) right hand side, one

parser procedure is associated. The heading pf such a procedure looks

like

PROC parse_s = (INT index)STRUCT(INT postindex, REF PARSETREE par

setree):

parse_s can succeed or fail. Success is recursively determined as

follows:

- Ifs is a terminal (and not the empty string), then parse_s

succeeds if the next uncovered symbol in subject (pointed to by

index) equals s. In that case parse_s covers s: the postindex

field of the result equal index plus one. Ifs equals the empty

string, parse_s always succeeds without covering anything.

Ifs is a nonterminal, parse_s succeeds if one of the procedures

for its alternatives succeeds. parse_s covers the symbols covered

by its successful descendant.

- Ifs is a right hand side production, parse_s succeeds if all pro

cedures for its members succeed. Index points to the symbol which

is the first one to be covered by the first member of s; each next

member begins to look where the previous one left of. Parse_s

covers all symbols covered by its descendants.

If parse_s succeeds, it returns a pointer to the first symbol it did

21

22

not cover, and a pointer to the PARSETREE it constructed for the sym

bols it did cover.

If parse_s fails, it returns the old index and a nil reference.

The class of languages that can be parsed successfully by a recursive

descent parser is not the complete class of context free languages.

Moreover, the order in which alternatives appear in the grammar in

fluences the behaviour of the parser.

The parser generator uses one additional procedure, starttest(N.). It
1.

returns the empty string if N. t. Sand the string
1.

" AND (index :: UPB subject)" if N. = S.
1.

gen{MODE PARSETREE = STRUCT(STRING node,

FLEX[1:0] REF PARSETREE descendants);

MODE PARSE = STRUCT(INT postindex,

REF PARSETREE parsetree);

STRING subject;

}

:ff For each terminal which is not s , a parser procedure is :ff

:ff generated which succeeds if subject[index] equals that terminal, :fl

:ff and fails otherwise. The procedure for s always succeeds. :fl

I for I i I to I t

'do'

'if' T. = E 'then'
1.

gen{

PROC parse.tag(s) = (INT index) PARSE:

(index, HEAP PARSETREE := ("", ()));

}

'else'

gen{

}

PROC parse.tag(T.)toa68 = (INT index) PARSE:
].

IF index> UPB subject THEN (index, NIL)

ELSE IF subject[index] = ". T. 11
].

THEN (index+ 1, HEAP PARSETREE :=

ELSE (index, NIL)

FI FI;

(".T.", ()))
].

'fi'

'od';

For each right hand side alternative consisting of more than one#

symbol, a parser procedure is generated which succeeds if it #

finds subsequent pieces of subject which each match one symbol. #

'for' i 'to' n

'do' ' for' J0 'to' m i
'do' 'if' lij > 1 'and' 'not' 'old' aij 'then'

gen{

}

PROC

(INT

parse.tag(a . .) = (INT index)PARSE:
l.J

nextindex := index;

PARSE p;

[.l ..] REF PARSETREE descendants;
l.J

k + lil

{p := parse.tag(E .. k)(nextindex);
l.J

}

IF parsetree OF p ::: REF PARSETREE (NIL)

THEN (index, NIL)

ELSE nextindex := postindex OF p;

descendants[k] := par,setree OF p;

(nextindex, HEAP PARSETREE

k + 1. .:

:= (".a .. ", descendants))
l.J

l.J
{FI }

) ;

'fi' 'od';

23

24

For each non terminal, a parser procedure is generated which #

tries each alternative in turn and succeeds as soon as an alter~#

native succeeds. The procedure for S also checks, if the whole #

of subject is matched. #

gen{

}

PROC parse.tag(N.) = (INT index) PARSE:
J.

(PARSE p;

j -+ m.:
J.

{p := parse.tag(a ..)(index);
J.J

IF (parsetree OF p :/:: REF PARSETREE(NIL))

THEN

.starttest(N.)
J.

(postindex OF p, HEAP PARSETREE :: (".N. 11 , parsetree OF p))
J.

ELSE

}

(index, NIL)

j -+ m.
J.

{FI }

) ;

'od';

Finally, we generate a procedure parser which provides the correct #

interface between the parser generated here and the call by ltoa68 #

provided that terminal symbols of G consist of one character. #

gen{

}

PROC parser= (STRING w) REF PARSETREE:

(subject : = w;

parsetree OF parse.tag(S)(1)

) ;

3. Algol68G-Q.: The embedding Qt'.. .Ilif.

3.1 . .f'..CQI!! method .1Q. application

We already mentioned in the introduction, that the embedding tech

nique described in the previous chapter was developed for one special

purpose: the production of an Algol68 library prelude which is

equivalent (in a well defined sense) with the intermediate graphics

language ILP.

This chapter is concerned with that special prelude. We will exten

sively refer to the defining document of ILP [2]; without at least some

knowledge of its contents this chapter cannot be understood.

view of ILP is given in [4].

An over-

The Algol68

Algol68G-O. It

extension defined by the prelude will be called

forms only the basic layer of the high level graphics

language Algol68G as envisaged; it provides the interface between ILP

and Algol68 without as yet offering any operations on graphical objects.

The G-0 prelude is not identical to the set of declarations produced

by the embedding generator fed with the ILP syntax as given in [2].

First of all, we made a number of systematic changes in order to make

the prelude more efficient and more user friendly. Secondly, we added a

set of operators which check whether certain value restrictions on the

graphical modes (i.e. the modes ~hich are declared as part of the

prelude) are satisfied. These restrictions cover the larger part of the

non context free features of ILP. Thirdly, we added procedures to de

clare detectors and generators.

The G-0 prelude consists of seven different modules. Figure 2 shows

these modules and the way they are related; an arrow pointing from one

module to another means that the second uses the first.

25

26

II:

GO-check

V:
GO-fullc

CHECK

operators

output:

pi.ctprogtoilp

VI: GO-out

mode
declarations

error handling

FULLCHECK

operators

I: GO-modes

name-table

adminis tratio

input:

ilptopictprog

VII: GO-in

figure 2. The structure of the G-0 prelude

III: GO-names

declaration

procedures

IV:
GO-decl

Section 3.2.1 through 3.2.5 contains additional comment on the struc

ture of these modules. We do not list. the complete prelude.

Section 3 .. 3. describes Algol68G-O, the language defined by the

prelude. It lists all mode declarations, and provides information about

check operators and available procedures.

Section 3 .. 4. contains some more general comment and some plans for

the future.

3.2. Algol68G-.Q.: The implementation

3,2.1. The .mruie. declarations

In 3.3.1 the mode declarations incorporated in the G-0 prelude are

listed, together with the context free grammar on which they are based.

This grammar is not identical to the ILP syntax as given in [2], though

it does produce exactly the same language, as can be verified easily.

The use of a recursive descent parser required the removal of left

recursion from the ILP grammar; furthermore we removed ambiguities and

did some 11 factoring" on rules.

We also made a number of systematic changes to the mode declarations

generated for this grammar, in order to make the prelude more efficient

and easier to use. As a result of these changes, nearly all mode de

clarations for single terminals (with the exception of NIL, TYPFAULT,

PENFAULT, DOT and UNIT) could be deleted. The changes fall into six

classes:

1 The automatically generated names are changed to mcire appropriate

ones at many points.

2 When a structured mode contains at least one field corresponding to a

nonterminal, and one or more fields corresponding to terminals, the

latter are removed. This does not affect the number of values accept

ed by the mode and by choosing appropriate tags for the remaining

fields, the uniqueness of the mode can always be guaranteed. For ex

ample, the construct "WITH attribute DRAW picture" leads to a struc

tured node which has only two fields, of mode REF ATTR <1) and

<1) In this chapter bold words are always written in CAPITALS.

27

28

REF PICTURE respectively.

3 In the original embedding, a rule of the form

x: T 1 I T2 I I Tm

with all T. terminals, leads to a declaration of a united mode (say
].

X) which accepts m values, one for each alternative. Instead of de-

claring such a united mode we identify X with the subrange of in

tegers from 1 tom. This means we replace all applied mode indica

tions of X by INT, and impose an additional value restriction on the

affected modes. If m=2, ~e use BOOL instead of INT and then don't

even need a value restriction.

For our own and the users convenience we declare some additional con

stants with mnemonic names, which associate such an integer (or

boolean) value with some terminal.

Two example of declarations affected by this change are the declara

tions for MODE TYPO (p. 55) and MODE NPICT (p. 37)

4 The mode produced for the nonterminal "value" has lists of digits

(possibly interleaved with a few special characters like+,-, . and

e) as values. We replaced this mode by REAL or INT, (depending on

value restrictions), thus cutting out a complete subtree and making a

nice set of operators available.

Equally, the mode declarations for "properstring" and for "name" are

deleted and all applied indications are replaced by STRING. The af

fected modes get an additional value restriction (no blanks and

satisfying the identifier syntax respectively).

5 Syntax rules of the form "x: ax x" lead to declarations like

MODE X = UNION(AX, A);

MODE AX= STRUCT(REF A a,

REF AX ax);

The mode AX has list-like structures as values, but they are not ter

minated by a NIL-reference. In most cases we replaced these lists by

arrays; in the remaining cases we changed to a "normal" list struc

ture, i.e. we omit the union and assume that the list is terminated

by NIL.

6 We sometimes removed references in fields of structured modes.

All fields in structured modes originally contain a reference, in

cluded to guarantee that no modes can have values of infinite size.

As explained in section 2.4., their presence has a drawback: they in

troduce additional values accepted by the mode which do not

correspond to terminal productions. As a consequence we can no longer

completely rely on the Algol68 mode mechanism to ensure that all

values correspond to valid ILP constructs (that is, valid at least

according to the context free syntax), and have to include an expli

cit check on the absence of fields which have value NIL. For all non

recursive structured modes there is an alternative: omitting the

reference. This however would greatly increase the size of values,

and thus introduce an unacceptable amount of overhead when these

values are passed as arguments to procedures. We decided to adopt

the following strategy. References are not omitted if they point to

values of a mode on which value restrictions are imposed. We can then

attach a special meaning to nil-references, they replace incorrect

values. We will return to this point in the next section.

3.2.2. Context sensitivity: CHECK~ FULLCHECK

ILP is not a context free language, which is another reason why we

cannot fully out our plan to use the Algol68 mode mechanism to ensure

that any sequence of operations on an ILP program will produce another

valid ILP program.

Most of the non context free features of ILP are of the type "the

number of columns in an affine matrix must equal the number of rows plus

one", and can in Algol68G-O be expressed as value restrictions on the

graphical modes.

The G-0 prelude contains operators to check these restrictions. These

operators act as a filter, their operand is a pointer to a graphical ob

ject. If the object is well formed, the pointer is returned unchanged;

if not, the NIL-pointer is returned.

29

30

There are two sets of operators. All operators in the first set are

called CHECK, (i) They check exactly one level of value restrictions;

non-NIL fields in structures are assumed to be well formed. For exam

ple, CHECK on the mode corresponding to "pictures" checks whether all

pictures in such a list have the same dimension, but does not check

whether the pictures themselves are well formed. There is a CHECK

operator for each mode with imposed value restrictions.

If a CHECK operator finds an error, it issues some appropriate mes

sage and sets an errorflag. Execution of the Algol68G program is not

terminated, but no more ILP output will be produced.

(Error messages are problematic by the way. We would like to associ

ate with such a message the line number in the particular program from

which the most recent call to a prelude procedure or operator occurred;

but there seems to be no way to retrieve this information. We provide a

substitute which may help a user to locate the offensive point in his

program: the error handling procedure also prints the value of a global

variable which can be set from the user program to an integer value by a

call to a procedure 111 11 or to a string value by a call to a procedure

11 sl 11 • Its initial value is the empty string.)

In future versions of Algol68G, operators which deliver a value of a

mode on which a value restriction is imposed, should always let this

value pass through a CHECK filter before it is returned. In that way,

all components of other modes will indeed be either NIL or well formed.

Members of the second operator set are called FULLCHECK. These

operators have two tasks: they check value restrictions on all levels

(using the CHECK operators), and they check those non context free

features of ILP which cannot be expressed as value restrictions, namely:

- All names of named pictures should be different,

(1) Algol68 allows definition of different operators with the same name

(in this case CHECK), as long as these operators can be differentiated

according to the modes of their argument.

- All names of attribute packs should be different,

- External references must be valid.

Like the CHECK operators, the FULLCHECK operators return their argu

ment unchanged if it is well formed, and NIL if it is not.

The set of modes with which a FULLCHECK operator is associated can be

determined (iteratively) as follows:

- A FULLCHECK operator is defined for all modes which contain external

references at the top level;

A FULLCHECK operator is defined for a united mode if it has at least

one member which has an associated CHECK or FULLCHECK operator.

- A FULLCHECK operator is defined on a structured mode if it has at

least one field which has an associated CHECK or FULLCHECK operator,

and on an array if a CHECK or FULLCHECK operator is associated with

its elements.

Both the input and the output procedure use the FULLCHECK set to as

sure that no incorrect ILP programs are accepted or produced.

3.2.3. Names .slli1 declarations

Detectors (other than the common detector), symbols, curves and tem

plates must be declared. Procedures "decldetectors", "declsymb", "de

clcurves" and "decltemplates11 are provided for this purpose. For curves

and templates additional information like the number and type of parame

ters must be specified as well. The four declaration procedures all

contain a call to a boolean procedure, named "detavailable", "symavail

able", "curveavailable" and "tempavailable" respectively. These pro

cedures return TRUE if the declaration is acceptable and FALSE if it is

not, in the last case the declaration procedure issues an error message.

The body of these procedures depends on the (local) ILP implementation.

(In the G-0 prelude running at this moment all "available" procedures

return FALSE) .

31

32

Names of named pictures and attribute packs need not be declared

separately, FULLCHECK takes care of that. All names are gathered into

one nametable. Associated with each name is its type (named picture,

attribute pack, symbol, curve, template or detector) and in the cases of

template and curve a descriptor for number and types of parameters.

Names may occur more than once in the table, provided that the associat

ed objects have different types; the ILP syntax is such that it can be

determined immediately whether a name refers to a named picture, an at

tribute pack, a symbol, a curve, a template or a detector.

All names occurring in an input ILP program, are automatically de

clared by the input procedure.

3.2.4. The output procedure

In the original embedding a separate output.procedure is associated with

each mode declaration. However, this extra layer of procedures intro

duces a substantial overhead caused by argument transmission; we per

formed some inline expansion of such procedure calls to increase effi

ciency. Only the outermost procedure, "pictprogtoilp", is available to

the user, all other procedures are declared within its body. First

"pictprogtoilp" checks the errorflag; if that is set it immediately re

turns. Otherwise it performs a FULLCHECK on its argument, only if this

FULLCHECK does not return the nil reference it produces the ILP version.

The output is sent to a file, specified by the user; see 3,3.2 .. An at

tempt is made to provide a reasonable lay-out.

3.2.5. The input procedure

Again, only one (the outermost) input, procedure is available to the

user, called "ilptopictprog". This procedure translates ILP programs to

Algol68 objects in one pass; there are no separate phases as in the ori

ginal embedding. ILP is LL(1); hence only one symbol at a time needs to

be considered. A procedure "nextsymb" gets the next lexical unit from

the input file, which is specified by the user; see 3.3.2 .. The parser

is a stupid one: If it finds an error, it issues one message and then

terminates. No error recovery is provided. we have a reason to write

such a stupid parser, as will be explained in section 3,4.1. If the

parser completes translation of the ILP program, a FULL CHECK is per-

formed on the object produced (this check can very well be seen as a

second pass of the translator). Only if this FULLCHECK does not return

the NIL-reference, execution of the Algol68G program continues.

3.3. Algol68G-.Q.: The language extension

In this section the Algol68G-0 extension is defined. Some material

has been covered more extensively in other parts of this report, but is

repeated here to make this section self contained.

The G-0 definition is split into two parts:

- Specification of the graphical modes and associated operators. The

only operato~s provided by the G-0 extension are operators which

check whether values of the graphical modes are well formed, i.e.

whether they correspond to valid ILP constructs.

- Specification of the (few) available procedures.

3.3.1. Mode declarations

The kernel of Algol68G consists of a set of graphical modes which are

closely related to the ILP syntax. In this section the syntax and all

associated mode declarations are listed.

The syntax rules are given in BNF. Non-terminals consist of lower

case letters and underlines. The non-terminal that is defined in a rule

is separated by a colon(:). Alternatives are separated by a vertical

bar (l). The end of a rule is marked with the symbol$. A terminal is

either a special single character from the following list:

(){},. []

33

34

or it is a delimiter denoted in CAPITALS. There are no syntax rules for

the nonterminals "value", "name" and "proper_string". They produce a

denotation for a number, an identifier (first character a letter, the

others letters or digits), and a string over some (unspecified) alpha

bet. "value" is mapped to REAL or INTEGER, "name" and "properstring"

are mapped to STRING.

Each mode declaration is listed next to the corresponding syntax

rule. A declaration can be followed by some additional entries, accord

ing to the format

MODE X = '

Remark:

CHECK:

FULL CHECK

mnemonics:

- A remark entry is present only when it might not be clear to which

ILP construct a declaration refers, or when it is not formed accord

ing to the rules laid down in the previous sections.

- Presence of a CHECK entry followed by one or more predicates, means

that the prelude contains an operator declaration with the heading

OP CHECK= (REF X x)REF X:

This operator tests whether its operand (at least if it is non-nil)

satisfies the predicates listed in the entry. If that is the case,

the operand is returned unchanged, ,but if not, the nil-reference is

returned. One predicate occurs so frequently that we have introduced

an abbreviation: (•) means that all fields/elements/members of X

marked with an asterisk should be non-nil.

- Presence of a FULLCHECK entry means that the prelude contains an

operator declaration with the heading

OP FULLCHECK = (REF X x)REF X:

If we consider a value x of mode X as a tree with root r, then CHECK

tests properties of and relationships between immediate descendants

of r; a CHECK operator never contains a call to another CHECK opera

tor. FULLCHECK tests whether value restrictions are satisfied at all

levels in the tree, a FULLCHECK operator always contains at least one

reference to another FULLCHECK or CHECK operator. A FULLCHECK opera

tor tests all predicates tested by all CHECK operators defined for

submodes of X, and in addition some relationships between different

values of one mode: whether all names are unique, and whether named

pictures and attribute packs don't contain recursive references.

If pis a non-nil reference to an object of mode PICTPROG, and

FULLCHECK p = p, then p corresponds to a syntactically correct ILP

program.

A mnemonics entry contains some additional declarations associated

with integer and boolean fields in structures, of which each value

corresponds to one ILP terminal.

35

36

picture_program:

pictstruct:

named_picture:

rootsub:

dimension:

dim:

attribute_pack:

picture:

pictstruct I
pictstruct picture_program $

named_picture I
attribute_pack $

rootsub dimension name picture . $

PICT I
SUBPICT $

DIMLESS
dim$

(value)
empty$

ATTR dimension name attribute . $

name I
picture_element
{ pictures } I
subspace_pict
withdraw_node $

MODE PICTPROG = STRUCT (REF PICTSTRUCT pictstruct, (*)
REF PICTPROG next)';

- CHECK : (*) .
- FULLCHECK.

MODE PICTS:TRUCT = UNION (NPICT, ATTRPACK);

- FULLCHECK.

MODE NPICT = STRUCT (BOOL root,
INT dim,
STRING pname,
REF PICTURE pict (*)

) ;

- CHECK:
dim>= O,

& pname should be an identifier,
& the: dimension of pict equals dim,
& (*) •

- FULLCHECK:
no other npict with the same pname.

- mnemonics:
BOOL troot = TRUE,

tsub = FALSE;
INT dimless = 0;

MODE ATTRPACK = STRUCT (INT dim,
STRING aname,

- CHECK:
dim>= O,

REF ATTR attr (*)
) ;

& aname should be an identifier,
& the: dimension of attr equals dim.

- FULLC:HECK.
no other attrpack with the same aname,

MODE PICTURE = UNION (REF NPICT, (*)
PICTEL,
PLIST,
SUBSPP,
WDNODE) ; '

- Remark:
Rather than mapping the alternative "pna.me" in the original
syntax to STRING and adding a value restriction "if a value
of mode PICTURE is acceptable to STRING, it must be the
name of some named picture", we map it to REF NPICT:
Algol68 now takes care of the value restriction!

- CHECK (*).
- FULLC:HECK.

37

38

pictures:

withdraw_node:

picture_element:

coordinate_type:

type:

coordinates:

picture I
picture pictures$

WITH attribute DRAW picture$

coordinate_type
text I
generator
NIL$

type attribute_matches (coordinates)$

POINT I
LINE I
CONTOUR$

coordinate
coordinate, coordinates$

MODE PLIST = STRUCT (REF PICTURE pict, (*)
REF PLIST next);

- CHECK:
all pictures which do not have dimension O are of the same·
dimension,

& (*).
- FULLCHECK.

MODE WDNODE = STRUCT (REF ATTR
REF PICTURE

) ;

- CHECK:

attr,
pict

(*)
(*)

attr and pict are of the same dimension, unless one of them has
dimension O,

& (*) •
- FULLCHECK.

MODE PICTEL = UNION (PLC,

- FULLCHECK.

TEXT,
GENERATOR,
NULL);

MODE NULL= STRUCT(BOOL null);

- mnemonic:
NULL null;

- remark:
NULL is the mode invented for NIL.
It is not necessary to assign a value to the null-field of null;
this field is never inspected by the prelude.

MODE PLC= STRUCT (INT type,
REF MATCHES matches, (*)
REF COORDS coords (*)

) ;

- CHECK:
0 <= plc <= 3,

& (*).
- FULLCHECK.
- mnemonics:

INT tpoint = 1,
tline = 2,
tcontour = 3;

MODE COORDS = FLEX [1:0] REF COORD; (*)

- CHECK:
all elements in the array are of the same dimension,

& the array contains at least one element,
& (*).

- FULLCHECK.

39

40

coordinate::

coordinatei_values:

coordinate_value:

dimensiona.l_value:

matrix_value:

- Remark:

attribute_matches coordinate_value I
attribute_matches (coordinate_values) $

coordinate_value
coordinate_value

dimensional_value
PP I
EP $

[values J $

coordinate_values $

[dimensional_values] $

There are no declarations corresponding to the next two rules.

dimensiona.l_values:

values:

subspace_pict:

new_axes:

shift:

position:

axes:

dimensional_value
dimensional_value

value
value , values$

dimensional_values $

SUBSPACE dim new_axes picture$

position (shift axes) $

dimensional_value $

CURRENT I
ORIGIN$

, dimensional_values
empty$

MODE COORD = STRUCT (REF MATCHES matches, (•)
REF COVALS covals (*)

) ;
- CHECK: (tt)
- FULLCHECK.

MODE COVALS = FLEX [1:0] COVAL;

- CHECK:
all elements in the array which are accepted by dimval, are
of the same dimension,

& the array contains at least one element.

MODE COVAL= UNION (DIMVAL, POS);

MODE POS = STRUCT (BOOL pos);

- mnemonics:
POS pp= (POS scr; pos OF scr := TRUE ; scr),

ep = (POS scr; pos OF scr := FALSE; scr);

MODE DIMVAL = FLEX [1:0] REAL;

MODE MATVAL = FLEX [1:0,1:0] REAL;

Remark:
A row and not a column of a matrix value corresponds to
a dimensional value. This choice is made because it allows one
to write a whole matrix as a display of dimensional values:
If m = ((1,2,3),(4,5,6)) then m[1,2] = 2 and not 4.

MODE SUBSPP = STRUCT (INT dsub, dsur,
BOOL position,
DIMVAL shift,
FLEX [1:0] DIMVAL axes,
REF PICTURE pict (*)

) ;

- Remark:
This structure has an extra field: the integer dsub, denoting
the dimension of the surrounding space.

- CHECK:
dsub <= dsur,

& the dimension of pict equals dsub,
& the number of elements in axes equals either O or dsub,
& all elements in axes have dimension dsur,
& shift has dimension dsur,
& (tt).

- FULLCHECK,
- mnemonics:

BOOL current= TRUE,
origin = FALSE;

41

42

generator:

symbol:

names:

curve:

curve_generators:

curve_generator:

curve_determinators:

curve_determinator:

curve_parameters:

symbol I
curve I
template$

SYMBOL names$

name
name, names$

CURVE type attribute_matches
(curve_generators) $

curve__generator
curve _ _generator , curve___generators $

attribute_matches curve_determinator I
attribute_matches (curve_determinators) $

curve_determinator
curve_determinator

name

curve_determinators $

name (interval curve_parameters) $

curve_parameter
curve_parameter , curve_parameters $

MODE GENERATOR= UNION (SYMBOL,
CURVE,
TEMPLATE);

- FULLCHECK.

MODE SYMBOL= STRUCT (FLEX [1:0] STRING snames);

- CHECK:
All elements of symbols satisfy the identifier syntax.

- FULLCHECK:
All elements of symbols are declared as symbol names.

MODE CURVE= STRUCT (INT type,
REF MATCHES matches, (•)
REF CURGENS curgens (*)

) ;

- CHECK:
1 <=type<= 3,

& (*).
- FULLCHECK.
- mnemonics: see PLC.

MODE CURGENS = FL&X [1:0] REF CURGEN; (*)

- CHECK:
the array contains at least one element,

& (*).
- FULLCHECK.

MODE CURGEN = STRUCT (REF NATCHES matches, (*)
REF CURDETS curdets (t)

) ;

- CHECK: (*)
- FULLCHECK.

MODE CURDETS = FLEX [1:0] REF CURDET;

- CHECK:
the array contains at least one element,

& (*).
- FULLCHECK.

MODE CURDET = STRUCT (STRING cname,
REF INTERVAL interval, (*)
FLEX [1:0] CURPAR parameters

) ;

- CHECK:
cname satisfies the identifier syntax,

& (*)'
- FULLCHECK:

cname is declared as a curve determinator,
& iv and params are as specif'ied by the associated descriptor;

(see PROC declcurves in the next subsection).

43

44

curve_parameter:

interval:

template:

template_generators:

template_generator:

template_parameters:

value l
dimensional_value $

UNIT , I
(value value) ,
empty$

TEMPLATE (template_generators) $

template_generator
template.J:;enerator , template_generators $

name I
name (template___parameters) $

template_parameter
template_parameter , template_parameters $

MODE CURPAR = UNION (REAL, DIMVAL);

MODE INTERVAL= UNION (UNIT,
[]REAL,
QVOID

) i

- CHECK:
If an interval i [] REAL, then LwB i = 1 and UPB i = 2.

MODE UNIT = STRUCT (BOOL unit);

- mnemonic:
UNIT unit;

MODE QVOID = STRUCT (BOOL qempty);

- Remark:
QVOID is the mode invented for E.

We could have used VOID instead; but not all available Algol68
compilers allow VOID as a member in a union. The CDC compiler,
which we used for implementation of the prelude, for example
does not.

- mnemonic:
QVOID qempty;

MODE TEMPLATE= FLEX [1:0] REF TEMPGEN;

- CHECK:
the array contains at least one element,

& (*).
- FULLCHECK.

MODE TEMPGEN = STRUCT (STRING tname,

- CHECK:

FLEX [1:0] TEMPPAR parameters
) ;

tname satisfies the identifier syntax,
elements of parameters which are accepted by l:i.EF NPICT or
REF ATTRPACK are non-NIL.

- FULLCHECK:
tname is declared as a template name,

& parameters are as specified by the associated descriptor
(see the entry for PROC decltemplates in the next section).

45

46

template_parameter:

text:

strings:

string:

proper_strings:

value I
dimensional_value
name$

TEXT attribute_matches (strings)

string
string, strings$

attribute_matches proper_string i
attribute_matches (proper_strings) $

proper_string
proper_string, proper_strings $

MODE TEMPPAR = UNION (REAL,
DIMVAL,

- Remark:

REF NPICT, (*)
REF ATTRPACK, (*)
STRING

) ;

See the remark with the declaration for PICTURE concerning
the members REF NPICT and REF ATTRPACK.
The same treatment of the alternative 11 dname" is not possible;
unlike pnames (which may occur in just one NPICT) and anames
(which may occur in just one ATTRPACK), a dname (i.e. a re
ference to some detector) can occur in more than one value
of the mode DETECT.

MODE TEXT= STRUCT (REF MATCHES matches, (*)
REF MSTRINGS strings (*)

) ;

- CHECK: (•)
- FULL CHECK.

MODE MSTRINGS = FLEX [1:0] RBF MSTRING; (*)

- CHECK:
the array contains at least one element,

& (.).
- FULLCHECK.

MODE MSTRING = STRUCT (REF MATCHES matches, (*)

- CHECK: (*)
- FULLCBECK.

REF PSTRINGS pstrings (*)
) ;

MODE PSTRINGS = STRUCT (FLEX [1:0] STRI~G pstring)

- CHECK:
the character blank does not occur in any element of the array,

& the array contains at least one element.

MODE MATCHES= FLEX [1:0] REF MATCH; (*)

- CHECK:
No two matches have the same match field,

& (*).
- FULLCHECK.

47

48

attribute_Jmatches:

deny:

attribute..,Jmatch:

attribute:

prefixed_attribute:

prefix:

basic_attribute:

attributes:

deny attribute_match attribute_matches
empty$

~ I
I

NOT i
empty$

TF
DT
ST
PN
CM
vs$

prefixed_attribute
basic_attribute $

prefix basic_attribute $

ABS
REL

attribute_class i
name I
{attributes} i
NIL$

attribute
attribute , attributes$

MODE MATCH= STRUCT (BOOL deny,
INT match);

- Remark:
In objects of mode MATCH the alternative spellings 11 ~11 and
"NOT" cannot be distinguished.
<;teny = TRUE corresponds to the alternative 11 ~11 or "NOT",
deny= FALSE corresponds to the alternative "empty".

- CHECK:
1 <= match <= 6.

- mnemonics:
HEAP MATCH tf . - (TRUE, 1) ,

dt . - (TRUE, 2),
st . - (TRUE, 3) ' . -
pn . - (TRUE, 4), . -
cm . - (TRUE, 5) ,
vs . - (TRUE, 6);

MODE ATTR = UNION (PREFATTR, BASATRR);

- FULLCHECK.

MODE PREFATTR = STRUCT (BOOL pref,
REF BASATTR attr (*)

) j

- CHECK: (*)
- FULLCHECK.
- mnemonics:

BOOL tabs= TRUE,
trel = FALSE;

MODE BASATTR = UNION (ATTRCLASS,
REF ATTRPACK, (it)
ALIST,
NULL);

- Remark:
The same observation which led to a member REF NPICT in the
deelaration for PICTURE, led to a member REF ATTRPACK here.

- CHECK: (it)
- FULLCHECK.

MODE ALI ST = STRUCT (REF ATTR at tr, (*)
REF ALIST next

) ;

- CHECK:
All attributes which don't have dimension O have the
same dimension,

& (*).

- FULLCliECK.

49

50

attribute_class:

transformation:

rotate:

invariant:

transcale:

tras:

matrix:

matrix_type:

transformation
detection
style I
control I
pen I
coordinate_mode
visibility$

rotate I
transcale
matrix I
projection
port$

ROTATE value AROUND invariant$

(dimensional_values) $

tras dimensional_value $

TRANSLATE
SCALE$

matrix_type matrix_value $

MATRIX I
AFFINE I
HOMMATRIX $

MODE ATTRCLASS = UNION (TRANSFORM,
DETECT,
STYLE,
CONTROL,
PEN,
CMODE,
VIS

) ;

- FULLCHECK.

MODE TRANSFORM= UNION (ROT,
TRANSCALE,
MATRIX,
PROJECT,
PORT) ;

MODE ROT= STRUCT (REAL angle,

- Remark:

FLEX [1:0] DIMVAL axes
) ;

Angle is supposed to be in radians and not in degrees!
- CHECK:

All elements in axes have the same dimension,
& the number of elements in axes is one less than that dimension.

MODE TRANSCALE = STRUCT (BOOL tras,
DIMV AL dim);

- mnemonics:
BOOL ttrans = TRUE,

tscale = FALSE;

MODE MATRIX= STRUCT (INT type,
MATVAL matval);

- CHECK:
(1 <=type<= 3).

& if ·type= 1 or type= 3, matval is square,
if type= 2, matval should have one more rows than
columns, i.e. UPB m = (2 UPB m) + 1.

- mnemonics:
INT tmatrix = 1 ,

taffine = 2,
thommat = 3;

51

52

projection:

par:

or:

port:

window:

viewp:

viewport:

style:

linestyle:

period:

period_description:

PROJECT par dimensional_value

PARALLEL
empty$

ORIGIN l
empty$

ON or dimensional_value $

window viewp $

WINDOW (dimensional_value ,
dimensional_value) $

; viewport
empty

VIEwPORT (dimensional_value ,
dimensional_value) $

linestyle :
pointstyle :
typographic$

period :
map i
thick$

PERIOD (period_decription) $

dash
dash , gap
dash, gap , dash$

MODE PROJECT= STRUC'I' (BOOL par,
DIMVAL eye,
BOOL or,
DIMVAL space);

- Remark:
par= FALSE corresponds to the alternative empty;
or = FALSE corresponds to the alternative empty.

- CHECK:
The dimension of eye equals the dimension of space;

MODE PORT= STRUCT (REF WINDOW window, (~)
REF VIEWP viewport (*)

) ;

- CHECK:
Window and viewport must have the same dimension,

& (*).
- FULLCHECK.

MODE WINDOW= STRUCT (DIMVAL w1, w2);

- CHECK:
w1 and w2 must have the same dimension.

MODE VIEwP = UNION (QVOID, VIEWPORT);

- FULLCHECK.

MODE VIE'WPORT = STRUCT (DIMV AL v1, v2);

- CHECK:
v1 and v2 must have the same dimension.

MODE STYLE= UNION (LINEST,
POINTST,
TYPOST);

- FULLCHECK.

MODE LINEST = UNION (PERIOD,
MAP,
THICK);

- FULLCHECK.

MODE PERIOD = STRUCT (REF DASH 1 dash 1 , (*)
REF GAP gap , (*)
REF DASH2 dash2 (*)

) ;

- CHECK:
if gap is of mode VOID, then so is dash2.

& the sum of fields of mode INTEGER is<= 100,
& (•).

- FULLCHECK.

53

54

dash:

gap:

map:

reset:

thick:

pen:

contrast:

intens:

DOT I
value$

val.ue $

MAP (value reset) $

RESETCOORDINATE
CONTINUE I
RESETLINE $

THICK (value)

PENFAULT
contrast
intens I
colour$

CONTRAST (value , value) $

INTENS (value)$

MODE DASH1 = UNION (DOT, INT);

- CHECK:
If d E INTEGER, d >= 0.

MODE DASH:2 = UNION (DOT, INT, QVOID);

- CHECK:
If d € INTEGER, d >= 0.

MODE DOT= STRUCT (BOOL dot);

- mnemonic:
DOT dot;

MODE GAP= UNION (INT, QVOID);

- CHECK:
If g E INTEGER, g >= 0.

MODE MAP= STRUCT (REAL value,
INT reset);

- CHECK:
value> O,

& (1 <=reset<= 3).
- mnemonics:

INT tresetco = 1,
tcontinue = 2,
tresetline = 3;

MODE THICK = STRUCT (REAL thick);

- CHECK:
thick>= 0.

MODE PEN= UNION (PENFAULT,
CONTRAST,
INTENS,
COLOUR);

- FULLCHECK.

MODE PENFAULT = STRUCT(BOOL penfault);

MODE CONTRAST= STRUCT (REAL c1, c2);

- CHECK:
0 <= c1 <= c2 <= 100.

MODE INTENS = STRUCT (REAL i);

- CHECK:
0 <= i <= 100.

55

56

colour:

typographic:

typo:

pointstyle:

marker:

control:

coordinate_mode:

COLOUR (value, value , value)$

TYPFAULT I
typo (value)$

FONT I
SIZE I
ITALIC
BOLD$

DOT I
POINTSTYLE typographic
POINTSTYLE marker$

"any non blank character"$

MACHINEDEPENDENTCONTROL proper_string $

FIXED I
FREE$

MODE COLOUR= STRUCT (REAL yellow,
blue,
red) ;

- CHECK:
yellow>= 0 & blue>= 0 & red>= 0.

MODE TYPO.ST= UNION (TYPFAULT, TYP);

- FULLCHECK.

MODE TYPFAULT = STRUCT(BOOL typfault);

MODE TYP :: STRUCT (INT typtyp,
REAL val) ;

- CHECK:
1 <= typtyp <= 4.

- mnemonics:
INT tfont = 1,

tsize = 2,
titalic = 3,
tbold = 4;

MODE POINTST = UNION (DOT,
PTYPO,
MARKER) ;

- FULLCHECK.

MODE PTYPO = STRUCT (REF TYPOST ptypo (*));

- CHECK : (;.)
- FULLCHECK.

MODE MARKER= STRUCT (CHAR marker);

- CHECK:
marker -f. blank;

MODE CONTROL= STRUCT (STRING control);

- CHECK:
control does not contain the character blank.

MODE CMODE = STRUCT (BOOL mode);

- mnemonics:
BOOL fix = TRUE,

free= FALSE;

57

58

visibility:

detection:

detector:

VISIBLE i
INVISIBLE$

DETECT detector proper_string
SETDEL detector proper_string
UNDETECT detector

name l
empty$

$

MODE VIS = STRUCT (BOOL visible);

- mnemonics:
BOOL tvisible

tinvisible
= TRUE,
= FALSE;

MODE DETECT= STRUCT (INT type,
STRING dname, pstring);

- Remark:
There is a small deviation here: we in fact add a field for
the UNDETECT case. A value restriction is added stating that
for type= undetect, pstring = ""

CHECK:
(1 <= dtype <= 3),

59

& dname is either the empty string or satisfies the identifier syntax,
& pstring should not contain a blank,
& if dtype = 3 then pstring should be the empty string.

- FULLCHECK:
dname is either the empty string (common detector) or is
declared as a detector.

- mnemonics:
INT tdetect = 1,

tsetdel = 2,
tundetect = 3;

60

3 . 3 . 2 . il.-~l procedures

Procedures to declare externals

Declaration of externals, i.e. symbols, curves, templates and

detectors is obligatory. Testing whether all externals and detectors

are declared indeed is left to the FULLCHECK operators.

PROC declsymbols = ([] STRING sn) VOID:

Declsymbols declares all strings in its argument as symbols.

Diagnostics:

"sname not an identifier",

"sname redeclared",

"unavaj_lable external reference".

(i.e .. the symbol is known not to be in the available ILP library).

PROC declcurves = ([] STRUCT (STRING cname,

BOOL iv,

[] INT params) cs) VOID:

Declcurves declares each element in its argument as a curve deter

minator. The argument cs must be interpreted as follows:

cname OF cs[i] is the name of the i-th curve deterrninator de

clared;

iv OF cs[i] = TRUE denotes that the i-th curve is a parameter

curve; iv OF cs[i] = FALSE den6tes that it is not.

params OF cs[i] denotes number and dimension of the parameters of

the i-th curve determinator:

There are UPB pararns OF cs[i] parameters. If iv OF cs[i] = TRUE,

(i.e. the i-th determinator belongs to a parameter curve), there

must be at least one parameter, but if it is not, parameters are

not necessarily absent. This is rather confusing; two different

meanings of the word "parameter" are involved, see 3.5.3.2.1 of

[2] for an explanation.

The dimension of the j-th parameter is (params OF cs[i])[j].

Curve parameters are either dimensional values (params[j] >= 2) or

real numbers (params[j] = 1).

Diagnostics:

"cname not an identifier",

"cname redeclared",

"parameter description index out of range" (i.e. < 0).

"parameter curve without parameters not allowed",

"unavailable external reference".

An example:

The call

declcurves((("circle", FALSE, (1,2)),

("parabola", TRUE, (1,1,1))

))

declares "circle" as a non parameter curve (i.e. without interval

specification), with one parameter of dimension one and one of dimen

sion two (probably radius and centre), and "parabola" as a parameter

curve with three real numbers as parameters.

After the declarations

REAL a= 1, b = -1, c = 5, r = 2;

DIMVAL m = (2,2);

CURDET par := ("parabola", unit, (a,b,c)),

cir · - ("circle", qempty, (r, m));

cur and par are well formed values of the mode CURDET.

61

62

PROC decltemplates = ([] STRUCT (STRING tname,

[] INT params) ts) VOID:

Decltemplates declares each element in its argument as a template

generator. The argument ts must be interpreted as follows:

tname OF ts[i] is the name of the i-th template generator de

clared.

params OF ts[i] denotes number and types of parameters of the i-th

template generator. A.template parameter can be a reference to a

named picture (type denoted by -2), a reference to an attribute

pack (type denoted by -1), the name of a detector (type denoted by

0), a real number (type denoted by 1) or a dimensional value of

dimension n (type denoted by n).

Mnemonics for these types are declared as well:

INT npicttype = -2,

attrpacktype = -1,

dnametype = O;

Diagnostics:

"tname not an identifier",

"tname redeclared",

"parameter description index out of range" (i,e. < -2).

"unavailable external reference".

An example:

The call

decltemplates((("square", (1, npicttype)),

))

("wdnode", (attrpacktype, npicttype)),

("enable", (dnametype, npicttype))

declares "square" as a template expecting a number and a reference to

a named picture as parameters, "wdnode" as a template expecting

references to an attribute pack and a named picture as parameters,

and "enable" as a template expecting a detector and a reference to a

named picture as parameters.

Output

PROC pictprogtoilp = (REF PICTPROG pictprog,

UNION (REF FILE, FILDES) file) VOID:

where

MODE FILDES = STRUCT (STRING idf,

INT p, 1, c);

Pictprogtoilp checks whether its first argument "pictprog"

corresponds to a syntactically correct ILP program and if so, pro

duces the ILP equivalent on the file denoted by its second argument

"file".

Pictprogtoilp writes to a file named "outfile". In case "file" is

of the mode FILE, pictprogtoilp assumes that it refers to a file al

ready opened for writing: "outfile := file". In case "file" is of

mode FILDES, pictprogtoilp opens "outfile" for writing by means of

the call

"establish(outfile, idf OF file, stand out channel,

p OF file, 1 OF file, c OF file) "

(i.e. outfile is established with external name idf, with p pages, 1

lines per page and c characters per line).

Two integer variables are associated with pictprogtoilp:

INT pre denotes the number of decimals put out for real numbers and

is initialized to 2; INT maxindent is a lay out parameter: it denotes

the maximum indentation allowed on the output file. It is initialised

to 40, but changed to ENTIER ((c OF file) / 2) whenever pictprogtoilp

establishes an output file.

63

64

There are many diagnostics, all related to violations of the value

restrictions on PICTPROG as listed in the previous section.

Input

PROC ilptopictprog = (UNION (REF FILE, FILDES) file) REF PICTPROG:

Ilptopictprog expects an ILP program on the file denoted by its

argument. It reads from REF FILE "infile". In case "file" is of mode

REF' FILE, ilptopictprog assumes that it refers to a file opened f'or

reading: "infile : = file". In case "file" is of mode FILDES (see for

the declaration the previous entry output), ilptopictprog opens in

file f'or reading by means of the call

"establish(infile, idf OF file, stand in channel,

p OF file, 1 OF file, c OF file) ".

If the program on infile is not syntactically correct, ilpto

pictprog will issue a message and terminate execution of the Algol68G

program. No error recovery is provided; see 3.4.1 .

.land &

PROC 1 =· (INT i) VOID and

PROC sl = (STRING s) VOID

assign their argument to a global variable "label". Whenever an er

ror message is issued by the G-0 prelude, the current value of "la

bel" is printed as well; hence "s" and "sl" can be used to locate of

fensive calls. We are not very enthusiastic about this facility.

3,4. Discussion

The design of the G-0 prelude as presented in this report is based

on four a priori decisions. In chronological order, these decisions

were:

1 To design an intermediate graphics language (ILP) and use that as

a uniform interface between all modules of a graphics system. As

a consequence of this decision, a high level graphics language is

defined in terms of operations on ILP programs, and implemented as

an extension of an existing language. This decision is by far the

most fundamental; it cannot be changed without changing the com

plete set up of the graphics project.

2 To use Algol68 as a host language,

3 To implement the interface as a library prelude, centered around a

set of declarations for graphical modes.

4 To construct the G-0 prelude in the way described in this report,

stressing some issues (equivalence with ILP, safety) and disre

garding others (efficiency).

In this concluding section we want to give some comment on these

decisions. At this moment such comment is necessarily perfunctory,

real conclusions cannot be drawn until considerable experience has

been gained with a working graphics system.

We will discuss the four points in reverse order, starting, so to

speak, close to the G-0 prelude and then gradually moving further

away from it.

3.4.1. Aspects of the Q.-Q prelude

We have designed the G-0 prelude with two major requirements in

mind: There should be some well established relationship between the

graphical mode declarations and ILP constructs; and the prelude

65

66

should be safe in the sense that it accepts and produces only syntac

tically correct ILP programs.

There are however two other requirements to be met. Algol68G pro

grams should function in an interactive environment. They should

not be too difficult to write, and they should not run too slowly.

We have consciously neglected these requirements in this first design

stage -- we have the firm belief that optimising a well structured

program is always easier than well structuring a poorly designed but

fast one.

As for the first of these two stepchildren, we must agree that

some of the mode declarations look awkward. For example, we have

hesitated some time before we included the rather baroque declaration

for PERIOD.

This awkwardness can easily be hidden from the user by declaring

some additional procedures

PERIOD as a structure with

and/or operators. Instead of declaring

three integer fields, using negative

values to denote DOT and "not specified", or requiring that all three

values are always specified, we can also declare an additional pro

cedure

PROC peiriod = (INT d1, g, d2) PERIOD: (.....);

Such a procedure facilitates construction of a value of mode PERIOD,

without disturbing the Algol68G/ILP correspondence.

Efficiency is an other and harder problem. There are several

sources of inefficiency in the prelude in its current form. One of

them is that many value restriction checks are likely done twice. We

intend to use the CHECK operators when values are assembled into a

structure or an array, but we also have PICTPROGTOILP perform an en

tire FULLCHECK on its argument. Leaving out the first CHECK has the

disadvantage that errors are no longer detected at the earliest pos

sible moment. Leaving out the FULLCHECK in the I/0 procedures means

that we can no longer guarantee that only syntactically correct ILP

programs are accepted and produced.

A possible solution is to include an extra boolean in each value

which is set after a successful check. Such a field should then be

protected against change by the particular program.

Two more fundamental sources of inefficiency lie in the treatment

of the ILP interface. First, at this moment the output procedure

produces symbolic ILP code, and the input procedure accepts symbolic

ILP code. Each time a program is read or written, a lot of string

manipulation is performed -- not one of the cheapest operations.

Second, there is no reason why not all other modules in the graphics

system (the ILP interpreter, the picture editor) should be designed

equally safe as the Algol68G module -- with the nasty consequence

that each time an ILP construct passes a boundary between different

modules, a lot of checking on both sides is done, as no module has

the slightest faith in any of the others.

Especially in an interactive environment this causes an unaccept

able amount of overhead. Short circuiting different modules is the

only reasonable solution. This can best be done by sending files

around not with symbolic ILP code but with the underlying binary

representation, (this solves the first problem) and by defining all

modules such that they guarantee correctness of their output but as

sume correctness of their input. The other way round is equally pos

sible but to us less appealing. (This soives the second problem.) For

Algol68G this means rewriting all "put" statements in

"pictprogtoilp", rewriting all "get" statements in "ilptopictprog"

and deleting the call to FULLCHECK in "ilptopictprog".

It will be clear now why we decided to write a stupid parser which

immediately gives up when it detects an error: We plan to rewrite the

Algol68G-O prelude in the way just explained, and we do not expect

the parser to have to handle error prone, hand written ILP programs.

Somewhere in the graphics system there might be a module to

translate (possibly hand written) ILP programs to some binary

equivalent, but this is by no means necessary. It is very well possi

ble that symbolic ILP does not appear anywhere in the system - reduc-

67

68

ing it to a pure descriptive tool.

3.4.2. Implementation technique: Library prelude vs. preprocessor

Taking the use of Algol68 as a host language for granted, two rea

sonable implementation techniques present themselves:

1 Define an Algol68 extension and write a preprocessor (preferably,

but not necessarily in Algol68) which translates programs in the

extended language to equivalent (according to the definition of

the extension) Algol68 programs.

2 Write a library prelude.

We chose the second alternative and are satisfied with that choice.

Concerning the theoretical part of the work, it facilitated estab

lishing a form~ relationship between Algol68G-0 and ILP. In the

case of a language extension translated to Algol68 by a preprocessor,

one must consider both the relationship between the extended language

and ILP and that between the extended language and Algol68: The se

mantics of' the language accepted by the preprocessor have to be de

fined in terms of equivalent Algol68 constructs, and it has to be

shown that the preprocessor does indeed produce these constructs. In

the library prelude case, this relationship needs not to be con

sidered, because there is no such thing as an intermediate Algol68

program. The semantics of the extension defined by the library

prelude coincide with the semantics of Algol68. he could concentrate

completely on the relationship between Algol68G and ILP.

A second advantage is, that writing a library prelude is compara

tively easy. It took us some time to work out the method reported

here, but once that was clear the implementation took only about four

weeks.

A third advantage is that library preludes can be nested, allowing

a modular design of the extension. ~e have restricted ourselves to

the definition of a core system; but we can easily build new layers

on top of this one. Such a layered design is harder to realiz·e with a

preprocessor.

There are disadvantages as well. An implementor has hardly any

freedom to choose a suitable form for an extension. A preprocessor

can accept new keywords, allowing constructions like

WITH a1, a2, a3 DRAW p1, WITH a4 DRAW p2, p3 HTIW, p4 HTIW;

It could turn out to be difficult to define procedures and operators

such that calls to them have a reasonable format, without too many

parentheses and/or casts (look at the call to "declcurves" given in

3.3.2 for example).

Another problem was mentioned already in 3.3.2.: the inaccessibil

ity of the source text obstructs clear error messages.

3.4.3. The™- .Qf. Algol68

From a theoretical point of view using Algol68 is perfect; few

other languages would have allowed us to define such a neat relation

ship between ILP and an extension with a function similar to that of

Algol68G.

We have not been completely happy though about programming in Al

gol68. The language is not easy to learn; many restrictions can only

be understood if one is aware of implementational issues. Also, in

tensive use of the mode mechanism makes a programmer soon long for an

abstract data type facility. In principle simple tasks like copying a

PICTPROG value (i.e. making a copy of a complete tree) or comparing

two values (in the sense defined i,n 2.4.2.) require huge procedures;

several times we had to write duplicate, triplicate or even quadru

plicate operators to perform the same task on objects of different

modes (extending a flexible array is a nice example).

It would be very useful to embed ILP in another language as well

and then to compare the results.

69

70

3.4.4. The 1H.Q. leyel strategy

HLGL

ILP

DM

figure 3

The mathematical centre graphics system is designed

At the according to the scheme shown in figure 3.

lower level, the ILP interpreter (1) should be able

to transform an ILP program to an image which can be

made visible on a drawing machine, and an input pro

cessor (2) should be able to construct a new ILP

program or modify an existing one as a reaction to

input from a (graphical) terminal. (See [6] for

some suggestions.) The language processor at the

higher level should be able to accept, transform and

produce ILP programs.

In principle, we do not want the two levels to interfere with each

other: Algol68G programs should handle objects which at least have the

level of pictures and attributes; i.e. it should essentially handle tree

structures. But this restricts the applications of Algol68G to those

areas where not much knowledge is needed about the graphical structure

of a picture.

For example, we expect Algol68G to be well suited to a task like con

verting chemical formulas in Wisswesser line notation [5] to ILP pic

tures representing the structural formula, and even to the reverse task.

Writing a general hidden line algorithm in Algol68G will be problematic

though, as such an algorithm needs information about the position of

certain elements in the final image. Algol68G either has to include

procedures which perform these calculations, which we consider as com

pletely unacceptable because it would amount to duplicating a large part

of the ILP interpreter into Algol68, or it has to have a communication

channel with the interpreter, asking it to calculate parts of an image

without sending the result to a drawing machine.

Implementing both tasks in Algol68G will be an excellent way to test

many features of the graphics system.

4. Literature

[1]. P.J.W. ten Hagen, "Grafische Programmeertalen", Mathematical Centre

Syllabus 25, p. 23-40, 1976.

[2]. T. Hagen, P.J.W. ten Hagen, P. Klint & H. Noot, "ILP. Intermediate

Language for Pictures", Report HI 68/77, Mathematical Centre, 1977.

[3]. A. van Wijngaarden et. al. "Revised Report on the Algorithmic Language

Algol68 11 , Mathematical Centre Tract 50, 1976.

[4]. T. Hagen, P.J.W. ten Hagen, P. Klint & H. Noot, "The Intermediate

Language for Pictures", Information Processing 77, (ed. B Gilchrist),

p. 173-178, North Holland Publishing Company, 1977.

[5]. E.J. Smith, "W.J. Wiswesser's Line Formula Chemical Notation,"

McGraw Hill, New York, 1968.

[6]. P. Klint & H.J. Sint, "A Framework for the Integration of Graphics

and Pattern Recognition", Report IW 96/78, Mathematical Centre, 1978.

'BEGIN'

#********~'***#
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**
#**

APPENDIX 1.

THIS IS AN EXAMPLE OF AH EMBEDDING GENERATED BY THE ALGOL68
VERSION OF THE EMBEDDING GENERATOR.
THE INPUT GRAMMAR WAS

G = l [S, X, Y, Z],
[A, B, C , EMPTY j ,
[S -> B 8 X ! A A Y CCC Z,

X -> C X I EMPTY,
Y ->BB X,
Z ->EMPTY]

WHERE "EMPTY" DENOTES THE EMPTY STRING.

THE TAGS AND BOLDTAGS ARE MADE ACCORDING TO THE FOLLOWING RULES:
- TAG RETURNS ITS ARGUMENT IF THAT HAPPENS TO BE AN IDENTIFIER

NOT USED FOR OTHER PURPOSES; OTHERWISE A TAG FROM THE SERIES
"Sll", "Sl2", "Sl3", IS ASSOCIATED WITH IT.
FOR EXAMPLE, TAG("A") = "A", TAG("EMPTY") = ("EMPTY"),
TAG("B BX") = "Sll".
BOLDTAG RETURNS ITS ARGUMENT SURROUNDED BY SINGLE QUOTES IF IT
IS AN IDENTIFIER AND DOES NOT CORRESPOND TO A RESERVED WORD,
OTHERWISE A BOLD TAG FROM THE SERIES "'811'", "'Bl2'", "'Bl3'"
...... IS ASSOCIATED WITH IT.
(WHY DIDN'T WE START WITH 'Bl'?. WE DIDN'T START WITH 'Bl'
BECAUSE THE CDC COMPILER STUBBORNLY REFUSED TO ACCEPT '89' .)
FOR EXAMPLE, BOLDTAG("A") = "'A'", BOLDTAG("EMPTY") = "'Bll'",
BOLDTAG("B BX") = "'812'".

- S RETURNS A SUFFIX WHICH CONSISTS OF THE SMALLEST POSSIBLE
NUMBER OF "I"-S; USUSALLY O BUT SOMETIMES l OR 2; SEE FOR
E.l{AMPLE MODE 'Bl2' GENERATED FOR "3 8 X".

THIS COMMENT AND SOME LAY OUT SYMBOLS WERE ADDED TO TtlE OUTPUT
BY HAND.

**#
**#
**#
**#
**#
**#
**#
**#
**#
**#
**#
** #
** #
**#
**#
**#
**#
**#
**#
**#
**#
**#
**#
**#
**#
**#
**#
** #
**#
**#
**#
**#
**#
**#
**#

#**#

'MODE' 'ONE'='BOOL';

'BOOL' Ot-JLY = 'TRUE';
'MODE' 'A"='STRUCT' ('ONE' A) ;

'MODE' 'B"='STRUCT' ('ONE' B) ;

'MODE' 'C"='STRUCT' ('ONE' C) ;

'MODE' 'Bll'='STRUCT' ('ONE' EMPTY) ;

'MODE' 'B12'='STRUCT' ('REF' I BI B, 'REF I I BI BI, I REF I IX I X) ;

'MODE' 'B13'='STRUCT' ('REF' 'A I A, I REF I 'A' AI, I REF I I y I '.{);

'MODE' 'Bl4'='STRUCT'('REF' 'C' C,'REF' 'C' CI,'REF' 'C' CII);

'MODE' 'S '='UNION' ('B12', 'B13', 'B14', 'Z');

'MODE' 'Bl 5 '=' STRUCT' ('REF ' 'C ' C, 'REF' 'X' X) ;

'MODE' 'X '='UNION' ('B15', 'B11') ;

'MODE' 'Y '='Bl 2 ' ;

'MODE' 'Z '='811';

'PROC' A68TOA =('A' A) 'STRING':
IIA II;

'PROC' A68TOB =('B' B)'STRING':
"B II;

'PROC' A68Toc = ('c' Cl' S'rRING':
"C II;

'PROC' A68TOEMPTY =('B11' EMP"rY) 'STRING':
II ti • ,

'PROC' A68TOS11 =('B12' Sll) 'STRING':
A68TOB(B 'OF' S11) +
A68TOB(BI 'OF' S11) +
A68TOX(X 'OF' S11);

'PROC' A68TOS12 = ('B13' S12) 'STRING':
Ab8TOA(A 'OF' S12) +
A68TOA(AI 'OF' S12) +
A68TOY(Y 'OF' S12);

'PROC' A68TOS13 =('B14' Sl3)'STRING':
A68TOC(C 'OF' S13) +
A68TOC(CI 'OF' S13) +
A68TOC(CII 'OF' S13);

'PROC' A68TOS = (Is I S) I STRING':
'CASE' s I Ii'-J I

('B12' S11) : A68T0S11 ('S11),
('B13' S12) : A68TOS12 (S12),
('B14' S13) : A68TOS13(S13),
(I z I z) : A68TOZ(Z)

I ESAC' ;

'PROC' A68TOS14 =('B15' S14) 'STRING':
Ab8TOC(C 'OF' S14) +
A6tiTOX(X 'OF' Sl4);

'PROC' A68'I'OX = ('X' X) 'STRING':
'CASE' X 'IN'

('Bl5' Sl4) : A68TOS14 (S14),
('B11' EMPTY): A68TOEMPTY(EMPTY)

I ESAC I;

'PROC' A68TOY =('Y' Y) 'STRING':
A68T0Sll(Y);

'PROC' A68TOZ =('Z' Z) 'STRING':
A68TOEMPTY(Z);

'PROC' ATOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'A':
(I HEAP I I A I T;
A 'OF' T := ONLY;
T) ;

'PROC' BTOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'B':
(I HEAP I I BI T;
B 'OF' T := ONLY;
T) ;

'PROC' CTOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'C':
(I HEAP I 'C I T;
C 'OF' T := ONLY;
T) ;

'PROC' EMPTYTOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'B11':
('HEAP' 'B11' T;
EMPTY 'OF' T := ONLY;
'I') ;

'PROC' SllTOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'B12':
'HEAP' 'B12' := (BTOA68((DESCENDANTS 'OF' PARSETREE) [l]),

BTOA68((DESCENDANTS 'OF' PARSETREE) [2]),
XTOA66((DESCENDANTS 'OF' PARSETREE) [3]));

'PROC' S12TOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'B13':
'HEAP' '813' := (ATOA68((DESCENDANTS 'OF' PARSETREE) [l]),

ATOA68((DESCENDANTS 'OF' PARSETREE) [2]),
YTOA68((DESCENDANTS 'OF' PARSETREE) l3]));

'PROC' S13TOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'B14':
'HEAP' 'B14' := (CTOA68((DESCENDANTS 'OF' PARSETREE) [l]),

CTOA68((DESCENDANTS 'OF' PARSETREE) [2]),
CTOA68((DESCENDANTS 'OF' PARSETREE) [3]));

'PROC' STOA68 = ('REF' 'PARSE"rREE' PARSETREE) 'REF' 's':
('REF' 'PARSETREE' CHILD= (DESCENDANTS 'OF' PARSETREE) ll];

'HEAP' 'S' := 'IF' NODE 'OF' CHILD= "B BX"
'THEN' S11TOA68(CHILD)

) ;

'ELSE' 'IF' NODE 'OF' CHILD= "A A Y"
'THEN' Sl2TOA68(CHILD)

'FI I

'ELSE' 'IF' NODE 'OF' CHILD= "CCC"
'THEN' S13TOA68(CHILD)
'ELSE' ZTOA68(CHILD)
'FI'

'FI'

'PROC' Sl4~rOA68 = ('REF' 'PARSETREE' PARSETREE) 'REF' 'B15':
'HEAP' 'B15' := (CTOA68((DESCENDANTS 'OF' PARSETREE) [l]),

XTOA68((DESCENDANTS 'OF' PARSETREE) [2]));

'PROC' XTOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'X':
('REF' 'PARSETREE' CHILD= (DESCENDANTS 'OF' PARSETREE) [1];

'HEAP' 'X' := 'IF' NODE 'OF' CHILD= "C X"
'THEN' Sl4TOA68(CHILD)
'ELSE' EMPTYTOA68(CHILD)
'FI'

) ;

'PROC' YTOA68 =('REF' 'PARSETREE' PARSETREE) 'REF' 'Y':
SllTOA68((DESCENDANTS 'OF' PARSETREE) [1]);

'PROC' ZTOA68 = ('REF' 'PARSETREE' PARSETREE) 'REF' 'Z':
EMPTYTOA68((DESCENDANTS 'OF' PARSETREE) [1]);

'PROC' LGTOA68 =([]'STRING' S) 'REF' 'S':
('REF' 'PARSETREE' PARSETREE = PARSER(S);
'IF' PARSETREE 'IS' 'REF' 'PARSETREE' ('NIL')
'THEN' 'NIL'
'ELSE' STOA68(PARSETREE)
I FI I) ;

