
AFDELING INFORMATICA

stichting

mathematisch

centrum·

(DEPARTMENT OF COMPUTER SCIENCE)

H.J. BOOM

A WEAKER PRECONDITION FOR LOOPS

Preprint

~
MC

IW 104/78 DECEMBER

2e boerhaavestraat 49 amsterdam

t!BUOTHffK M,'\THEr·JL\TiSCH CENTRUM
·· -- -AMSERD;\M ---

PJunted at :the Ma.thema.t..i.c.a.l Ce.n:tJr.e, 49, 2e BoeJr.haa.vu.tJr.aa;t, Am-6:tetu:lam.

The Ma.thema.t..i.c.a.l Cen:tJr.e, 6ounded :the 11-:th 06 FebJtuaJLy 1946, .l6 a. non
pJto 6Lt .in6ti.:tatio n a1.m.ing at :the ptLomoUo n o 6 pUILe mathema.t..i.C-6 a.nd .it6
a.ppUc.a.t..i.on6. 1:t .l6 ~pon6oJted by :the Ne.the/Lla.nd6 GoveA.nment fuou.gh :the
Nethelli.a.nd6 OJtga.ni..za.t..i.on 6oJt :the Adva.nc.ement 06 PU/Le Ruea.Jtc.h (Z.W.O) •

AMS(MOS) subject classification scheme (1970): 68A05

. ACM-Computing Reviews-categories: 5.24

k d . ' f 1 *) A wea er precon ition or oops

by

H.J. Boom

ABSTRACT

The purpose of this note is to argue that, contrary to Dijkstra's

pronouncements [I],

- Unbounded nondeterminism can be a meaningful programming tool,

Its usefulness does not require the existence of infinitely nondeter

ministic hardware, and

- Dijkstra's technical difficulties with unbounded nondeterminism lie

with the loop axiom, and not with nondeterminism per se.

In fact, a small change in his loop axiom will give unbounded non

determinism. The new axiom is proved correct using constructive logic with

bar induction.

KEY WORDS & PHRASES: unbounded nondetey,rrzinism, loop a:x:iom, weakest pre

condition, ordinal numbers, transfinite induction,

Ackey,rrzan function.

*) This report will be submitted for publication elsewhere.

1. USEFULNESS

The usefulness of unbounded nondeterminism will be suggested using an

artificial example.

Suppose one is designing a computer system with a paging system. The

page size, main storage size, and secondary storage size have not yet been

determined. In keeping with the spirit of top-down design, we wish to defer

these decisions until the various programs in the system are nearly

complete. The first version of the paging program therefore begins with:

page size:= arbitrary positive integer;

number of pages : = arbitrary positive integer;

secondary storage size:= arbitrary positive integer.

A nondeterministic program feature can thus correspond to a stepwise

refinement not yet taken. It is not important whether the refinement is

ultimately carried out when the program is written, when it is compiled, or

during execution, nor whether the ultimate physical machine is

deterministic.

The arbitrariness of the positive integer is exactly the same as that of

if true-> cough O ~->sneeze fi, except that there are infinitely many

positive integers. When an abstract machine runs either of these programs,

some choice will be made. Afterward, it is a matter of metaphysics whether

some other choice could have been made. The metaphysics is not substant~ally

altered by the number of paths not taken.

2. AXIOMATICS

The weakest-precondition axiom for the infinite-choice assignments above

can be stated as follows.

wp(x := arbitrary positive integer, P) =

Y ..!!!.!:. i: i > 0: wp(x := i, P).

2

The arbitrary assignment is thus seen to have a fairly simple predicate

· transformer.

Dijkstra's loop axiom can be stated in a simplified form as follows.

Let

IF =, if Pl -> S 1 0 P2 -> S2 0

DO= do Pl -> S1 0 P2 -> S2 0
PP= Pl V P2 V ••• V Pk.

0 Pk= Sk fi,

0 Pk= Sk od, and

We require that the Pi be testable; that is, that it be possible to

determine their truth or falsity.

Then let

wp(IF, P) = (Pl A wp(S1, P)) v (P2 A wp(S2, P)) v ••• v (Pk A wp(Sk, P)).

H (P) =(PA 7 PP) v 3 int m: n > m > 0 A wp(IF, H (P))
n m

for .!£1 n ~ O.

n > 0 A H (P).
n

The subscript 11D 11 stands for "Dijkstra".

Dijkstra's loop axiom fails on the following example.

LL =
i = 0 -> j := arbitrary positive integer; i :=

0 i ~ 0 A j > 0 -> j := j - 1

LLIF = if LL fi

LINF

= do LL od

= do

od

i ~ 0 -> j := arbitrary positive integer; i :=

0 i ~ o

In [I], Dijkstra is unable to account axiomatically for the termination

of LINF. The trouble is that the first step through the loop (with i = 0

initially) determines an arbitrarily large number of remaining steps. With

such a first step, it is impossible to fix an a priori upper bound on the

number of execution steps. WpD requires that such an upper bound exists.

The step to reach unbounded nondeterminacy is to permit n and min the

loop axiom to range over ordinal numbers instead of integers, thus:

H (P) = (P A 7 PP) v 3 ordinal µ: v > µ A wp (IF, H (P)) for ordinal v.
\) µ

wp(DO, P) = 3 ordinal v: H (P).
\)

The use of transfinite induction to reach fixed points is not new, but

it is still impressive how neatly is can be combined with Dijkstra's loop

axiom. In fact, the use of ordinals almost requires a simpler formulation

than in (I]. For a successor ordinal v = I, the above formula for H (P) is
\)

equivalent to: HA+l(P) = 7 PP V wp(IF, IF, HA (P)).

Calculation of the H (true) for LINF gives:
K--

PP i = 0 V (i # 0 A j > 0)

= (i = 0) V (j > 0)

H (true) = (j < n A i ; 0) for integers n > 0,
n-- -

H (true) (j < 0 A i ; 0) v 3 int n H (P) w-- - n
= (j < 0 A i ; 0) V 3 int n (j ~ n A -
= (j < 0 A i ; 0) V i # 0 -
= i I 0

H l (true)= (j < 0 Ai# 0) V wp(LLIF, i # 0)
w+ -- -

= (j ~ 0 Ai I 0) v true

true.

i ; 0)

3

4

Thus wp(DO, ~)=~,as desired. On the other hand, wp0 (DO, ~) =

(3 int n: H (true))= (i I 0). The use of ordinals here does not mean that n--
execution will only terminate after an infinite amount of time. It is

instead a means of summarizing an infinite number of distinct possibilities,

each of which terminates after a different finite number of steps.

3. EXAMPLE

The use of ordinal numbers can also be useful in completely

deterministic situations. The theory of termination functions presented in

[1] carries through if we let a terminating function be an ordinal-valued

function of the machine state which decreases with every loop iteration.

Such an ordinal function may often be easier to find than an integral

function. For example, MANNA & WALDINGER [3] have issued the challenge of

formulating a termination function for the iterative version of the Ackerman

function. This is quite difficult if the termination function must be

integer-valued, involving recursions of the same complexity as the Ackerman

function itself, but it is easy to formulate in terms of ordinal numbers.

The iterative Ackerman program reads as follows:

top:= 2; s[1]:=m; s[2]:=n;

do

od

top> A s[top-1]=0 -> s[top-1] := s[top]+1; top-:=]

□ top> A s[top-1] # 0 A s[top]=O -> s[top-1]-:=1; s[top]:=1

□ top> A s[top-1] # 0 A s[top] # 0 ->

s[top+]] := s[top]-1;

s[top] := s[top-1];

s [top-1] -:= 1;

top +: = 1

The loop invariant is that Ack(m, n) = Ack(s[O], Ack(s[1], Ack(s[2],

.•. , Ack(s[top-1], s[top]) ••.))). The termination function is

5

ws[top-I]+s[top] (I wsCi]+w)
t = w + I w

i=top-2

The task of verifying that this is indeed a termination function is left to

the readerp The expressions of the form wa+b arise from the double recursion

in the definition of the Ackerman function; the powers and summation arise

from recursion elimination.

4. CORRECTNESS

Let M be an abstract nondeterministic machine with a countable set of

states {sO, sl, ••• } on which programs can run. (For a nonconstructive

proof, countability is not required.) We shall use the letters s, t, and u

f,or states, and c, d, and e for sequences of states. For any statement Sand

states s and t, define s{S }t to mean that execution of the statement S

starting with states will terminate and that it is possible for a single

execution of the statement S to bring the machine from states to state t.

The notation Pis will be used to mean that the predicate P holds in states.

Let c = c 0 , c 1, ••• be a nondeterministic "execution sequence", i.e, a

choice sequence of states of M so that for each i ~ 0, either PPlc. or
1

wp (IF, true) I ci => ci {IF }ci+l. We permit sequences to continue after loop

termination or undefined execution of the IF as a formal device to unify the

treatment of terminating and nonterminating loops. The termination condi•tion

T (P, c) is:

T (P, c) Is says that the execution c of DO starting with state s

eventually terminates, i.e., comes to a state for which 7 PP holds, and that

when it does so {for the first time}, P holds.

6

We shall write T(P, s) for a states iff V c: c 0 = s => T(P, c).

T(P, c) thus says that every computation starting with s will terminate i.n a

state for which P holds. To prove correctness of the new loop axiom, we must

show that V states: wp(DO, P)ls => T(P, s).

Proof.

Let P ands be such that wp(DO, P)ls holds.

Construct the partial function¢ as follows: For each state t and

ordinal v such that H (P)lt and PPlt, there must exist an ordinalµ such
V

that v >µand wp(IF, H (P))jt. Let ¢(t,v) be such aµ. For other t and µ

v, ¢(t, v) is undefined.

Since wp(DO, P)ls, there exists an ordinal v such that Hv(P)ls. Let c be

any execution sequence starting with c 0 = s. Then define the sequence;\ of

ordinals:

;\ = n
0

= cf>{c., A.).
].].

Then;\ is a decreasing sequence of ordinals which terminates when

¢Cc., A.) becomes undefined, i.e., there is a first j for which
J J

7 (H'I (P)lc. /\ PP le.), and this first j gives us the last term;\ An easy
Aj J J j"

induction on k gives us HA (P)lck) for all k for which A exists, in fact
k k

for all k ~ j. Because A. exists, HA (P)lc .• Therefore we conclude that
J j J

7 PP I c., and this in turn implies that 7 wp (IF, X) I c. for any predicate X.
J J

Since ¢(ck,\) exists fork< j, Vk < j: PPlck. By eliminating

contradictory alternatives in H;\ (P)lc. we get Pie .• We have thus proved all
j J J

the clauses of T(P, c).

7

5. COMPLETENESS

To demonstrate completeness, we must show that

T(P, s) => wp(DO, P)ls. To do this, we shall examine the branching structure

of all possible executions starting with an arbitrary s for which T(P, s)

holds.

Suppose T(P, s) holds.

We shall use the notation , . . ,
l. •• J for 'i,i+1, ••• ,j', and 'c 'for 'ci,

i •• j

Consider all possible finite "execution segments" c0 ., i.e., segments
••J

cO •• j of states such that

(A segment is finite; a sequence need not be. Furthermore, segments

terminate explicitly before they become undefined.) Define the tree-branch

ordering c0 . > d0 k iff k > j and c0 . = d0 .• (Notice that the longer
••J •• ••J ••J

segments are called smaller.) Then the c0 . can be placed on a tree. The
. ••J

root is labelled with c0 0 , and the branches from the vertex labelled c0 .
• • • • J

are labelled with the possible d0 ·+l with c0 . > d0 ·+l (see figure 1).
••J ••J ••J

The ordering> then expresses relative position of the tree.
s

figure I.

This tr,ee is well-founded, since T (P, s).

To prove that wp(DO, P)ls, we shall prove that for each vertex c0 .,
••J

(3 v: H (P) le.). This is done by bar induction [2] upwards on the tree
V J

structure.

Bar induction applies to trees for which every choice sequence of

branches starting from the root terminates. The tree is thus well-founded,

and satisfies the following induction principle:

If some property P holds at every leaf of a tree, and

8

if whenever P holds on all branches from some vertex X it also holds at X,

then P holds at the root, and, in fact at all vertexs of the tree.

In our case, it suffices to prove the following induction step:

for each vertex c0 .,
•• J

if (V dO ·+l < c0 . , 3 v •• J •• J
then 3 v: H (P) I c .•

V J

No special starting step is needed, because at leaves of the tree the

induction premiss is satisfied vacuously.

To prove this induction step, assume that for each d0 ·+l < c0 . , •• J •• J
Ha. (P) ldj+l • Let S be the ordered

dj+l

sum of ad over all
j+l

dj+l (strictly, over all dO •• j+l such that dO •• j+l < cO •• j). For

definiteness, we can well-order the dj+l according to the countable

enumeration of all states of the machine M. The requirement that the set of

states of Mis countable can be dropped for a nonconstructive proof; then we

let S be the sup remum of all the a.' s.

Let e be any execution sequence starting with the segment e 0 . = c0 .•
• • J •• J

Then T(P, e); i.e.,3 k: (P /\ 7PPlek)/\ V 1 < k: PP/\ wp(IF, true)ie1 •

Clearly k > j because cO •• j is an execution segment and 7 PPlek. There are

two cases,. k = j or k > j.

(1) If k = j, then P A 7 PP I c., which is H0 (P) I c., and so finally
J J

3 v : H (P) I c .•
V J

(2) If k > J·, then PPlc. and wp(IF, true)lc .• To show that
J -- J

wp(IF, H8(P))lcj, it will now suffice to show Vu: c/IF}u => H8 (P)lu

because wp,(IF, -) is the correct predicate transformer for IF. Take any

state u such that c.{IF}u. Since PPlc., and c0 . is an execution segment,
J J •• J

we know that (c0 ., u) is an execution segment; in fact, it is one of the
••J

d0 ·+l" Consider the a defined above, for which H (P)ju. Then a < S,
••J u au u

so H8 (P)lu, and so we have proved wp(IF, H8 (P)) lcj. Therefore

3µ: S+l >µA wp(IF, Hµ(P))lcj, so HS+l(P)lcj' and finally 3v

POSTSCRIPT

H (P) IC .•
V J

9

In Dijkstra's case of bounded nondeterminism, the completeness of his loop

axiom does not need full bar-induction, but follows from the more restricted

fan theorem.

REFERENCES

[1] DIJKSTRA, E.W., A Discipline of Programming, Prentice-Hall, 1976.

[2] TROELSTRA, A. S., Choice sequences, Oxford University Press 1977,

ISlBN O 19 85313 X.

[3] MANNA, Z. & R. WALDINGER, Is "sometime" sometimes better that "always"?

CACM l!_, no 2, February, 1978, pp159-172.

