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Space-Bounded Complexity Classes and Iterated Deterministic Substitution*) 

by 

Peter R.J. Asveld 

ABSTRACT 

We investigate the effect on the space complexity when a language 

family K is extended by means of iterated A-free deterministic substitution 

to the family n(K). If each language in K is accepted by a one-way nonde­

terministic Tirrulti-tape Turing machine within space S(n) for some monotonic 

space bou.nd S (n) 2': log n, then n (K) is included in NSPACE (S (n)). Thus for 

each monotonic space bound S(n) 2': n, the inclusion K 5 NSPACE(S(n)) implies 

that n(K) is also included in NSPACE(S(n)). An implication similar to the 

latter one also holds for DSPACE(S(n)). 

Consequently, some well-known space-bounded complexity classes such 

as the families of (non)deterministic context-sensitive languages, of two­

way (non)deterministic nonerasing stack automaton languages, and PSPACE 
are AFL's closed under intersection and iterated A-free deterministic sub­

stitution. On the other hand no space-bounded complexity class which in­

cludes DPSACE(log n) is closed under controlled iterated A-free (non)deter­

ministic substitution. 

KEY WORDS & PHRASES: space-bounded corrrplexity classes, (controUed) iter­

ated parallel rewriting, iterated (deterministic) 

substitution, closure properties. 

*) This report will be submitted for publication elsewhere. 





1. INTRODUCTION 

The operation of homomorphism 1.s one of the central notions in study­

ing closure properties of language families. It has been generalized suc­

cesfully to the concept of (language-theoretic) substitution (cf. Ginsburg, 

1975, Ginsburg et al. 1969, Hopcroft and Ullman 1969 and the references 

mentioned there). When we apply a substitution Ton a word w, we choose for 

each occurrence of a symbol a. in w a word from a given language T(a.) and we 

replace that occurrence of a. by that choosen word from T(a.). 

In the study of certain classes of parallel rewriting systems, viz. 

the so-called deterministic Lindenmayer systems (Herman and Rozenberg, 1975), 

the notion of deterministic substitution has been studied as another gener­

alization of the homomorphism concept (Asveld and Engelfriet, 1977). Deter­

ministic substitution differs from ordinary or nondeterministic substitution 

by the way we replace (occurrences of) symbols in words: if we apply a deter­

ministic substitution Ton a word w, then we have to choose for each symbol 

a. a word v from the language T(a.) and we have to replace each occurrence 
a. 

of a. in w by v, i.e. by the same word from T(a.). 
a. 

If for a substitution T, each language T(a.) 1.s a singleton language 

(i.e. T(a.) contains exactly one word), then both notions of substitution 

coincide with the concept of homomorphism. But in general these notions are 

independent, i.e. there exist language families closed under deterministic 

but not under nondeterministic substitution, and vice versa (Asveld and 

Engelfriet, ]977). 

Deterministic substituion has originally been introduced in the analy­

sis of certain complexity problems (Rounds, 1973). However it was first 

studied more systematically in establishing the relation between iterating 

finite sets of deterministic substitutions and, on the other hand, gener­

alized deterministic Lindenmayer systems (the so-called deterministic K­

iteration grannnars, Asveld and Engelfriet, 1977) and certain classes of 

polyadic program schemes (Asveld and Engelfriet, 1979). The relation 

between iterating finite sets of nondeterministic substitutions and gener­

alized nondeterministic Lindenmayer systems (the nondeterministic K-itera­

tion grammars) was known previously; Van Leeuwen, 1973; Salomaa, 1973; 

Asveld, 1977 .. 
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The smallest family containing the regular sets, which is closed under 

iterated deterministic substitution is EDTOL, i.e. the family of extended 

deterministic tabled context-independent Lindenmayer or EDTOL languages 

(Rozenberg, 1973; Asveld and Engelfriet, 1977). Each EDTOL language may be 

obtained by iterating a finite set of homomorphisms over an alphabet V, 

starting from an initial symbol SE V, and finally intersecting with E* 

for some terminal alphabet Es V. Replacing these finite set of homomorphisms 

by a finite set of [non]deterministic K-substitutions yields the rather ab­

stract notion of [non]deterministic K-iteration grammar (A substitution T 

is a K-substitution, if T(a) EK for each a, where K is a given language 

family); cf. Van Leeuwen, 1973; Salomaa, 1973; Asveld, 1977, 1978; Asveld 

and Engelfriet 1977, 1979. So the family n(K) [H(K)] of all languages gene­

rated by [non]deterministic K-iteration grammars obviously depends on K, 

and it includes EDTOL whenever K contains all singleton languages. 

A further generalization leads to the notion of r-controlled K-itera­

tion grammar, in which not all sequences of substitutions are allowed in 

the iteration process, but only a restricted set of sequences, prescribed 

by a control language, is applied. This control language is a language over 

the finite set of substitutions and it is taken from a given family r of 

control languages (Asveld, 1977, 1978; Asveld and Engelfriet 1977). The 

family of languages generated by r-controlled [non]deterministic K-itera­

tion grammars is denoted by n(f,K) [H(f,K)]. 

Operators on language families liken and Hare usually called ex­

tensions, since under weak assumptions on Kand r they are indeed extensive, 

i.e. KE n(K) and r,K s n(r,K), and similarly for H. Although extensions 

are a promising tool in recent more algebraic approaches to the theory of 

grammars and languages (Van Leeuwen, 1973, 1976; Asveld, 1977, 1978; Asyeld 

and Engelfriet, 1977, 1979), in this paper we restrict our attention to the 

operators n and H only. 

Let now X denote either nor H. Since in any case Xis extensive, the 

following two problems arise quite naturally (cf. Van Leeuwen, 1976): 

(A) Given the complexity of Kand r, e.g. K,r s C for some complexity 

class C. Can we bound the complexity of languages in the extended family 

X(K), or X(f,K) respectively? Or, equivalently, does there exist a complexity 



class C' for which X(K) s C', or X(f,K) s C' respectively, holds? 

(B) Are there complexity classes c0 which are fixed points of such 

extension operators, i.e. which satisfy X(C0) = c0 or X(C0,c0) = c0? 

Note that if we are able to solve (A) with C' = C, we also have a 

solution for (B), viz. c0 = C = C'. 

Van Leeuwen (1976) considered these problems in case that X =Hand 

the complexity classes are space-bounded classes. He proved that if 

KE DSPACE(S(n)), then H(K) E DSPACE(S(n)) provided that S(n) ~ n log n; 

i.e. for S(n) ~ n log n, DSPACE(S(n)) and similarly NSPACE(S(n)) are fixed 

points of H. 

In this paper we study the instance of these problems in which X = n 

and the complexity classes are space-bounded. 
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Let K be a family containing each finite alphabet, and let r be a 

family closed under intersection with regular sets and arbitrary finite 

substitution. We show.that if Kand rare included in 1-NSPACE(S(n)) -­

i.e. each language in both Kand r is accepted by a one-way nondeterminis­

tic multi-tape Turing machine within space S(n) -- for some monotonic 

space bound S(n) ~ log n, then n(f,K) and n(K) are included in NSPACE(S(n)). 

(This result can be considered as a generalization of the inclusion EDTOL E 

NSPACE(log n) established by Jones and Skyum (1977), since for the family 

REG of regular languages we have n(REG,REG) = n(REG) = EDTOL, cf. Asveld 

and Engelfriet, 1977). Consequently, for S(n) ~ n the inclusion Ks NSPACE(S(n)) 

implies that n(K) is included in NSPACE(S(n)) as well. A similar conclusion 

also holds for DSPACE(S(n)) with S(n) ~ n. Thus for each S(n) ~ n with 

S(2n) s c.S(n) for some constant c, both DSPACE(S(n)) and NSPACE(S(n)) are 

AFL' s closed under intersec.tion and iterated ).-free deterministic substitu­

tion. (These families are however not closed under controlled iterated~­

free deterministic substitution). In particular this applies to the families 

of (non)deterministic context-sensitive languages, (non)deterministic two­

way nonerasing stack automaton languages, and to PSPACE. 
Apart from the present introductory section this paper contains three 

other sections. Section 2 consists of some preliminaries concerning com­

plexity classes, iterated (non)deterministic substitution, and controlled 
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iteration grammars. We conclude Section 2 with an important lemma on the 

length of deirivations according to (controlled) A-free iteration grammars. 

In section 3 we establish our main result, viz. we solve problem (A) with 

X = n, C = 1--NSPACE (S (n)), and C' = NSPACE (S (n)) for S (n) ~ log n. The 

proof consists of a generalization of the main ideas developed by Jones and 

Skyum (1977) in showing that the family EDTOL is included in NSPACE(log n); 

cf. also Erni, 1977; Harju, 1977; Sudborough, 1977. This result implies 

another solution of problem (A) for X = n, viz. C = C' = NSPACE(S(n)) with 

S(n) ~ n. By slightly changing Van Leeuwen's (1976) algorithm we obtain a 

similar solution with respect to deterministic space-bounded complexity 

classes, i.e. C = C' = DSPACE(S(n)) with S(n) ~ n. In Section 4 we directly 

derive from our main result a solution of problem (B), viz. n(C0) = c0 if 

c0 equals NSPACE(S(n)) or DSPACE(S(n)) for S(n) ~ n, and we establish the 

above mentioned closure properties for these families. With respect to 

problem (B) we also show that for each complexity class C which includes 

DSPACE(log n) we have neither n(C,C) = C nor H(C,C) = C. 

2. PRELIMINARIES 

We assUine the reader to be familiar with the rudiments of formal 

languages, space- and time-bounded Turing machines, and Lindenrnayer systems 

(cf. e.g. Hopcroft and Ullman, 1975; Herman and Rozenberg, 1975). 

An APL or Abstract Family of Languages (Ginsburg, 1975; Ginsburg et al. 

1969) is any nontrivial family closed under union, concatenation, Kleen+, 

A-free homomorphism, inverse homomorphism and intersection with regular 

languages. 

Let S(n) be a monotonic function, i.e. m :::; n implies S(m) :::; S(n). ½et 

DSPACE(S(n)) [NSPACE(S(n))J be the family of languages accepted by [non]­

deterministic two-way multi-tape Turing machines which scan no more than 

S(n) tape cells on any storage tape during a computation on an input of 

length n. Similarly, DTIME(T(n)) [NTIME(T(n))J denotes the family of lan­

guages accepted by [non]deterministic two-way multi-tape Turing machines 

which operate within time T(n) on all inputs of length n. The family of 

languages accepted by nondeterministic one-way multi-tape Turing machines 

within space·-bound S (n), is denoted by 1-NSPACE (S (n)). The families PSPACE, 
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P and NP are defined as usual, viz. by 

PSPACE = u DSPACE(nk) = u NSPACE(nk), 
k:;,:J k:;,:J 

p k NP k _, u DTIME(n ), = u NTIME(n ). 
k:;,:J k:;,:J 

We now turn to operations on languages, 1.n particular to substitution 

and its variants. We first recall the fonnal definition of nondetenninistic 

and detenninistic substitution. 

DEFINITION 2.1. Let K be a family of languages. A nondeterministic K-substi­

tution or nK-substitution on an alphabet Vis a mapping T: V ➔ K. This map­

ping is extended to words over V by T(7'.)={)d, T(a 1 ••• an) = T(a 1) ••• T(an), 

a. E V (I ::; i s n), and to languages L over V by T (L) = U{T (w) lw E L}. 1. 
A deterministic K-substitution or dK-substitution on an alphabet V 1.s 

also a mapping T: V ➔ K. But now Tis extended to words w over V by T(w) = 

= {h(w) I h is a homomorphism such that h (a) E T (a) for each a E V}. The 

extension of T to languages L ~ v* is as usual: T(L) = U{T(w)lw EL}. 

If T(ct) ~ v* for each a in V, then the [non]detenninistic K-substitu­

tion T: V ➔ K is called a [non]deterministic K-substitution over V. 

A family K is closed under iterated [non]detenninistic substitution 

if for each language Lin Kand for each finite set U of [non]deterministic 

* K-substitutions over some alphabet, the language U (L) -- defined by 

u*(L) = U{Tp( ••. (Tl(L)) ••. )I p:;,: O; Ti Eu, I s i::; p} -- is in K. n 

* EXAMPLE. Let T be a regular substitution over {a,b} defined by T(a) = a 

and T (b) = {bJ I I ::; j s n}. If we interpret T as a deterministic substitution, .... 
then T(abba) = {a1 bJbJa1 li:;,: O; 1 ::; j::; n}. Considering T as a nondeterminis-

tic substitution yields however T(abba) = {aibjbkalli,l:;,: O; I ::; j,k s n}. D 

Although. (controlled) iteration grammars have originally been intro­

duced in order to generalize certain parts of Lindenmayer system theory, 

they form an appropriate tool to study iterated substitution. In the fol­

lowing definition we collect the main notions quoted from (Van Leeuwen, 1973; 

Salomaa, 1973; Asveld, 1977, 1978; Asveld and Engelfriet, 1977, 1979). 
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DEFINITION 2.2. Let rand K be families of languages. A [non]deterministic 

K-iteration or dX.-iteration [nK-iteration] grammar G = (V,r,U,S) consists 

of an alphabet V, a terminal alphabet r ~ V, an initial symbol SE V, and 

a finite set U of [non]deterministic K-substitutions over V. The language 

L(G) generated by G is defined by L(G) = u*(s) n r*. A r-controUed ax.­
iteration [nK-iteration] grammar G = (V,r,u,M,S) consists of a dK-iteration 

* [nK-iteration] grammar (V,r,U,S) provided with a control language M ~ U 

satisfying ME r, whereas the language L(G) generated by G is defined by 

L(G) = M(S) n r*, where M(S) = Uhp( •.. (, 1(s)) ... )h 1 .•. ,P EM}. The family 

of languages generated by dK-iteration [nK-iteration] grammars is denoted 

by n(K) [H(K)]. Similarly, n(f,K) [H(f,K)] denotes the family of languages 

generated by r-controlled dK-iteration [nK-iteration] grammars. D 

EXAMPLE. Consider the regularly controlled K-iteration grammar G = (V,r,U,M,S) 

$ h where r = ~ u { }, V = r u {S}, U = {a,,}, M = {a, In~ O}, and a and, are 

defined b¥ 

cr(S) = L0 

a(a) = {a} 

,(S) = {S$S} 

,(a)= fo} 

L0 ~~*and LEK (S,$ i ~) 

if Cl.EV - {S} 

if a EV - {S}. 

If U consists of dK-substitutions, then L(G) 
22n_l 

= {(w$) win~ O; w E Lo} 

whereas in case a and Tare nK-substitutions the following holds: 
22n_l 

L(G) = U{(L0$) 1 0 !n ~ O}. □ 

From Definitions ·2.1 and 2.2 it follows immediately that a family~. 

containing {S} for each symbol S, which is closed under intersection with 

r* for each alphabet r, is closed under iterated [non]deterministic substi­

tution if and only if n(K) ~ K [H(K) ~ K respectively]. Similarly, we call 

each family K satisfying n(K,K) ~ K [H(K,K) ~ K] and the above mentioned 

simple conditions, closed under controlled iterated [non]deterministic 

substitution. For each family K containing u* for each finite alphabet 

U, closure of K under controlled iterated [non]deterministic substitution 

implies that K is also closed under (uncontrolled) iterated [non]deterministic 
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substitution. 

For each word x, let lxl denote the length of x. 

In the following lemma we show that each word x derivable by a A-free 

(controlled) iteration grammar can be obtained by a derivation of length 

at most linear in Ix!, provided rand K satisfy some simple conditions. 

LEMMA 2.3. Let K be a family containing aU finite alphabets. 

(I) Let r be a family closed under finite substitution and intersection 

with regular sets, and let G = (V,I,U,M,S) be a A-freer-controlled dK­

iteration [nK-iteration] grammar. Then there exists a A-freer-controlled 

dK-iteration [nK-iteration] grammar H = (VH'I,UH'~'S) such that L(H) = L(G), 

and for each x in L(H) there is a control word T1 ••• Tk in~ such that 

x E Tk ... T/S) and k::; 2. Ix!. 
(2) For each A-free dK-iteration [nK-iteration] grammar G = (V,I,U,S) 

there exists a A-free dK-iteration [nK-iteration] grammar H = (VH,I,UH,S) 

such that L(H) = L(G), and for each x in L(H) there is a string T1 ••• Tk 

over U such that x E Tk,.,T 1 (s) and k::; 2. lxl. 

Proof. (I) Since G is A-free each step in a derivation w2 E T(w1) for some 

T 1.n U, is either splitting, i.e. lw1 I < lw2 I, or stationary, i.e. lw1 I= lw2 I. 
In a possible derivation of a word x there are at most !xi - I splitting 

steps, but in general there is no bound on the number of stationary rewrit­

ing steps. As certain length preserving subderivations may correspond to 

the identity transformation they could be repeated any number of times (viz. 

w E u(w) for some u EU+, implies that w E un(w) for each n ~ I) without 

increasing th1e length of the intermediate string. In this way long control 

words may give rise to derivations of relatively short strings. 

The main idea is ·that we extend the control language M in the follo}v­

ing way. For each control word min M which gives rise to a derivation con­

taining sequences s 1, ••• ,sl of consecutively stationary steps we add a 

finite number of new control words to M. These new control words are ob­

tained from mas follows: for each subset {t 1 , ••• ,tn} of {s 1 , ••• ,sl} we 

replace in m the substring corresponding with t. (I 5 i 5 n) by a new 
l. 

equivalent length-preserving substitution. (Since there is only a finite 

number of length-preserving substitutions over a fixed alphabet, UH is 
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finite). This construction implies that for each word x in L(H) there is 

a derivation of x according to H such that, whenever a stationary step 

occurs in that derivation this step is innnediately followed by a splitting 

step. Therefore each word x in L(H) possesses a derivation according to H 

of length at most 2. Ix!. 

We now turn to the formal construction of H. 

Since r is closed under finite substitution and intersection with 

regular sets, it is closed under a-NGSM mappings, i.e. mappings induced 

by nondeterministic generalized sequential machines with accepting states 

(An a-NGSM is a nondeterministic finite automaton which can output a finite 

number of symbols for each input symbol; cf. e.g. (Hopcroft and Ullman, 

1969) for formal definitions). Let V = {a 1 , ••• ,ak}, VH = Vu{F} where Fis 

a symbol not in V, and define UH by UH= {T'I• EU} u {[.,q]IT EU, q E Q} 

where the finite set Q is defined by Q = {<X1, ••• ,~>1Xi ~ V, 1 $ i $ k}. 

Consider the a-NGSM T = (Q,U,UH,o,q0 ,QF) where Q is the set of states, 

q0 = <{a 1}, ••• ,{ak}> is the initial state, QF = {q0} is the set of final 

states, U is the input alphabet, UH is the output alphabet, and o is a 

* mapping from Q x U to the finite subsets of Q x UH defined by 

The new control language~ is defined by~= T(M). 

We briefly describe the effect of the new control language~- For 

each substitution Tin U occurring in a control word from M the a-NGSM T 

guesses nondeterministically one of the following three possibilities (cf. 

the definition of o): -

f~~~-l= The derivation step according to Tis splitting. 

This corresponds to the transition (q0 ,t') E o(q0 ,.) of T where .' is defined by 

for each i (1 $ $ k) 

•' (F) = {F}. 

Thus Tis replaced by•' and T remains in state q0 • 
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f~~~-~: The derivation step according to Tis stationary and the next step 

will also be stationary. 

We erase the occurrence of Tin the control word while we keep track of 

the stationary effect of T by means of a change of state <X1, ••• ,~> into 

<T(XI)nV, ••• ,.(~)nV>. 

f~~~_}: The derivation step according to Tis stationary but the next step 

will be splitting. 

In this case Tis the last substitution in a sequence of consecutively 

stationary steps. The ultimate effect of this sequence (including the sta­

tionary behaviour of.) is performed by a new substitution [.,<X1, ••• ,~>] 

by which Tis replaced, while T returns to state q0 • This new substitution 

is defined by 

[ T, <X1 , .° •• ,~>] (F) = {F} 

. [.,<X1,•••,~>](a.i) = ,(X.)nV if T(X.)nV #: 0 
l. l. 

[.,<X1,•••,~>](a.i) = {F} ·if .(X.)nV = 0 
l. 

The definitions of~ and.' imply that L(G) E L(H); the formal proofs 

that L(H) E L(G) and that H has the desired properties are left to the 

reader. 

(2) Let VH = Vu{F}, where Fis new. Define for each u EU+ a substitution 

au over VH by 

a (a.) = u(a.) nV 
u 

a (a.) = {F} 
u 

if u(a.)nV #: 0 

otherwise. 

We call cr and a (u,v EU+) equivalent if cr (a.)= a (a.) for each a. in 
U V U V 

VH. Let [au] denote the corresponding equivalence class of au. Then UH 

is defined by UH= {.'j, EU} u {[cru]lu EU+}, where,' is as above. Since 

there is only a finite number of length-preserving substitutions over VH, 

the set {[cr Jiu EU+} is finite. D 
u 

Note that Lemma 2.3(1) may be viewed as a generalization to controlled 

iteration grammars of a similar result (viz. Theorem 3.4 in Asveld and Van 



Leeuwen, 1975) concerning controlled ETOL systems. 

3. THE MAIN RESULT 

In this section we show that (under the assumptions of Lemma 2.3(1)) 

for each r-controlled A-free dK-iteration grammar G the membership problem 

x E L(G)? is solvable in NSPACE(S(n)) provided that S(n) ~ log n and member­

ship in both rand K can be determined in 1-NSPACE(S(n)). First, we slightly 

generalize a few concepts and an auxiliary result concerning EDTOL systems 

originating from (Jones and Skyum, 1977; cf. Erni, 1977, Harju, 1977; 

Sudborough, 1977) to dK-iteration grammars (Definition 3.1 and Lemma 3.2). 

Let G0 = (V,r,U,S) be a A-free dK-iteration grammar with V = {a 1, ••• ,ak} 

and S = a 1• Let x be a word over r of length n, and let$ be a symbol not 

in V. 

DEFINITION 3.1. A configuration (with respect to x Er* and V) is a k-tuple 
- ' x = <x 1, ••• ,~> where each xi is either$ or a nonempty subword of x. A 

configuration i is called consistent if there exists a sequence of dK-sub-

* stitutions u EU such that for each i (1 ~ i ~ k) either x. =$or 
1 

x. E u(a.). 
1 1 

The derivation relations µ_ (TE U) between configurations 

x = <x1, ••• ,xk> and y = <y 1, ••• ,yk> are defined as follows: i µ_ y if 

all i (1 ~ i ~ k), if y. ~$then y. = h-(w) with w E T(a.) and the 
1 1 X 1 

for 

partial homomorphism h-: 
X 

V + r* is defined by h-(a.) = x. if£ x. Er* 
X J J J 

(1 ~ j ~ k). D 

* For each w EV, alph(w) is the subalphabet of V consisting of those 

symbols which occur in w. 

LEMMA 3.2. 

( 1) Let i and y be configurations. If i is consistent and i ~ y for 

some TE U, then y is consistent. 

(2) Let v,w Ev* be such that x E u(v) and v E T(w) for some TE U, u Eu* 

and let x be a consistent configuration such that for each i, x. E u(a.) 
1 1 

if a. E alph(v) and x. =$otherwise. Then there exists a consistent 
1 1 

configuration i' such that i r2- i' and for each i, x! E uT(a.) if 
1 1 
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a. i:: alph(w) and x'. = $ otherwise. 
1 1 

(3) xi:: L(~) if and only if there exists a sequence of aonfiguy,_ations 
-(O) ,~J -(1) ~ ,:ct -(q) h th t -(O) t" h x x 1- ••• r- x sua a x = <1; 1, ••• ,sk> were 

!;. =a.if a. i:: alph(x) and/;, =$otherwise, and i(q) = <x,$, ••• ,$>. 
1 1 1 1 

* Proof. (l) Let u i:: U , such that for each i ( 1 $ i $ k) either x. = $ or 
1 

* x. i:: u(a.). If y. i:: I (i.e. y. ~$)then there exists a word w i:: T(a.) 
1 1 1 1 1 

and y. = h-(w), where the partial homomorphism h-: V + r* is defined by 
1 X X 

h-(a.) = x. if£ x. i:: r* (1 $ j $ k). Then for each i either y. =$or 
X J J J ' 1 

y. E: uT(a.), i.e. y is consistent. 
1 1 

(2) Let for each i, zi be an element in T(ai). Then we define xi by 

x ~ = h-(z.) 
1 X 1 

' x. = $ 
1 

if a. i:: alph(w) 
1 

if a. i alph(w) 
1 

where the partial homomorphism h- is defined as under (1). Since a. E: alph(w) 
X 1 

implies alph(z.) c alph(v), we have~!= h-(z.) i:: r* whenever a. i:: alph(w). 
1 - 1 X 1 1 

Therefore x! € UT(a.) if a. € alph(w) and x! = $ if a. £ alph(w). Thus x' 
1 1 1 1 1 

- Ll_ -is consistent and x i--- x' • 

(3) This follows from (1), (2) and a straightforward inductive argument. D 

The interested reader is invited to compare Lenuna ~.2(3) with the 

Equivalence Theorem in (Asveld and Engelfriet, 1979) and similarly Lemma 

3 in (Jones and Skyum, 1977) with Theorem 2.9 in (Downey, 1974). 

We are now ready to prove the main theorem. Let G = (V,E,U,M,S) be 

a r-controlled A-free dK-iteration grammar. In order to determine whether 

a given word xi:: r* beiongs to L(G), it is sufficient (1) to decide whether 

xi:: L(G0) where G0 = (V,I,U,S) is the uncontrolled A-free dK-iteration 

granunar corresponding to G, (2) to keep track of the sequence T1 ••• T4 of 

dK-substitutions used in a possible derivation of x according to G0, and 

(3) to determine whether T1 ••• T4 is in M. 

In the algorithm to be presented below the implementation of (2) and 

(3) is straightforward. In implementing (1) we use simulation of a deriva­

tion by means of a sequence of configurations instead of storing complete 

sentential forms according to G0 or G (cf. Lenuna 3.2(3)). 
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THEOREM 3.3. Let S(n) ~ log n, and Zet rand K be famiZies satisfying the 

assumptions of Lemma 2.3. 

(1) If both rand Kare incZuded in 1-NSPACE(S(n)), then 

n(r,K) s NSPACE(S(n)). 

(2) If KS 1-NSPACE(S(n)), then n(K) c NSPACE(S(n)). 

Pr>oof. In view of Lemma 3.2(3) and the remarks above it will be clear that 

the algorithm in Figure 3.1 determines whether x E L(G) for some given r­

controlled A-free dK-iteration grammar G·= (V,E,U,M,S) and an arbitrary 

* string x EE • In this algorithm we use the following auxiliary concepts 

and notational conventions: 

SUB(x) denotes the set of all nonempty substrings of a given string x. 

- \ is the left quotient operator, i.e. \: E* x E* + E* is a partial 

function defined by u\w = v iff uv = w. We write u\w+ whenever u\w is 

defined. 

- We assume that for each, in U and each a in V, there has been given a 

nondeterministic one-way algorithm A(,,a) accepting the language ,(a) 

within space S(n). Similarly, let CONTROL be a nondeterministic one-way 

algorithm accepting the control language M within space S(n). We write 

A+ a when the one-way algorithm A reads the next symbol of its input string 

(or rather when the next input symbol a is given to A and A continues its 

computation), and we write A+ when the algorithm A halts in an accepting 

state. 

We will now analyse the amount of space needed in executing the algo­

rithm of Figure 3.1. 

Firstly, by Lemma 2.3(1) x has a derivation according to G or to GO 
of length at most 2.lxl. So the corresponding control word m satisfies · 

1ml ~ 2n, and hence the question whether mis in M can be resolved within 

O(S(n)) space by the algorithm CONTROL. 

The second problem deals with storing the configurations. By defini­

tion each entry x. in a configuration i is either equal to$ or to a sub­
i 

string of the input x. In the latter case x. is completely determined by 
i 

its starting and its ending position in the string x, i.e. by two natural 

numbers in between 1 and n which can be stored using O(log n) bits. Thus 

storing the complete configuration i requires O(log n) space. 



2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 

12 

13 

14 

15 

16 

for i := 1 to k do 

x. := if a. e: alph(x) then al.. else $ fi; od; 
]. ]. 

X := <x 1, ••• ,~>; 

while i ,/= <x, $ , ••• ,$ > do 

guess-re: U; 

i := 1; 

while i ~ k do 

guess y. e: {$} u SUB(x); 
]. 

if y. ,/=$then - ]. --
while r ,/= :\ do 

guess a. e: V; 
J 

if x.\y. + then r := x.\y.; A(-r,a.) + a. 
- J ]. -- J ]. ]. J 

else reject fi; 

od; fi; 

if A(-r,a.) + then i := i+l else reject fi; - ]. 

17 x := <y1,··•,Yk>; 

18 CONTROL+ -r; 

19 od; 

20 if CONTROL+ then acc~pt else reject fi 

Figure 3.1. 

13 

In order to decide whether i r1- <y 1, ••• ,yk> the algorithm guesses a 

substitution-rand substrings y. (1 ~ i ~ k) of x. As pointed out, storing 
]. 

these substrings only-requires O(log n) space. Similarly, we can store the 

variable rand execute the test xj\yi+ (line 12) within space O(log n). 

Note that in lines 10-14 we determine whether y. = h-(w) for some w over l. X 

V (cf. Definition 3.1). The next step consists of deciding whether w is a 

word in the language -r(a.) (cf. lines 12 and 15). This can be resolved 
]. 

using O(S(n)) space, since -r(a.) e: Kand by assumption K is included in 
]. 

1-NSPACE(S(n)). 

· From the assumption that S(n) ~ log n, it follows that the total 

amount of space required for the execution of the algorithm is O(S(n)). 
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Thus L(G) E NSPACE(S(n)) and hence n(f,K) ~ NSPACE(S(n)). 

(2) If we on1it line 18 in the algorithm of Figure 3.1 and if we replace 

line 20 by 

then we obtain in an analogous way the corresponding result for the un­

controlled case. D 

COROLLARY 3 .. 4. Let S(n) 2c: n., and let r and K be families satisfying the 

assumptions of Lemma 2.3. 

(1) If both rand Kare included in NSPACE(S(n))., then n(f,K) ~ NSPACE(S(n)). 

(2) If K ~ NSPACE(S(n))., then n(K) ~ NSPACE(S(n)). 

Proof. Both statements easily follow from Theorem 3.3 and the fact that 

1-NSPACE(S(n)) equals NSPACE(S(n)) for S(n) 2". n. □ 

To obtain the lower bound of log n in Theorem 3.3 we use in an es­

sential way configurations instead of complete sentential forms, since 

storing complete sentential form requires O(n) space. In order to obtain a 

result similar to Corollary 3.4 for iterated nondeterministic substitution 

we have to use complete sentential forms, since due to the fact that the 

substitutions are nondeterministic we cannot rely on configurations. Estab­

lishing the following result (which was also mentioned in (Van Leeuwen, 

1976) in an implicit way) is straightforward and the proof is therefore 

left to the reader. 

THEOREM 3.5., Let S(n) 2c: n., and let rand K be families satisfying the 

conditions of Lemma 2. 3. 

(1) If both rand Kare included in NSPACE(S(n))., then H(f,K) ~ NSPACE(S(n)). 

(2) K ~ NSPACE(S(n)) implies H(K) ~ NSPACE(S(n)). □ 

Van Leeuwen (1976) established an implication similar to Theorem 3.5(2) 

for DSPACE(S(n)) provided that S(n) 2". n log n. For the sake of completeness 

we recall this result (Theorem 3.6(2)) together with the obvious controlled 

variant (Theorem 3.6(1)). 

THEOREM 3. 6 .. Let S (n) 2c: n log n., and let r and K be families satisfying 
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the assumptions of Lemma 2.3. 

(l) If both I' and Kare included in DSPACE(S(n))., then H(I';K) s_ DSPACE(S(n)). 

(2) If Ks_ DSPACE(S(n))., then H(K) s_ DSPACE(S(n)). □ 

Replacing the complete sentential forms in Van Leeuwen's proof of 

Theorem 3.6(2) by configurations yields the following result with respect 

to iterated deterministic substitution. 

THEOREM 3.7. Let S(n) ~ n., and let rand K be families satisfying the con­

ditions of Lemma 2. 3. 

(l) If both I' and Kare included in DSPACE(S(n))., then n(I',K) 5=. DSPACE(S(n)). 

(2) Ks_ DSPACE(S(n)) irrrplies n(K) s_ DSPACE(S(n)). 

Proof (sketch). A modification of Van Leeuwen's algorithm (cf. Van Leeuwen, 

1976 Theorem 5.2 for details) based on configurations instead of sentential 

forms is straightforward and it is therefore omitted. We only analyse the 

effect on the! space complexity due to this modification. 

Enumerating sequences of substitutions still requires O(n) space. 

Storing an activation-record for each recursive call of DERIV now requires 

O(log n) instead of O(n) space. Since the recursion depth remains O(log n), 

executing the recursive procedure DERIV requires at most O((logn) 2) +O(S(n)). 

For a possible test for membership in the control language we need O(n) 

space by Lennua 2. 3 ( l ) • 

Thus the total amount of space required is O(n) + O((log n) 2) + 

O(S(n))[+O(S(n)) in the controlled case] which is O(S(n)). D 

In Section 4 we will see that an improvement of the lower bounds in 

3.4(2)-3.7(2) to S(n) ~ log n is as hard as the P = NP question. 

4. APPLICATION 

In this section we discuss some applications of the results that we 

proved in thE~ previous section. We first consider closure properties of 

the families NSPACE(S(n)) and DSPACE(S(n)). 

THEOREM 4.1. Let S(n) ~ n and S(2n) ~ c.S(n) far some constant c. Then 

NSPACE(S(n)) and DSPACE(S(n)) are AFL's closed under intersection and 
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and iterated A-free deterministic substitution. Moreover, NSPACE(S(n)) is 

closed under iterated A-free nondeterministic substitution; this also holds 

for DSPACE(S(n)) provided that S(n) ~ n log n. 

Proof •. From 3.4(2), 3.5(2), 3.6(2) (i.e. Theorem 5.2 of Van Leeuwen, 1976) 

and 3.7(2) with K = NSPACE(S(n)) or K = DSPACE(S(n)), it follows that 

n(K) s Kand H(K) s K. So under the appropriate assumptions on S(n), 

NSPACE(S(n)) and DSPACE(S(n)) are closed under iterated A-free nondetermi­

nistic and deterministic ·substitution. Closure under the latter operation 

implies closure under union, concatenation, Kleene + and A-free homomorphism 

(Asveld and Engelfriet, 1977). Finally, closure inder intersection and the 

two remaining AFL-properties (viz. inverse homomorphism and intersection with 

regular languages) easily follows from standard constructions in automata 

theory which are left to the reader. D 

Comparing Theorem 4.1 with the main results in (Book et al. 1970) 

shows that our conditions on S(n) to obtain AFL's from space-bounded com­

plexity classes are much weaker than those in (Book et al. 1970). However 

in order to achieve closure under "S(n)-bounded erasing homomorphism" addi­

tional assumptions on S(n), as required in (Book et al. 1970), seems to be 

inevitable. 

Taking S(n) in Theorem 4.1 equal to specific concrete space bounds 

yields the closure under n and Hof some well-known language families. 

COROLLARY 4.2. The following language families are AFL's closed under inter­

section and under iterated A-free deterministic substitution: 

(1) PSPACE 

(2) the family of nondeterministic context-sensitive languages 

(3) the family of deterministic context-sensitive languages 

(4) the family of -two---way nondetePrninistia ·nonerasing stack automaton languages 

(5) the family of-two---way deterministic nonerasing stack automaton languages. 
Moreover the families under (1), (2), (4) and (5) are also closed 

under iterated A-free nondeterministic substitution. 

ProQf. These properties directly follow from Theorem 4.1 and the equality 

of the families under (2), (3), (4) and (5) with NSPACE(n), DSPACE(n), 
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NSPACE(n2) and DSPACE(n log n) respectively; cf. e.g. (Hopcroft and Ullman, 

1969). □ 

Although both DSPACE(n) and NSPACE(n) are closed under n, the problem 

whether DSPACE(n) is closed under H seems to be related to the LEA-problem; 

cf. the discussion in (Van Leeuwen, 1976). If DSPACE(n) is not closed under 

H, then obviously DLBA ~ NLBA (i.e. DSPACE(n) ~ NSPACE(n)). On the other 

hand if therE~ is a proof showing that DSPACE(n) is indeed closed under H, 

then that proof could probably be modified (along the lines implicitly 

suggested in Wood, 1976) in order to show DLBA = NLBA. 

From Theorem 3.5 and a straightforward induction it also follows that 

by iterating control on ETOL or EDTOL systems (in the sense of Asveld and 

Van Leeuwen, 1975; Engelfriet, 1978) we do not leave the family of context­

sensitive languages; cf. Asveld and Van Leeuwen, 197 5; Engelfriet, 1978. 

Next we show that a generalization of Theorem 4.1 and Corollary 4.2 

to closur~ under controlled iterated \-free (non)deterministic substitution 

1.s impossible. 

A family K 1.s closed under removal of right endmarker if for each 

language L ~ I* and each symbol$ i I, 1$ in K implies Lin K. 

Let RE be the family of recursively enumerable languages. 

PROPOSITION Li.3. Let K be a family closed under removal of right endmarker. 

If DSPACE(log n) ~ K ~ RE., then K is not closed under controlled iterated 

\-free (non)deterministic substitution. In particular this applies to each 

complexity class which includes DSPACE(log n). 

Proof. Let Hi3m(K) be defined by Hom(K) = {h(L)IL EK; his a (possibly eras­

ing) homomorphism}. Then Hom(DSPACE(log n)) S Hom(K) S Hom(RE) = RE. 

Since the Dyck languages are in DSPACE(log n) (Ritchie and Springsteel, 

1972) and Horn(DSPACE(log n)) is a full AFL (Ginsburg et al. 1969b) the 

Chomsky-Schlitzenberger Theorem implies that all context-free languages are 

in Hom(DSPACE(log n)). From this fact, the closure of Hom(DSPACE(log n)) 

under intersection (Ginsburg et al. 1969b) and e.g. Theorem 1 in (Baker 

and Book, 1974) it follows that Hom(DSPACE(log n)) = RE, and hence 

Hom(K) = RE. 



18 

Suppose K is closed under controlled iterated A-free (non)deterministic 

substitution. We will show that Hom(K) = RE implies that RE s K. Since this 

contradicts K ~ RE, the result follows. 

The argument is a slight modification of the proof of Theorem 2.2 

in (Asveld, 1977). 

Let Ls r* be in RE. Then for$ i r the language L$ is also in RE. 

So there exist a language Ms u* in Kand a(possibly erasing) homomorphism 

* * h: U + (ru{$}) such that h(M) = L$ and$ i U. For each symbol Tin U we 

define a A-free K-substitution T over r u {$} by 

T($) = {h(T)$} 

T(a) = {a} for each a Er. 

It is easy to see that M($) = L$. But if this language is in K, then 

Lis in K too, i.e. RE s K. D 

From Proposition 4.3 it follows that the families mentioned in Corol­

lary 4.2 as well as DSPACE(log n), NSPACE(log n), P and NP are not closed 

under controlled iterated A-free (non)deterministic substitution. (There 

exist however language families K -- even included in the family of context­

sensitive languages - that satisfy H(K,K) s Kor n(K,K) s K; cf. Asveld 

and Van Leeuwen, 1975; Engelfriet, 1978). We conclude this section by con­

sidering the properties of the latter four families with respect to un­

controlled iterated A-free (non)deterministic substitution (cf. Van Leeuwen, 

1975; Book, 1972; Greibach, 1977; King and Wrathall, 1978). 

THEOREM 4.4. 

(1) NP is an AFL closed under intersection and iterated A-free (non)-· 

deteY'ministic substitution. 

(2) Let C be either DSPACE(log n), NSPACE(log n) or P. Then the following 

propositions ax-e equivalent. 

(i) C = P = NP 

(ii) C is closed under iterated ~~~ nondeterministic substitution 

(iii) C is closed under iterated A-free deterministic substitution 

(iv) C is closed under A-free homomorphism. 
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Proof. (l) Van Leeuwen (1975) proved that H(NP) = NP, and his argument can 

also be used in order to obtain n(NP) = NP. 

(2) From (1) it follows that (i) implies both (ii) and (iii). Since each 

family including all singleton languages and closed under isomorphism 

("renaming of symbols") and iterated ;>,_-free (non)deterministic substitution 

is closed under ;>,_-free homomorphism, (ii) as well as (iii) implies (iv). 

The fact that (i) follows from (iv) has been established for C = P 

in (Book, 1972) and in (King and Wrathall, 1978) for the other two cases. D 

Theorem 4.4(2) implies that an improvement of the lower bound in 

Corollary 3,q.(2) and Theorems 3.5(2), 3.6(2), 3.7(2) and 4.1 from S(n) ~ n 

to S(n) ~ log n is as hard as the P = NP problem. 
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