
AFDELING INFORMATICA

stichting

mathematisch

centrum

IW 109/79
(DEPARTMENT OF COMPUTER SCIENCE}

D. GRUNE

SOME STATISTICS ON ALGOL 68 PROGRAMS

Preprint

~
MC

MEI

2e boerhaavestraat 49 amsterdam

, '. ' ~--,t 0\1lfo.'J~ ;;~,· :~ •-w--~-,~""

Pltinted at .the Ma.thema.:ti.cai. Cen.tlte, 49, 2e Boe.Jt.haa.veti:tluutt, Am!d:.eltdam.

The Ma.thema.ticai. Cen.tlte, 6owided .the 11-.th 06 F-eblw.aJr.y 1946, .U a. non
p!r.06,i:t w.1Utu.tion a.im,lng at .the pJr.omoUon 06 pUILe ma.thema.Uc.6 a.nd U:.6
a.pp.Uc.a.t.,i.o11.h. 1.t .-i.J, 1>pol1.ho1ted by :the Ne:theJrl.ando GoveJr.nment .thlr.ough the
NetheJtla.n.dJ.> OJtga.nlza.:tlon 601t the A.dva.nc.ement 06 PU/le 'RetietVLc.h (Z.W.O).

MS classification scheme (1980): 68A15,68A20

ACM-Computing reviews-categories: 4.6,4.22,4.12

Some Statistics on ALGOL 68 Programs*)

by

Dick Grune

ABSTRACT

An attempt is made to assess some static and dynamic

properties of ALGOL 68 programs, which are useful for

optimization decisions. The results indicate that slicing and

assignation are the most import?nt candidates for optimization,

and that optimization efforts need to be directed to the simple

cases only.

KEY WORDS&PHRASES: compiler construction, optimization,

ALGOL 68

· *)This report will be submitted for publication elsewhere.

1. THE PROBLEM

For thE~ design of the code generator of the MC ALGOL 68
Compiler we are interested in the frequency of language con
structs in normal run-of-the-mill ALGOL 68 programs [1, 2].
Knowledge of these frequencies can guide us on what to optim
ize, or, if we do not want to optimize now, at least prevent us
from making decisions which would rule out useful optimizations
later on.

The 'frequency of language constructs in normal programs'
is not a very precise notion and it is not easy to determine.
There is no good definition of a 'normal program' and we need a
full parser to identify and count 'language constructs'.

We can, however, try to get an approximation. Rather than
defining "normal programs' and a distribution, we can take a
number of E~xisting real-world programs. ALGOL 68 is used exten
sively at our installation (Control Data Cyber 72), where 7 %
of all compilations are ALGOL 68, so we have the opportunity.

And rather than tinkering with the existing compiler (which
we cannot do) we can do statistical analysis on the texts of
the programs and try to interpret the results.

Much of the philosophy developed by Knuth in his study of
FORTRAN programs [3] applies to this work as well.

Similar investigations have been done for ALGOL 60
PL/I [5] and COBOL [6].

2. THE STATIC BEHAVIOUR

2.1. Simplifying transformations

[4] ,

We collected 53 real-world user programs (in total 8131
lines) by asking users. These programs were subjected to the
following transformations (through editing, UNIX-commands and
devious means):

1. comments and pragmats were deleted;
2. mode- and priority-declarations were removed;
3. all tags were replaced by 'tag',

all denotations by 'denotation',
all user operators by 'user_operator',
all user mode indications by 'user_mode' and

' all colons by 'label_token', "colon_token' (in specif i
ca tions), 'up_to_token' (in rowers and in trimmers) or
'routine_token', as appropriate;

2

4. SKIP ~nd NIL were replaced by 'denotation';
5. parentheses in parameter-packs in calls were recog

nized;
6. brackets were split in indexers and rowers;
7. symbols that come in pairs or triples were taken to

gether (like(),[], IF THEN FI, etc.);
8. all different representations of the same operator were

taken together (e.g.+:= and PLUSAB), except those for
= and EQ.

2.2. Counting symbols
The symbols were then counted and sorted in descending fre

quency, which yields the following table.

Table I, Symbol Count
17209.tag
5916 denotation
5200,
3457 ;
2362 ()
1892 :=
1850 indexer
1488 =
1242 call
1061 user_mode

961 -
793 OF
714 *
662 REAL
626 DO OD
618 +
572 INT
547 up_to_token
540 REF
501 routine_token
499 TO
480 FOR
461 I
413 rower
396 IF THEN FI
361 UPB
355 I
326 PROC
278 user_operator
228 FROM
211 +:=
202 ELSE
197 VOID
150 LWB
148 HEAP
147 BEGIN END
145 OP

104 ABS
101 <

81 ELIF THEN
77 CASE IN ESAC
76 <=
72 AND
69 -:=
65 STRING
65 -
59 OR
55 IS
54 **
53 BY
48 ISNT
46 I : I
4 1 *: =
41 >=
39 label_token
37@
37 CHAR
22 /:=
20 LOC
13 FILE
12 %
12 +=:
11 OUT
11 STRUCT
10 SIGN

9 ELEM
8 MOD
6 ENTIER
6 %:=
6 ROUND
4 BITS
4 EXIT
4 UNION
2 FLEX

145 WHILE
143 >
132 /=
121 colon token
108 BOOL

GOTO
ODD
OUSE IN
REPR

This table gives rise to some observations.

3

The meaning of some symbols is very unclear. Prime example
is the= , which may be a dyadic operator or an is-defined-as
token; only profound analysis can tell the difference.

The first two items in the list correspond to loading a
value, which can also be considered part of the operator that
uses the result; and the next three items are not connected to
any semantic action at all in a reasonable implementation. It
is true that the semicolon signifies 'voiding' which technical
ly would amount to discarding a result, but in practice no code
needs to be generated. The first to require real action is the
:= • So it might be useful to weed from the list all symbols
that are not directly connected to a run-time action (however,
the above list does not contain the "invisible" actions in
volved in coercions). This yields:

Table II, Action Count
1892 := 72 AND
1850 indexer 69 -:=
1488 = 65 -
1242 call 59 OR

961 - 55 IS
793 OF 54 **
714 * 53 BY
618 + 48 ISNT
499 TO 46 I : I
461 I 41 *:=
413 rower 41 >=
396 IF THEN FI 37 @

361 UPB 22 /:=
355 I 20 LOC
278 user_operator 1 2 %
228 FROM 1 2 +=:
2 1 1 +:= 1 0 SIGN
150 LWB 9 ELEM
148 HEAP 8 MOD
145 WHILE 6 ENTIER
143 > 6 %:=
132 I= 6 ROUND
104 ABS 1 GOTO
1 0 1 < 1 ODD

8 1 ELIF THEN 1 OUSE IN
77 CASE IN ESAC 1 REPR

4

76. <=

It is tempting to put percentages into this list and say
that "13 % of all semantic actions are assignations'', but this
is meaningful only if all the symbols given above correspond to
actions of the same complexity, which is, of course, not true.
Our objective is to fitid constructions which merit our atten
tion in optimization; it is clear that assignations and slicing
are the great winners.

Other constructions can be identified which do not show up
directly in the tables. One is the 'boolean-enquiry-clause';
its frequency can be found by adding those of IF-THEN-FI,
ELIF-THEN, WHILE and a percentage of I (which may represent
THEN, ELSE, IN or OUT), and of I: I (which may be ELIF-THEN or
OUSE-IN). If we make the only reasonable but totally unwarrant
ed assumption that the brief symbols occur in the same ratio as
the bold symbols, we find that 270 l's are THEN's and 45 l:'s
are ELIF's.

Another construction is 'standard-operator', which can be
identified but is of doubtful use: the field is too wide for
determined optimization. On the other hand, they are so
numerous that not identifying them would also give a false im
pression. We then arrive at the following table.

Table III, Summary
4420 standard_operator 228 FROM
1892 := 148 HEAP
1850 indexer 128 CASE IN ESAC
1488 = 55 IS
1242 call 53 BY

937 boolean~enquiry 48 ISNT
793 OF 37 @
499 TO 20 LOC
413 rower 2 OUSE IN
278 user_operator 1 GOTO

The main constructs of interest are assignations, slices
and calls. A further analysis (through more editing etc.) is
given in the following tables ('simple' means 'identifier or
d~notation', a.slice means 'slice with simple indexers only',
a.selection means 'selection on an identifier' and a.formula
means 'formula with one standard operator and one or two simple
operands').

Assignations.
destination: source:

simple: 71 % simple: 45
a.slice: 15 % a.slice: 5
a.selection: 4 % a.selection: 5

a.formula: 8
rest: 1 0 % rest: 37

Slices.
primary: indexer:

simple: 89 % one, simple: 58
a.slice: 4 % more, simple: 20
a.selection: 4 % trimmer: 8
rest: 3 % rest: 1 4

Calls.
primary: parameters.:

simple: 100 % one, simple: 22
more, simple: 1 9
'print' etc: 1 7
rest: 42

All this suggests very strongly that it is most
to direct the optimization effort to the simple cases

2.3. Denotations

%
%
%
%
%

%
%
%
%

%
%
%
%

5

efficient
only.

The denotations extracted from the text in point 3 in para
graph 2.1 we~e distributed as follows,

3912 int
813 real
596 string
233 bool

194 nil
148 skip

18 format
2 bits

whereas the integral-denotations were classified thus:

value (range)
0
1
2:3
4: 1 5

16:255
256:4095

>4095

freq.
601

1628
663
664
299

53
6

One conclusion from this is that a reasonable implementa
tion on the IBM 370 may put integers smaller than 4096 in the
instruction (LA) and use horrible code for the rest.

2.4. Identifiers

6

The distribution of identifier-lengths was as follows:

f rE~q • length freq. length
6539 1 29 1 4
3200 2 1 1 1 5
1985 3 1 2 1 6
1792 4 1 4 1 7
1 3 l• 5 5 2 1 8

690 6 2 20
731 7 3 2 1
190 8 3 24
350 9 2 27
168 1 0 4 34
1 ~~ 9 1 1 1 42
138 1 2 1 50

52 1 3 1 52

or, if we consider different identifiers only:

frE~q. length freq. length
26 1 1 3 1 4

295 2 6 1 5
232 3 4 1 6
270 4 6 1 7
168 5 2 1 8
153 6 1 20
102 7 2 2 1

6 1 8 2 24
BS 9 1 27
69 1 0 2 34
IJ 3 1 1 1 42
35 12 1 50
ii 4 1 3 1 52

This may provide trade-off information for the identifier-
table algoiri thm.

The 1 0 most frequent identifiers were:

976 i 359 r
581 n 339 s
564 k 324 b
558 a 305 X

376 j 302 newline

3. THE DYNAMIC BEHAVIOUR

All the above measurements pertain to the static text of
the program. We would, however, like to get some insight in the
dynamic importance of the various constructs. Now such results

7

are hard to come by and have a inherently large inaccuracy. We
therefore de~ided to accept a static {textual) analysis of the
innermost do-parts as a reasonable estimate of the dynamic
behaviour of the program, on the {not too well founded) assump
tion that these parts are the most heavily executed pieces of
code.

The same process as above yields the following tables:

Table IV, Symbol Count in Inner Do-parts
4021

916
907
879
504
406
355
269
2.22
193
166
159 +
1 31 =

tag
indexer
denotation
,
:=

()
call

*
OF

1 1 3
92
86
83
74
68
44
39
37
35
33

+:=
up_to_token
I
IF THEN FI
I
user_mode
-:=
REF
INT
user_operator
REAL

30 **
28 /=
27
24
22
22
1 8
1 4

ELSE
ABS

>
HEAP
colon token

1 3
1 0

9
9
8
7
7
7
6
6

CASE IN ESAC
ELIF THEN
AND
<
OR
IS
/:= -
ELEM
ISNT

6 <=
6 rower
5
4
4
3
3
3
3
2
2
1
1
1
1
1
1
1
1
1
1

@

UPB
>=
ENTIER
%
PROC
I : I
BEGIN END
MOD
BITS
CHAR
OUT
%:=
ROUND
STRING
STRUCT
UNION
+=:
routine_token

T•ble V, Action Count in
916 indexer

Inner Do-parts

504 :=
269 call
222 *
193 OF
166
159 +
1 31 =
11 3 +: =

86 I
83 IF THEN FI
74 I
44 -:=
35 user_operator
30 **
28 /=
24 ABS
22 *:=
22 >
18 HEAP
13 CASE IN ESAC

Table VI, Summary of Counts
987 standard_operator
916 indexer
504 : =
269 call
193 OF
146 boolean_enquiry
1 31 =

10 ELIF THEN
9 AND
9 <
8 OR
7 IS
7 /:=
7 -
6 ELEM
6 ISNT
6 <=
6 rower
5 @
4 UPB
4 >=
3 ENTIER
3 %
3 I : I
2 MOD
1 %:=
1 ROUND
1 +=:

in Inner Do-parts
35 user_operator
18 HEAP
13 CASE IN ESAC

7 IS
6 ISNT
6 rower
5 @

8

Although the overall picture remains the same, certain
shifts in emphasis can be discerned. The slice is now clearly
the most important construct, but assignation is still a power
ful second. The call has lost much of its weight.

Analysis of slice and assignation gives:

Slice in Inner Do-parts.
primary: indexer:

simple: 86 % one, simple:
a.slice: 7 % more, simple:
s.selection: 4 % trimmer:
rest: 3 % rest:

62 %
22 %

0 %
1 6 %

. Assignations
destination:

simple: 50 %
a.slice: 43 %
a.selection: 2 %

rest: 5 %

in Inner Do-parts.
source:

simple:
a.slice:
a.selection:
a.formula:
rest:

32 %
9 %
9 %

37 %
13 %

9

We see that the assignations tend to have simpler sources
now, which again suggests that optimizing the simple cases only
will lead to considerable gain. The slices themselves show no
real difference.

4. CONCLUSION

The main candidates for optimization efforts are slices,
assignations and calls; there are indications that the first
two are the most important from a dynamical point of view.

Optimization efforts need to be directed to the simple
variants of the above constructions only.

This conclusion is in full agreement with the results ob
tained by Knuth for FORTRAN [3] ■.

S. ACKNOWLEDGEMENT

I wish to thank Lambert Meertens for posing the problem and
for numerous comments and improvements.

6. REFERENCES
[1] C.H. Lindsey and s.G. van der Meulen, Informal Introduction

to ALGOL 68 Revised, North Holland Publ. Comp., Amsterdam,
1977.

[2] A. van Wijngaarden et al., editors, Revised Report on the
Algorithmic Language ALGOL 68, Acta Informatica, 1, 1-236,
1975; MC Tract SO, Mathematical Centre, Amsterdam, 1976;
SIGPLAN Notices, ll, 5, 1-70, 1977.

[3] D.E. Knuth, An Empirical Study of FORTRAN Programs,
Software-Practice and Experience, .l, 105-133, 1971.

[4] B.A. Wichmann, A Comparison of ALGOL 60 Executive Speeds,
National Physics Laboratory, Central Computer Unit, Report
3, 1969.

[5] J.L. Elshoff, A Numerical Profile of Commercial PL/1 Pro
grams, Software-Practice and Experience,!, 505-525, 1976.

[6] M.M. Al-Jarrah and I.s. Torsun, An Empirical Analysis of
COBOL Programs, Software-Practice and Experience, 1,
341-359, 1979.

