
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

P. KLINT

INTERPRETATION TECHNIQUES

Preprint

~
MC

IW 110/79 MEI

2e boerhaavestraat 49 amsterdam

B!BLIOTHEEK M.t\THEr,1A.TIS2H CE,'·.;'1·-1,; "'1
. • \Ut:O,

--- . -AfV1S1ERDA:·,1-

PJLinted a.t :the Mathema.U.c.a.l Cen:tlr.e, 49, 2e BoeJtha.a.vu.tJr.aa;t, Am6.teltdam.

The Mathema.U.c.a.l Cen:tll.e, 6ou.nded :the 11-.th 06 Feb1tUiVLy 1946, .u a. non­
p1to6Lt wu.:tuti.on a,im,lng a.t .the pltomo:U.on 06 pu!Le ma.thema.U.C-6 a.nd .l:t6
a.pp.Uc.a.U.on6. 1.t .u ~pon601ted by .the Ne.thellhmd6 GoveJtnmen.t .th!tough .the
Ne.thellhmd6 01tga.niza.:U.on 601t .the Adva.nc.emen.t 06 Pu/Le Ruea.1tc.h (Z.W.O).

AMS(MOS) subject clas$iiiq~tion sqn~me (1970): 68Al0, 68A20

ACM-Computing Reviews-categories: 4.13, 4.12, 4.2

Interpretation Techniques*)

by

Paul Klint

ABSTRACT

The relative merits of implementing high level programming languages

by means of interpretation or compilation are discussed. The properties

and the applicability of interpretation techniques known as classical

interpretation, direct threaded code and indirect threaded code are

described and compared.

KEY WORDS & PHRASES:Interpretation versus compilation, interpretation

techniques, instruction encoding, code generation,

direct threaded code, indirect threaded code.

*)This report will be submitted for publication elsewhere.

I • INTRODUCTION

Two major subjects are covered in this paper. Section 2 contains a

discussion of the relative merits of compilation and interpretation as

implementation methods for high level languages. Issues like efficien­

cy, flexibility, error detection and portability are treated. Section 3

containes a detailed description of three common interpretation tech-

niques. Some measurements of· the time and space requirements of these

techniques are presented.

2. COMPILATION VERSUS INTERPRETATION

In the past there have been hot debates on the question whether im­

plementations of high level languages.should be based on compilation or

interpretation. In the extreme cases, an interpreter inspects the

source text of a high level language (HLL) program and performs actions

as prescribed by that source text, while a compiler translates a HLL

program into machine code, which can be executed directly by a computer.

Figure I. illustrates these extreme cases, (I) and (4), together with

two mixed compiler/interpreter systems, (2) and (4). These systems can

be distinguished by the semantic level at which the HLL program is fi­

nally executed. See [I] for a more elaborate discussion of this sub­

ject. Going from left to right in this figure one encounters four types

of high level language implementations:

Type-I systems: Direct interpretation of the source text. The source

text is inspected character-by-character and actions are performed

accordingly. For example, when at a certain moment the character se­

quence 'g', 'o', 't', 'o', ' ', 'L' is encountered, the interpreter

initiates a search for the occurrence of 'L' followed by ':'. Most

macro processors (STAGE2 [2], ML/I [3]) operate in this way. (Disre­

garding the fact that such macro languages can hardly be called

"high level".) Format specifications in input/output statements in

2

programming languages are in the vast majority of cases implemented

by means of pure interpretation. Type-1 systems are based on repeat-

ed lexical and syntactic analysis of the source text. Accordingly,

these systems are inefficient and have the undesirable property that

syntax errors can only be detected at run time.

(I)

High level language

V

I C

(2)

Machine Language

V

V
(4)

I

HLL = high level language
IC = intermediate code

Figure 1. Four types of high level language implementations.

Type-2 systems: Interpretation of a high level intermediate code. The

source text is compiled into a high level intermediate code by means

of lexical and syntactical preprocessing. Typically, there is a

one-to-one mapping from statements in the high level language to

statements in the intermediate code. Most APL and SNOBOL4 systems

are implemented in this way.

preproce.ssing of the source text.

Most LISP systems use only lexical

Type-2 systems have the advantage that syntax errors are detected

before the execution phase of the HLL program. The intermediate code

is of a high level and depends only on the high level language and

not on an underlying (low level) machine language. As a consequence,

maximal flexibility is possible at run time and it is easy to provide

diagnostics and debugging facilities at the source language level.

Type-3 systems: Interpretation of a low level intermediate code. The

source text is compiled into a low level intermediate code, which is

close to the machine language level. There is a one-to-many mapping

from· statements in the high level language to statements in the in­

termediate code. The PASCAL-P compiler [4], for example, performs a

lexical, syntactic and (modest) semantic analysis of PASCAL programs

3

and transforms these into low level P-CODE programs. P-CODE programs

are then executed by a very simple interpreter.

Type-3 systems have the advantage that both syntactic and certain

semantic errors (for instance, multiplying a floating point number by

a file) can be detected before the execution phase of the HLL pro­

gram. At run time one looses flexibility but gains efficiency.

These systems tend to be rather portable, since implementation of a

(simple) interpreter is sufficient to port the whole system.

Type-4 systems: Execution pf machine language. This method is the same

as the previous one, with the exception that an intermediate code is

used that can be interpreted ("executed") directly by a computer.

Traditional compilers operate in this manner. It is now immediately

clear why type-4 systems are more "efficient" than type-2 or type-3

systems: in type-4 systems interpretation is done at a level that is

supported by (fast) hardware facilities.

With this subdivision in mind, we can try to

pro and contra interpretation (type-2) and

type-4).

analyze the arguments

compilation (type-3 and

As indicated above, compilers allow more efficient execution of HLL

programs, since they transform the HLL program to a form which can be

interpreted directly by the hardware. An other reason for this effi­

ciency is the fact that most compilers determine once and for all cer­

tain static properties of the HLL program. Static analysis leads to the

detection of some classes of semantic errors and allows the generation

of optimized code. However, static ("compile time") analysis of a

source program is not the prerogative of compilers. This kind of

an~lysis does not depend on the way the program is finally executed on a

computer. Two well known programs performing this kind of analysis

("verifiers") are PFORT [5] and DAVE [6]. Both programs try to deter­

mine certain semantic properties of FORTRAN programs, but are deli­

berately unconcerned about the way these programs will be executed. In

the same way, one can envisage interpreter based systems that contain a

static analysis phase for the detection of semantic errors and for the

gathering of information that can be used by the interpreter later on.

4

In many situations, compiler based systems are superior to inter­

preter based systems, with regard to execution speed. But compiler

based systems have their drawbacks. Compilers are complex programs with

corresponding development and maintenance costs. Interpreters tend to

be much simpler. The reason for this difference in complexity is the

following. A compiler transforms a program in a high level language

(defined by a fixed set of semantic rules) into a program in a low level

language (defined by another set of semantic rules). This transforma­

tion is supposed to preserve the meaning of the HLL program. An inter­

preter deals only with'the semantic rules of the high level language.

There is no need for a difficult meaning preserving transformation to a

lower semantic level. The only task of the interpreter is to realize

the semantic rules of the high level language.

How does this difference in complexity affect portability? Two

separate problems must be solved to achieve a successful transportation

of a high level language implementation. First, the language processor

itself must be ported from a host machine to a target machine. Second,

the functional specifications of the language processor must be adapted

to requirements imposed by the target machine. In general, the first

step is easier for interpreters than for compilers. Above we saw that

interpreters are simpler programs than compilers and it is evidently

easier to transport a small, simple program than a large, complex one.

For a compiler the second step consists of modifying the code generator,

which should now produce code for the target machine and not for the

host machine. produce target machine language. A significant effort

may be needed for these modifications, because the code generation phase

tends to be a substantial part of a compiler. (See (7] for a survey of

problems likely to be encountered during such a transportation.) For in­

terpreters the second step is not needed at all, since there is no

dependency on any machine language whatsoever. One may conclude that

interpreters are easier to port than compilers.

For a number of years it seemed that this debate had come to an end

with a· conclusion in favour of compiling. But in recent years the in­

terest in interpreter based systems has been growing. There are various

reasons for this.

5

With the advent of (a bewildering variety of) microprocessors the ra­

tio of software cost to hardware cost is rising steeply. This implies

that the importance of software portability will increase and the impor­

tance of efficiency (in the traditional sense) will decrease.

A second reason for this revived interest in interpretation tech­

niques is the current trend towards "very" high level languages. In

such languages the primitive operations are so complex and time consum­

ing that it is irrelevent (with regard to execution time) whether they

are compiled or interpreted. This being the case, one can profit from

the advantages of interpretation (flexibility, debugging tools).

In the light of these arguments I want to make a plea for a way of

implementing high level languages that combines static analysis with in­

terpreter based (type-2) execution. In this way one obtains:

- Detection of syntax errors and semantic errors.

Flexibility (inherent in interpreter based systems).

- Portability (no target machine code dependency).

- Programming aids at the source language level.

3. THREE INTERPRETATION TECHNIQUES

The preceding considerations justify a study of the qualitative and

quantitative aspects of existing interpretation techniques. Three com­

mon methods will be compared here:

Classical interpreter with opcode table

Direct threaded code

Indirect threaded code

In section 3. I. some global properties and basic differences of these

techniques are described. Sections 3.2. through 3.4. give detailed

descriptions of each technique together with general remarks on their

6

applicability. Section 3.5. treats instruction fetch timing and con­

tains the result of some measurements on a PDP11 and a CDC CYBER73.

These measurements are placed in the right perspective by considering

the influence of instruction fetch and instruction complexity on the to­

tal execution time for each instruction. Section 3.6. deals with space

requirements.

3. 1. Overview

There are two significant differences among the three interpretation

techniques: the means by which the operation code is represented and the

means by which the dynamic (run time) operand type can influence opera­

tor selection. The classical interpretation method (CLASS) uses com­

pactly encoded operation codes, which must be looked up in a table in

order to identify the operation; type-dependent classification of the

operator, if necessary, occurs by explicit testing.

With Direct Threaded Code (DTC), the operation code is simply the ad­

dress of the required subroutine to execute the operation. This elim­

inates one table-lookup. It is easy to add new operation codes for

specific operations a specific program may need. It is possible to com­

bine static operator and operand information in a single address; for

example, a new opcode/address could easily be constructed to "add to the

value of variable V", in contrast with the classical method where it is

necessary to parameterize the "add" operation code with variable V. If

the interpreter routine is dependent on the operand type, this must be

analyzed within the interpreter routine just as for CLASS.

With Indirect Threaded Code (ITC), the address of the routine to be

used is obtained from the value itself. Each value contains the ad­

dresses of the routines for the common unary operations on values of

that type, such as "fetch", "store" and "call". Compared to the CLASS

method, the opcode table is as it were distributed over all values that

occur in the program. The advantage of this method is that almost no

overhead is required to select an interpreter routine depending on the

operand type: the selection is performed when the value is constructed

and not when an operation on it is performed.

7

The following discussions are based on the assumption that a high

level language program is translated to an _!£-program, which consists of

instructions and~• Interpretation of this IC-program requires a set

of interpreter routines. The IC-program and the interpreter routines

reside in a linear array MEM of heterogeneous cells. MEM models the

whole memory that is available for the execution of the IC-program. A

global variable PC (program counter) keeps track of the current instruc­

tion in the IC-program. All interpreter routines have access to this

variable.

One example will be used throughout to illustrate each technique: an

IC-program for the addition of two real variables A and B. This example

is adapted from an example in PDPII assembly language given in [IO].

3.2. Classical interpretation (CLASS)

3.2. I. Description

This technique is so old and so ubiquitous that it is hard to give a

unique reference to the literature. The general scheme for classical

interpretation is:

CLASS. I: INCREMENT(PC);

CLASS.2: execute routine at location opcode_table[MEM[PCJJ;

(this routine returns to CLASS. I)

This interpretation loop is explicit in a classical interpreter, as op­

posed to the two other techniques. Step CLASS.2 may be more. complex in

reality, when it is difficult to isolate the actual opcode from the

value MEM[PCJ.

The generated code and required interpreter routines for the addition

of the real variables A and Bare:

8

{ IC-program and data (compiler generated) }

start: Ipush { index in opcode_table }

A { index in MEM. }

Ipush { index in opcode_table }

B { index in MEM }

Iaddreal { index in opcode_table }

{ data }

A: o.o { variable A; initial value o.o }

B: o.o { variable B• , initial value o.o }

{ interpreter loop and routines (permanent) }

{ assume: }

{

{

opcode_table[Ipush] = push

opcode_table[Iaddreal] = addreal

interpreter_loop:

push:

INCREMENT (PC) ;

goto opcode_table[MEM[PC]];

INCREMENT(PC);

stackreal(MEM[MEM[PC]]);

goto interpreter_loop;

addreal: stackreal(popreal() + popreal());

goto interpreter_loop;

}

}

All named entities, except PC and TMP, are integer constants. Variables

are denoted by the index in MEM where their value is stored. In this

notation all memory references are explicit. When Algol-like notation

uses "A" to denote the value of a variable, we write "MEM.[A]" instead.

The entities PC and TMP behave like ordinary variables. (Purists could

prefer to replace all occurrences of PC and TMP by MEM[pc] and

MEM[tmp].) The IC-program consists of a sequence of integer values,

which are either indices in the opcode table (Ipush, Iaddreal) or

the examples "label:contents" stands for operands (A, B). In

"MEM[label]=contents". When such a label specification is omitted, the

next memory location is intended.

Execution of the IC-program starts at the label "start". At that the

moment the condition PC=start-1 holds.

9

3.2.2. Remarks

a. The format of CLASS instructions can be chosen freely, may be even

differently for each instruction. As a consequence, Huffman encoding

can be used to reduce program size at the cost of increased instruc­

tion decoding times. See [8] for an application of this technique to

the design of B1700 S-languages (special intermediate languages which

are generated by high-level language compilers and interpreted by

B1700 microprograms). In this particular case, a 39-43% size reduc­

tion and a. 2.6-17.2% decoding time penalty were observed. Special

encoding has the disadvantage that creation of arbitrary bit patterns

is needed for the generation of CLASS instructions.

b. The CLASS instructions do not contain information that depends on a

particular version of the interpreter. Compare this with the two

other techniques, where addresses of interpreter routines are part of

the instructions. All interpreter routines, whether used or not, are

part of the combination interpreter/IC-program (see 3.3.2.b).

c. The CLASS method does not accommodate operations, which depend on the

operand type. The meaning of all occurrences of a particular in­

struction is the same and discrimination on operand type can only be

accomplished by explicit testing in the interpreter routine.

The CLASS method makes it easy to change the meaning of all oc­

currences of a particular instruction by modifying the opcode table.

This can be used for the implementation of procedure call tracing.

3.3. Direct threaded code (OTC)

3.3. 1. Description

Direct Threaded Code (OTC) has first been described in [9], but has

been in e.xistence before that time. It has, for example, been used on

the IBM 1620, where sequences of addresses turned out to be faster than

subroutine jumps. The basic scheme for DTC is:

DTC. I: INCREMENT(PC);

DTC.2: execute routine at location MEM[PC]

(this routine returns to DTC. I)

DTC was as it were "invented" for the PDPII. On that machine DTC can be

realized very efficiently by means of the instruction "jmp @(r)+", where

r stands for some PDPII register that acts as PC.

In the CLASS case, instructions are connected by their sequential

ordering. In threaded code, the instructions are as it were threaded

together like beads on a chain.

DTC and ITC programs in this paper are represented as sequences of

addresses, in accordance with the techniques as originally published.

It may well be better on some machines to implement them as a series of

subroutine jumps.

The DTC version of the example given previously is:

{ IC-program and data (compiler generated) }

{ data }

A:

B• ' .

pushA { index in MEM = start address of }

{ push-value-of-variable-A routine}

pushB { index in MEM = start address of }

{ push-value-of-variable-B routine }

addreal { index in MEM = start address of }

{ routine to add two real numbers }

o.o { variable A; initial value o.o }

o.o { variable B; initial value o.o }

{ variable access routines (compiler generated) }

pushA: TMP := A; goto L;

pushB: TMP := B; goto L;

L: stackreal(MEM[TMP]);

INCREMENT(PC);

goto MEM[PC];

{ interpreter routines (permanent)

addreal: stackreal(popreal() + popreal{));

lNCREMENT(PC);

goto.MEM[PC];

}

It is assumed that PC=start holds before execution starts. The re­
program consists of addresses (in our case: indices in MEM) of routines,

which are generated by the compiler (pushA, pushB) or are part of the

interpreter (addreal). The use of special access routines for variables

is not essential for DTC. It is only more efficient, since this elim­

inates the need for an extra operand as is the case when a general push

routine is used.

3.3.2. Remarks

a. The format of DTC instructions is fixed and consists of addresses.

Sometimes, however, immediate operands are part of the IC-program.

These can be fetched via PC and it is the responsibility of the

current instruction to give PC a proper value for his successor.

This fixed instruction format renders special encoding impossible.

Creation of hardware instructions and addresses is needed for the

generation of DTC instructions.

b •. Instructions depend on a particular version of the interpreter (i.e.

addresses of interpreter routines). A linkage editor is required to

bind IC-programs to the interpreter routines. In most operating sys­

tems, a linkage editor makes copies of the modules that are to be

tied together. This has two consequences:

The disadvantage that the IC-program is bound to copies of inter­

preter routines, which may cause proliferation of copies of ob­

solete or erroneous interpreter routines. More disk space may be

required to store the·resulting object modules.

12

- The advantage that only copies of used interpreter routines are

added to the IC-program.

c. DIC does not accommodate operations, which depend on the operand

type, but the fixed instruction format makes it feasible to add new

instructions.

d. As indicated above (3.3. 1.), DIC is most efficient when special

routines for loading and storing variables are used. Such routines

are specific for each IC-program and can not be part of a (shared)

interpreter that executes several IC-programs simultaneously.

3.4. Indirect Threaded Code (ITC)

3.4. 1. Description

Indirect Threaded Code (ITC) has first been described in [10] as used

for the implementation of MACRO SPITBOL. ITC is also used for the im­

plementation of' FORTH [11]. See (12] for a description of a FORTH sys­

tem with microcoded (built-in) subroutines. The basic scheme for ITC

is:

ITC.1: INCREMENT(PC);

ITC.2: execute routine at location MEM(MEM(PC]]

(this routine returns to ITC. 1)

It must be noted that ITC is in fact a generalization of CLASS. In the

CLASS case, the opcode table is fixed and is part of the interpreter.

In the ITC case, the opcode table is scattered through the IC-program

and can be modified.

The result of using ITC for our sample expression A+ Bis:

{ IC-program and

A

B

data (compiler generated)

{ index in MEM

{ MEM (A] = address of routine push

{ MEM (A+I] = value of variable A

{ as above for B

}

}

}

}

}

addreal { index in MEM = address of address }

{ of routine to add two reals

{ data }

A: push { index in MEM = start address of push

A+I: o.o { value field of variable A; initial 0.0

B: push

B+I: o.o { value field of variable B; initial 0.0

{ interpreter routines (permanent)

push: stackreal(MEM(TMP + 1]);

{ IMP is always equal to MEM(PC] }

INCREMENT {PC) ;

IMP : = MEM (PC];

goto MEM (IMP] ;

}

}

}

}

}

13

addreal: addreal+I { points to actual entry point of addreal routine}

addreal+I: stackreal(popreal() + popreal());

INCREMENT (PC) ;

IMP : = MEM (PC];

goto MEM (IMP] ;

It is assumed that PC=start and TMP=MEM(PC] hold initially. Interpreter

routines to which the IC-program refers directly (addreal), contain as

first entry a pointer to their actual code. This is a consequence of

the extra level of indirection in ITC.

3.4.2. Remarks

a. The instruction format is fixed (see OTC). In this case, there is

less need for immediate operands, since even constants can be treated

in the same way as variables, without the need to introduce addition­

al access routines. For the generation of ITC code it is sufficient

to generate addresses only (compare this with OTC where both ad­

dresses and machine code have to be generated). This improves the

14

portability of a code generator for ITC code. The latter is demon­

strated by the fact that the MACRO SPITBOL system [13], which uses

ITC, has been implemented on nearly twenty different computers in a

very short time.

b. ITC accommodates operations, which depend on the operand type. This

has the advantage that special cases (such as value tracing of vari­

ables, input/output associations) can be treated without additional

overhead. However, there are problems with the modification of .ill
occurrences of a particular instruction, which can be done so easily

in the CLASS case. References to routines that contain an extra lev­

el of indirection at their entry point (like addreal) can be changed

easily, but a scan through the IC-program is needed to change the

references to all routines without such an entry point (push).

3.5. Time considerations

In this section we consider the time behaviour of the various tech­

niques. First we pay attention to instruction fetch time. The tech­

niques have been implemented both on a PDP11/45 with cache memory and a

CDC CYBER-73. For each technique the effect of keeping the program

counter in a machine register or in a variable (memory location) was

considered. The way in which these techniques were implemented favours

classical interpretation and CYBERs. It is assumed that no bit handling

is required to isolate the opcode in the case of classical interpreta­

tion, and all CYBER programs use 60 bit words for each opcode for the

same reason. Tables and 2 show the results of these measurements.

The time per instruction is given in micro seconds. The additional en­

try HARD indicates the time needed for hardware instruction decoding,

i.e. execution of a program consisting of dummy (noop) instructions.

15

program counter
in variable

program counter
in register

----------------- ----------------- ------------time/ ratio time/ ratio ratio
instr CLASS instr CLASS reg/var ------ -------- -------- -------- -------- -----------CLASS 7.59 I. 0 3.58 I. O o. 47

DTC 6.86 0.9 2.24 0.63 0.33
ITC 7.86 I. 04 3.50 o. 98 o. 45
HARD I. 45 o. 41

Table I • Timing on PDPI 1/45.

program counter
in variable

program counter
in register

----------------- ----------------- ------------time/ ratio time/ ratio ratio
instr CLASS instr CLASS reg/var ------ -------- -------- -------- -------- -----------CLASS IO. 96 I. 0 5.62 I. 0 0.51

DIC 7.93 o. 72 4. 31 0.77 0.54
ITC 9. 08 0.84 5.90 I. 05 0.65
HARD o. 49 0.09

Table 2. Timing on CYBER-73.

It is very tempting to try to relate these figures to the architec­

tural differences between PDPII and CYBER. If we compare the cases HARD

and CLASS, it is remarkable that the execution time decreases with a

factor 0.09 oh the CYBER and only with 0.41 on the PDPII. Relatively

slow memory accesses on the CYBER are probably responsible for this

phenomenon. In reality, this effect will even be enhanced by the fact

that, regarding instruction fetch, byte addressing can be used to advan­

tage on the PDPII, while bit manipulation is needed on the CYBER.

A second point that should be noted is the effect of keeping PC in a

machine register in the DIC case. On the PDPII, execution time de­

creases with a factor 0.33, on the CYBER only with a factor 0.54. This

is probably due to the fact that the PDPII can realize DIC in one in­

struction, provided that PC is kept in a register. On the PDPII, the

difference between the three techniques disappears completely, when PC

is not kept in a register!

Several conclusions can be drawn from these figures:

a. PDPI-ls are faster then CYBERs (when applied to the task of software

instruction decoding).

b. DIC with program counter in a register is the fastest technique.

16

c. On the PDP11, it is crucial to keep the program counter in a machine

register. If not, all methods show the same performance. This ob-

servation has implications for the choice of higher level system im­

plementation languages: !f the language does not allow you to place

global entities (i.e. the program counter) in a register~ do not

worry about the time properties of your interpretation technique.

It must be emphasized that we have measured times for instruction fetch

and not for instruction execution. This means that the significance of

these measurements decreases when the execution time per instruction in­

creases. Table 3 shows the effect of adding an increasing number of

dummy operations to the instruction fetch cycle. These measurements

show a not very surprising effect: the difference between the three

techniques disappears when the execution time per instruction increases.

The measurements were done on a PDPll/45 and noops were added to the in­

terpretation cycle.

2 3 4 5 6 7 8 9 10

CLASS 4.48 5.44 6.10 6.88 7.92 8.94 9.84 10.78 11.42 12.22
DTC 3.14 3.94 4.84 5.66 6.54 7.62 8.60 9.48 10.26 11.06
ITC 4.42 5. 16 6.60 7.30 7.82 9. 10 9.72 10.52 11.28 12.66

Table 3. Effect of increasing instruction execution times.

In a typical PASCAL interpreter (type-3 system), only a few machine

instructions are needed to implement operations like "push value", "as­

sign", "copy byte", that occur frequently in the IC-program. Under

these circumstances, instruction fetch overhead can be substantial. In

a typical APL interpreter (type-2 system), many (10-1000) machine in­

structions are needed to implement frequently occurring operations. In

this case instruction fetch overhead is irrelevant.

3.6. Space considerations

It is difficult to give general estimates for the space requirements

of programs using one of the three interpretation techniques. These

depend very much on each specific application. One can conjecture that

program sizes increase according to: CLASS, ITC, DTC, HARD. This con­

jecture is based on three facts:

17

a. The CLASS method allows very concise encoding schemes.

b. In ITC, the IC-program does not have to contain operations for expli­

cit runtime checks, since such checks can be made part of the

routines associated with individual values. For example, it does not

have to influence the size of the IC-program whether array bound

checking is enabled or not; this difference can be realized by asso­

ciating a different {i.e. checking or not checking) array access

routine with each array value.

c. DTC requires separate routines for accessing each individual operand

in an IC-program. In all these cases ITC contains only two addresses

and one {common) access routine.

d. In general, machine language is not geared to the implementation of

any particular high level language. There is no way to take advan­

tage {in space .2!. time) of properties of a high level language. It

is not possible to introduce new machine language instructions for

frequently occurring sequences of operations. {This can be done by

microprogramming, but that is a different story.)

4. ACKNOWLEDGEMENT

I want to thank Hendrik Boom, Jan Heering, Marleen Sint and Arthur

Veen for reading earlier versions of this paper. Their comments and

suggestions have resulted in substantial improvements.

5. REFERENCES

[I]

[2]

Myers, G.J., Advances in computer architecture, John Wiley, 1978.

Waite, W.M., Implementing software for non-numeric applications,

Prentice-Hall, Englewood Cliffs, N.J., 1973.

18

[3]

[4]

[5]

[6]

[7]

[8 J

[9]

[1 OJ

[1 1 J

[1 2]

[1 3]

Brown, P.J., Macro processors and techniques for portable software,

Wiley, London, 1974.

Nori, K.V., Amman, U., Jensen, K. & Naegeli, H.H., The PASCAL (P)

compiler: implementation notes, ETH Zuerich, report 10, 1974.

Ryder, B.G., The PFORT verifier, Software Practice and Experience,

1(1974) 358-377.

Osterweil, L.J. & Fosdick, L.D., DAVE - A validation error detec­

tion and documentation system for FORTRAN programs, Software Prac­

tice and Experience, .§_(1976) 473-486.

Tanenlbaum, A.S., Klint, P. & Bohm; W., Guidelines for software por­

tabil:ity. Software Practice and Experience, i(1978) 681-698.

Wilner, W.T., Burroughs B1700 memory utilization, AFIPS FJCC

i!_(l 972) part I, 579-586.

Bell, J.R., Threaded Code, CACM ll(1973) 370-372.

Dewar, R.B.K., Indirect threaded code, CACM ~(1975) 330-331

Moore, C.H., FORTH: a new way to program a mini-computer, Astron.

As trophys. Suppl. J2. (19 7 4) 49 7-51 1 •

Philips, J.B., Burk, M.F. & Wilson, G.S., Threaded code for labora­

tory computers, Software Practice and Experience, .§.(1978) 257-263.

Dewar, R.B.K. & McCann, A.P., MACRO SPITBOL - a SNOBOL4 compiler,

Software Practice and Experience 10977) 95-113.

