
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

"' P.M.B. VITANYI

MULTIHEAD AND MULTITAPE REAL-TIME
TURING MACHINES

Preprint

~
MC

I W 111 /79 JUNI

2e boerhaavestraat 49 amsterdam

. . .
--~/\1\,~ l '-• ••~•• ,.·., ··•--•-

PJun:ted a;t .the. Ma:the.ma..tlc.al Ce.ntlt.e., 49, 2e. Boelthaavu.tJr.aa;t, Mll).te/l.dam.

The. Ma:thema.tic.al Ce.ntlt.e., 6ounded .the. 11-.th 06 F-e.bltwvty 1946, .l6 a non
p.lW 6U wt:U:atlon a,im,£ng a;t .the. p,,.omoti.on 06 pUlte. ma:thema.t..i.e6 and U:-6
appUc.a:tlon6. Lt .l6 .6pon601te.d by .the. Nethe.Jtta.nd.6 GoveMme.nt .thltough .the.
Ne..theJtla.n.d6 OJt.gaJti.za.:tion 601t .the. Advanc.~e.nt 06 Pwr.e. Rue.alLC.h (Z.W.0).

AMS(MOS) Subject classification scheme (1970): 68C25, 68C40

ACM-Computing Reviews-categories 5.23,5.25,5.26

*)
Multihead and multitape real-time Turing machines

by

Paul M.B. Vitanyi

ABSTRACT

It is shown that (k+l)-head tape units are more powerful in real-time

thank-head tape units. Closure properties are investigated of classes of

languages accepted by real-time Turing machines with k one-head tapes or

one k-head tape.

KEY WORDS & PHRASES: Complexity, real-time computations, multitape Turing

machines, multihead Turing machines, jump Turing

machines.

*)
This report will be submitted for publication elsewhere.

1

1. INTRODUCTION

Real-time computations (of Turing machines) are especially interesting

within the class of time-limited computations because of their intrinsic

feasibility. The usual Turing machine model we meet in complexity theory is

the multitape Turing machine. A k-tape Turing machine consists of a read-only

input tape and a finite control attached to k storage tapes. On each storage

tape a single read-write head can, according to the input symbol read to

gether with the state of the finite-state control and the symbols under

scan on the k storage tapes, modify the scanned symbol and move one

square left, right or not at all. Most algorithms, however, are more natural

ly stated in terms of computing models which allow faster memory access.

In a multihead Turing machine several read-write heads may compute on a

single storage tape. A k-head tape unit consists of a Turing machine with

a read-only input tape, a finite-state control and a single storage tape on

which k read-write heads operate. FISCHER, MEYER and ROSENBERG L1972] proved

that one can simulate a k-head tape unit by a multitape Turing machine in

real-time. LEONG and SEIFERAS [1977] improved this result by showing that a

k-head tape unit can be simulated in real-time by a 4k-4 tape Turing machine.

With respect to the converse question: it is trivial to show that a k-head

tape unit can simulate a k-tape Turing machine in real-time. RABIN [1963]

has observed that 2-tape Turing machines are more powerful in real-time than

1-tape Turing machines. (Recall that a 1-tape Turing machine has one input

tape and one storage tape with a single head.) Later, AANDERAA [1974] demon

strated that k+1 tapes are more powerful in real-time thank tapes, k ~ 1.

Together with the LEONG and SEIFERAS' result this shows that more heads will

yield additional power in real-time. Specifically, it follows that a 4k-3

head tape unit is more powerful than a k head tape unit in real-time. We

will show that AANDERAA's result implies that a k+1 head tape unit is more

powerful than a k head tape unit in real time.

In ROSENBERG L1967] several closure properties of the class R of real

time Turing machine languages are investigated. We will investigate such

questions for the classes R(k) (languages recognized by k-tape real-time

Turing machines or k-RTTM's) and RH(k) (languages recognized by k-head

real-time tape units or k-RTTU's). Furthermore, we consider the relations

2

H
between R(k) and R (k).

For formal definitions and so on concerning multitape- and multihead

Turing machines, real-time computations, etc. we refer to ROSENBERG [1967],

FISCHER, MEYER and ROSENBERG L1972] and LEONG and SEIFERAS [1977]_

2. k+l HEADS ARE BETTER THAN k HEADS IN REAL-TIME

AANDERAA [1974] ·proved by a very complicated argument that there is,

for each k ~ 1, a language ¾+l which can be recognized by a (k+l)-RTTM but

not by a k-RTTM. For completeness we define ¾+l below by a real-time

algorithm which accepts it using k+l pushdown stores. The input alphabet

is Lk+l = {Oi,li,Pi I 1 ~ i ~ k+l}. The algorithm is as follows:

"ACCEPTENABLED := TRUE;

Initialize k+l stacks to empty;

REPEAT FOREVER

CASE NEXTINPUTLETTER OF

0.: Push O in stack i
l.

1.: Push 1 on stack i
l.

P.: IF stack i empty
l.

THEN ACCEPTENABLED := FALSE and reject input

ELSE BEGIN

ENDCASE"

pop stack i;

IF element popped was 1

AND ACCEPTENABLED

THEN accept input

ELSE reject input

END

The strategy used to prove that k+l heads are more powerful in real

time thank heads (on a single tape) is, by a judicious choice of input,

to force the heads so far apart that for a given recognition problem the

k-head unit must act like a k-tape Turing machine since the heads will never

3

read each others writing.

THEOREM 2.1. There is a language which is recognized by a k+l head real-time

Turing machine but not by any k head real-time Turing machine.

PROOF. By induction on the number of heads.

k=l. The language A2 cannot be recognized by a 1-tape (= 1-head) real-time

Turing machine, but can be recognized by a 2-tape (and hence by a 2-head)

RTTM. Set H2 = A2•

k > 1. Suppose the theorem is true for all j < k. Hence, in particular

there is a language Hk such that Hk is recognized by a k-head RTTM but not

by a (k-1)-head RTTM. Define Hk+l as follows:

where* is a special symbol not in the alphabet of A., i ~ 2.
l.

Let Mk beak-head RTTM claimed to recognize Hk+l· Present Mk with a

string of the form

such that w. is over the alphabet
l.

w2, ~ must recognize A2• Since A2

the distance between the outermost

of A. , 2 s; i s; k+l. During the processing of
l.

cannot be recognized by a 1-head RTTM,

heads on the storage tape of Mk must

grow larger than any given constant c 2 for a suitable choice of w2 • Hence,

after the processing of this w2 we can single out a head h 1 on the storage

tape of Mk which is at least c 2/k tape squares removed from every other

head. Choose c 2 later so that c 2/k > 2 2~:~ (ni+l). Hence, for the remain

der of the computation on w, Mk consists in effect of at best a single head

tape and a (k-1)-head tape unit. Now Mk is presented with w3 • Since w3 € A3
cannot be done in real-time by 2 single-headed tapes,~ must use its

remaining (k-1)-head tape unit in an essential way during the processing of

w3• I.e., the distance between the outermost heads of the remaining (k-1)

head tape unit must grow larger than any constant c 3 for a suitable choice

4

of w3 • Hence, we can single out a head h 2 (h2 fa h 1) · such that the distance

of h 2 to every other head hi (hi fa h 2 and hi fa h 1) is greater than c 3; (k-1)

after the processing of w3 • Now take c 3 so large, that c3/(k-1) >

lk+l
> 2 . 4 (n.+1). For the remainder of the computation on w, Mk consists

J.=].

now in effect of 2 single head tapes and one (k-2)-head tape unit. Repeating

the argument we can choose w4 , ••• ,wk such that after the processing of wk

we are left in effect with a k-tape RTTM which is required to determine

whether wk+l E ~+l· _According to AANDERAA [1974], for each k-tape RTTM

claimed to recognize ~+l we can construct a word v which fools the machine.

Let wk+l be such a word, and choose ck,wk,ck-l'wk_1 , ••• ,c2 ,w2 so that the

above inequalities and conditions are satisfied. Hence w is accepted by Mk

iff w i Hk+l which contradicts the assumption that~ recognizes Hk+l" It

is easy to see that k+l pushdown stores can recognize H. in real-time. D k+l

Surprisingly, an argument like "Hk is not accepted by a (k-1)-head

RTTM and hence Hk+l = ¾ U Hk * ~+l is not accepted by a k-head RTTM"

does not work, since we cannot assume a priori that in a k-head RTTM recog

nizing Hk all heads get pairwise arbitrarily far apart for some input. We

could only conclude that all k heads are necessary, but it might very well

be that for each time t some heads are near to each other. Then we could

be stuck with a set of tape units, one of which is a multihead one, for

which AANDERAA's proof might not work. By the above argument we precluded

that possibility. Due to the form of ~+l' the above line of reasoning

works also for ~+l itself. Hence, ~+l E R(k+l) - RH(k) and we have

COROLLARY 2.2. There is a language which can be recognized by k+l pushdown

stores in real-time (and hence by a (k+1)-RTTM) but not by any k-head RTTM.

The relation between tapes and pushdown stores is direct; clearly 2k

pushdown stores can simulate k tapes in real-time. Hence from AANDERAA's

result we have: (if RP(k) denotes the class of languages recognizable by

k pushdown stores in real-time)

RP (k+l) - R(k) fa ¢;

RP (k) C RP (k+l) ;

R(k) C R(k+l)

R(k)
p

c R (2k).

5

By the result above it appears that we can replace R by RH in these formulae.

By using LEONG and SEIFERAS' [19771 result, it follows from the above that

LEMMA 1.3.

(i) R(k) ~ RH(k) c R(4k-4)

(ii) R(k+l) - RH(k) ~ ¢
(iii) RH(k+l) - RH(k) ~ ¢.

From the proof ~f Theorem 2.1 it will be readily ascertained that for

any language L € R(k+l) - R(k) it holds that

(assume e: € L)

and

In the diagram below we depict the present state of affairs with regard

to the inclusion relations between the families R(k) and RH(k).

,fl
I
I

R(4k-4)

R(k+l)

I R(k) -~--r -~ --

t
R(4) -- .:::,-------- --

Figure 1

6

Connection by a.solid arrow from X to Y means that Xis strictly included

in Y. Connection by a dotted arrow from X to Y means that Xis included in

Y but that it is not yet known whether inclusion is strict. The main open

problem here is whether R(k) is strictly included in RH(k), k ~ 2.

3. CLOSURE PROPERTIES OF R(k)

In ROSENBERG [1967] several closure properties of the class R of

languages accepted by real-time Turing machines were investigated. It

appeared that R is closed under union as well as intersection with regular

sets, complementation, suffixing with a regular set, inverse real-time

transducer mapping, and minimization. R is not closed under concatenation,

Kleene star, reversal, (nonerasing) homomorphism, inverse nondeterministic

sequential machine mapping, quotient with a regular set, maximization and

prefixing with a regular set.

When we restrict the number of tapes the picture gets different:

R(k) is closed under complementation, union as well as intersection with

regular sets, suffixing with regular sets, inverse gsm mapping and minimiza

tion. R(l) is not closed under union or intersection, nor under inverse

real-time transducer mapping.

In this section we will investigate some more closure properties of

(number of) tape restricted real-time languages. It will e.g. appear that

R(k) is closed under several marked operations; furthermore it often hap

pens that the closure under certain operations of R(k) is in R(2k) but not

in R(2k-l).

LEMMA 3.1. R(k) is closed under marked union, marked concatenation and

marked Kleene star.

PROOF. Marked union is obvious. We prove marked Kleene star.

* If LE R(k) then so does (L{¢}) , where¢ is a symbol not occurring in a

word in L. Viz. let M be a k-RTTM accepting L. We construct a k-RTTM M• as

follows. Upon reading a marker¢, the machine remembers that all previous

input segments between markers were words in L. It creates clean storage

by maintaining markers on each storage tape delineating the workspace used

for the computation segment in between reading two markers. Similarly we

prove closure under marked concatenation. D

LEMMA 3.2. R(k) is not closed under union or intersection, fork> 0.

If we take A€ R(k1) and B € R(k2) then AUB,AnB € R(k 1+k2), but not neces

sarily AUB,AnB € R(k1+k2 - 1).

7

PROOF. Let~ denote AANDERAA's language over k generators. Then 2\ € R(k1)

and Ak2 € R(k2). Let_Lk. be the alphabet of Ak., i = 1,2, and let l
J. J.

Lk n Lk = ¢. Then it is easy to see that L1 € R(k1) and L2 € R(k2), where
1 2

L1 and L2 are defined as:

* * {P. Ll = shuffle (J\ , Lk) n (Lk u Lk)
1 2 1 2

J.

* * {P. L2 = shuffle (J\ ,Lk) n (Lk u Lk)
2 1 1 2 J.

P. € Lk }.
J. 2

Now Ll u L2

lows, since

= Ak 1+k2 and hence belongs to R(k1+k2) - R(k 1+k2 - 1). It fol

our Turing machines are deterministic, that Ak +k € _ _ 1 2 __ _
€ R(k1+k2) - R(k 1+k2 - 1), L1

€ R(k1+k2) - R(k 1+k2 - 1). It

€ Rk and L2 € Rk. Hence L1nE2 =
1 2

remains to be proven that

B € R(k2) it holds that AUB,AnB € R(k1+k2). But it is easy to construct a

(k1+k2)-RTTM which checks for inclusion in A with k 1 tapes and for inclus

ion in B with the remaining k 2 tapes. D

Since R is closed under the Boolean operations (as follows also from

the above lemma) the lemma creates infinite hierarchies of language

families, which are all included in R.

LEMMA 3.3. R is not closed under shuffle.

PROOF. In ROSENBERG [1967] it is proved that the language

* * R I } * L = {L XL 2x L = {0,1 , x € L}

is not in R. The same proof applies to

* * R I L' = {L XL 2h(x) L = {0,1}, X € * L , h (0) = a and h (1) = b}.

8

But

L' = shuffle({x2h(xR) * * x E { 0 , 1 } , h (0) = a and h (1) = b} , E) n

* * n E 2{a,b} ,

with {x2h(xR) Ix E {o,1}*, h(0)=aandh(l) = b} E R(l) and E*2{a,b}*ER(O).

Hence since L' i R also the first (shuffle) component of L' does not belong

to R. □

Hence the shuffle of a language in R(l) and a language in R(0) (even

* E) does not need to belong to R. If, however, the languages which are

shuffled are over disjoint alphabets, and the first one is in R(k1) and

the second one in R(k2), then their shuffle is clearly in R(k 1+k2). Let L1

and L2 be the languages defined in the proof of Lennna 3.2. Then L1 E R(k 1)

and L2 E R(k2). Now take L1 and L2 over disjoint alphabets, say Ek 1u Ek2
and Ek u Ek but interpret the primed and unprimed symbols as being the

1 2
same. Then, to recognize shuffle (L1 ,L2) is exactly the same problem as to

recognize Aki+k2 • Hence we have

COROLLARY 3.4. If A E R(k1) and BE R(k 2) and the alphabets of A and Bare

disjoint, then shuffle (A,B) E R(k1+k2) but shuffle (A,B) does not need to

belong to R(k1 +k2 - 1).

LEMMA 3.5. R(k) is not closed under inverse real-time transducer mapping.

The closure of R(k 1) under inverse k 2-RTTM mapping is contained in R(k 1+k2)

but not in R(k1+k2 - 1).

PROOF. That the closure of R(k1) under inverse -k2-RTTM mapping is contained

in R(k 1+k2) was demonstrated by ROSENBERG [1967]. If we transduce Aki+k2 by

a k2-RTTM M which works as described below we obtain a language Ak1 in

R(k 1) of which the inverse k2-RTTM mapping is contained in R(k 1+k2) -

- R(k 1 +k2 - 1). Let Ekl be the alphabet of Akl and let Ek2 be the alphabet

of Ak2 . If M gets an input symbol E Ek2 which drives it into an accepting

state for Ak , M outputs 1 . P. (1 . , P. E Ek1) • If M gets an input symbol
2 i i . i i

E Ek which drives it into a nonaccepting state
2

it outputs 0.P. (0. ,P. E Ek) •
i i i i 1

If H gets an input symbol E Ek 1 it outputs

stri-ng w E (Ek u Ek) * is mapped to a string

iff w E A. kl. 2 □
-kl+ 2

that symbol.

in¾ (if M
1

Hence, clearly a

is an¾ recognizer)
2

9

4. CLOSURE PROPERTIES OF MULTIHEAD RTTM LANGUAGES

According to FISCHER, MEYER and ROSENBERG L1972], the family of multi

head RTTM languages equals Rand hence the (non) closure properties mention

ed before apply. If we look at multihead RTTM languages in RH(k) the situa

tion is different. Here not more is known than we can readily deduce from

the results on R(k) and simulations like LEONG and SEIFERAS L1977]. With

the results of the previous section we can deduce something more. Clearly,

RH(k) is closed under complementation, union and intersection with regular

sets, suffixing with regular sets, inverse gsm mapping and minimization. If

RH(k) = R(k) 1, which is a well known open problem, then all results in Sec-

tions 2 and 3 hold even if we denote by k only the total number of heads on

the storage tapes, and don't take into account the way in which the heads

are distributed.
H

Clearly., R (k) is closed under marked union.

LEMMA 4.1. RH(k) is closed under marked concatenation iff RH(k) is closed

under marked Kleene star iff RH(k) = R(k).

PROOF. Suppose RH(k) is closed under marked concatenation and Lk E R(k) -
H H

- R (k-1). Then for each language LE R (k) we have that
k H

L' = (Lk{*} u {E}) L belongs to R (k). However, any k-head RTTM recogniz-

ing (L {*} u {E})k L gets reduced to essentially a k-tape RTTM by the time
k

it starts recognizing L. Hence the closure of RH(k) under marked concatena-

tion implies RH(k) = R(k). By Lemma 3.1, RH(k) = R(k) implies that RH(k) is

closed under marked concatenation.

By setting L' = (L{*} u {d)k+l for each language Lin RH(k) we prove

in a similar fashion that closure of RH(k) under marked Kleene star is

equivalent to RH (k) = R(k). D

Note that by the real-time multitape simulation result the closure of

RH(k) under marked concatenation (marked Kleene star) is contained in

R(4k-4) and hence in RH(4k-4).

Lemma 3 .. 2, Corollary 3.4 and Lemma 3.5 hold if we replace R(k) every
H

where by R (k). The proofs are completely analogous, with an additional

application of Theorem 2.1.

\

10

5. REAL-TIME JUMP TURING MACHINES

A k-head jump Turing machine (cf. SAVITCH and VITANYI L1977]) is a

k-head Turing machine where at each step the k heads may be redistributed

over the scanned tape squares. In SAVITCH and VITANYI [1977] it was shown

that a k-head jump Turing machine can be simulated in linear time by a

2k-head Turing machine and hence by a (8k-8)-tape Turing machine. KOSARAJU

[1979] has claimed t4at, by a complicated simulation, a k-head jump Turing

machine can be simulated in real-time by a multitape Turing machine. It is

at present unresolved whether k heads are more powerful thank tapes in

real-time. A possibly easier problem is to show that k heads with jumps

are more powerful thank tapes in real-time. We will show that these matters

are related.

It is easy to see that RJ(k) (the class of languages accepted in real

time by k-head jump Turing machines) is closed under marked concatenation

and marked Kleene star. By feeding th~ k-fold marked concatenation of a

language in R(k) - R(k-1) we can always reduce a k-head RTTM to a k-tape

RTTM. This, however, is not the case for a k-head jump RTTM. Hence k jump

heads are more powerful thank tapes iff k jump heads are more powerful than

k heads. Similarly, k jump heads are more powerful thank heads if k heads

are more powerful thank tapes. Hence we have

LEMMA 5.1.

(i) R(k) c RJ(k) iff RH(k) c RJ(k);

(ii) if R(k) c RH(k) then RH(k) c RJ(k).

REFERENCES

AANDERAA, S.O. (1974), On k-tape versus (k-1)-tape real time computation,

SIAM AMS Proceedings, Vol. 7 (Complexity of Computation), 75-96.

FISCHER, P.C., MEYER, A.R. & A.L. ROSENBERG (1972), Real-time simulation of

multihead tape units, JACM.!2_ (1972), 590-607.

KOSARAJU (1979), Real-time simulation of concatenable double-ended queues

by double-ended queues, Proceedings 11-th STOC.

LEONG, B. & J. SEIFERAS (1977), New real-time simulations of multihead

tape units, Proceedings 9-th STOC.

RABIN, M.O. (1963), Real-time computation, Israel Journal of Mathematics

.!:_ (1963), 203-211.

ROSENBERG, A.L. (1967), Real-time definable languages, JACM 14 (1967),

645-662.

11

SAVITCH, W.J. & P.M.B. VITANYI (1977), Linear time simulation of multihead

Turing machines with head-to-head jumps, Lecture Notes in Compu

ter Science (ICALP 4) 52 (1977), 453-464.

