
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

P. KLINT

LINE NUMBERS MADE CHEAP

Preprint

~
MC

IW 112/79 JUNI

2e boerhaavestraat 49 amsterdam

PJt..inted at .the Ma.thema.t.i.c.a.t Ce.ntfte, 49, 2e Bovr.ha.a.veJd;,r.aa:t, Aml,.teJt.dam.

The Mathema.tic.a.t Ce.ntfte, 6ou.nded .the 11-.th 06 Febltu.alty 1946, .U a. non­
TJ't06U wti.:t:u,ti,on tU.m.lng at .the pJr.Omo:tlon 06 pUlte mathema.t.i.c.6 a.nd U;!,
a.pp.U.c.a:tlon6. 1-t .U .6pon6oJt.ed by .the Nethelr1.a.n.d6 GoveJt.nment .thJt.ou.gh .the
Ne.thvri.a.n.d6 0.1tga.nlza.t.i.on 6oJt. .the Adva.nc.~ent 06 PU/le Ruea1tc.h (Z.W.O).

AMS Subject classification scheme (1980): 68A10

ACM-Computing Review-categories: 4.42, 4.10

Line numbers made cheap

by

Paul Klint

ABSTRACT

A technique is described for run-time line number administration to

be used for implementations of high-level languages. Under suitable

circumstances, this method requires absolutely no overhead, in either

time or space, during execution of the program.

KEYWORDS & PHRASES: Line number administration, diagnostic messages,

abstract machine code.

*)This report will be submitted for publication elsewhere.

1. INTRODUCTION

This note describes a new technique (henceforth called LMC:

Line numbers Made Cheap) for run-time line number administration to be

used by implementations of high-level programming languages. Such an

administration is needed for determining the source program line number

when a run-time error condition occurs. This line number can then be

used in a diagnostic message describing the kind and origin of the er-

ror.

l

The simplest method for maintaining the line number at run-time is to

introduce a system variable "LN" (for Line Number) and augment a given

source prog1ram with statements that assign appropriate values to this

variable. For example, the program fragment

(1) X : == 3;
(2) if a > b then
(3) y := 4.2
(4) els,e
(5) z := 0.002
(6) fi;
(7) while q < r
(8) do
(9) q := q * X + y
(10) od

is transformed into

LN := l;
(1) X : := 3;

LN := 2;
(2) if a > b then

LN := 3;
(3) y := 4.2
(4) els,e

LN := 5;
(5) z := 0.002
(6) f i;
(7) while LN := 7; q < r
(8) do

LN := 9;
(9) q := q * X + y
(10) od

If an error condition occurs during the execution of the transformed

program, say arithmetic overflow in the statement q := q * x + y, then

the value of LN is equal to the line number of that statement in the

original program. This method increases the execution time and the size

of the resulting program. It has been observed [1] that upto 25% of the

generated code may consist of instructions devoted to line number book-

2

keeping. Such an observation leads to (undesirable) compiler options to

suppress thE~ generation of line number information in the code.

However, these costs can be reduced if the compiler performs a modest

semantic analysis of the source program and determines which statements

may cause run-time errors. It is sufficient to prefix precisely these

statements with line number instructions. In [2] such an analysis is

described for Algol 60.

A completely different method, used in an implementation of Algol-W

[3], is to construct (at compile time) a separate table which relates

addresses in the generated code to source program line numbers. When an

error occurs at run-time, the current value of the program counter is

used as an index in this table and this yields the line number of the

statement currently being executed. This method does not affect execu­

tion time or program size, but has the disadvantage that the table with

line number information is an entity disjoint from the actual object

program. This increases the complexity of the overall system.

A third method, which is the subject of this paper, is to combine the

line number information with frequently occurring operations in the ob­

ject program. Then, the line number corresponding to a given machine

instruction location can be determined by simply scanning the object

program from the beginning and accumulating the line number information.

This method will now be considered in more detail.

2. THE LMC TECHNIQUE

we assume that a high-level language compiler produces low-level code

for an abstract machine. This approach is gaining in popularity, since

it allows the production of portable compilers. The abstract machine

code may either be interpreted or assembled to executable machine code.

This distinction is not essential, but it is easier to incorporate the

LMC technique in interpreter-based systems.

Three conditions must be satisfied to make the LMC,technique a viable

alternative for existing line number administration methods:

The value of the current line number is not needed very frequently,

and therefore it is acceptable if determining the line number re­

quires a fair amount of computation. This is the case for

line numbers in diagnostic messages and program traces, but not for

program-defined traps that depend on a particular value of the

current line number.

3

The instruction set of the abstract machine can be modified to handle

the line number administration. When used with real machine code,

there must be unused fields or opcodes in which the line number in­

formation can be encoded.

Individual operations in the abstract machine code can be inspected.

If these three conditions are met, one can expect the following bene­

fits from application of the LMC technique:

The line number administration hardly increases the size of the

abstract machine program.

Run-time maintenance of line numbers does not impose a penalty in ex­

ecution speed.

The accuracy of the line number, as computed by the LMC algorithm,

can be determined by the algorithm itself. Whether that accuracy is

acceptable or not depends on the specific application and the in­

tegration of the LMC model in the abstract machine code.

The LMC technique is based on two ideas. The first idea is to asso­

ciate the line number administration with a frequently used abstract

machine opE~rator, that occurs in the translation of (almost) every

high-level language statement. This operator must have the property

that its order of appearance in the abstract machine code is the same as

its appearance in the high-level language program. This excludes, for

example, the assignment operator (and in general any right associative

operator) from being used for this particular purpose. We will consider

an abstract machine with stack oriented architecture and associate the

line number information with the VOID operator, which removes the top

stack element. The associated information consists of the~ number

4

increment since the.previous VOID operator in the abstract machine code.

This information is based on the static occurrence of VOID operators in

the code and ,!!2! on the dynamic behaviour of the program.

The second idea is that line numbers need not be maintained at run-,

time at all! When the value of the current line number is required, in­

spection of the abstract machine code allows that value to be recon­

structed. It turns out that the current value of the (software) program

counter and the static information associated with VOID operators is

sufficient to compute the line number. One only needs to scan the

abstract machine operations and accumulate the line number increments on

the fly. ~ lower bound (!!!!) 2.!2 lli ~number~ lli total of

increments accumulated before lli value .2f ,lli program counter is

reached. ~ upperbound (!!!!_) is lli lowerbound minus~ plus lli first

!!2!!-~ increment that occurs after the value 2£. lli program counter.

These rules need some refinement for the case that the operator to which

the line number information is attached can cause a run-time error it­

self. These refinements are straightforward and will not be considered

here.

Consider the example:

(1) x := y + l;
(2) z := 2;

with translation:

LN LB UB CODE COMMENT

1 1 1 LOADV y stack value of variable y
1 1 1 LOADC 1 stack constant 1
1 1 1 ADD replace 2 top elements by their sum
1 1 1 STORE X store top element in variable x
1 1 1 VOID 1 remove top element; line increment 1
2 2 2 LOADC 2 stack constant 2
2 2 2 STORE X store top element in variable x
2 2 2 VOID 1 remove top element; line increment 1

The column labelled with LN gives the real line number, the columns la­

belled with LB and UB give the lowerbound and upperbound as computed by

the LMC algorithm. In the examples we will assume that initially LB=l

holds, and that end-of-line is associated with the expression on the

line just being ended and not with the expression on the next line. The

real line number LN must satisfy:

LB< LN < UB

If LB and UB are equal, the exact value of the line number has been com-

puted. If not, the line number has a value in the interval [LB,UB].

Hence, the inaccuracy of the value computed for the line number is al­

ways known.

If we rewrite the first line of the above example to

(1) X :=
(2) y +
(3) l;

the generated code and associated line numbers would l9ok like:

LN LB UB CODE COMMENT

2 1 3 LOADV y stack value of variable y
3 1 3 LOADC 1 stack constant 1
2 1 3 ADD replace two top elements by their sum
1 1 3 STORE X store top element in variable x
3 1 3 VOID 3 remove top element; line increment 3

5

This illustrates the point that the abstract machine operators and the

associated real line number do not need to appear in order of increasing

line number.

In general, the line number increments are small, say less then 10.

One can use this observation in the following way. Instead of introduc­

ing one operator

VOID increment

a series of operators can be defined for the frequently occurring spe­

cial cases:

VOID0 = VOID 0
VOIDl = VOID 1

VOID9 = VOID 9

By introducing these new operators, no extra space for the increment is

needed in the abstract machine code. Moreover, these special VOID

operators can be interpreted as efficiently as the normal VOID operator.

In fact, they are synonyms of the old VOID operator and can be treated

accordingly. The additional information encoded in these synonyms is

only used during the computation of the line number.

A final example illustrates the computation of line numbers when con­

ditional flow of control is involved. The high-l~vel language state­

ment:

if p > 0 then
q := 3

(1)
(2)
(3) else r := 4; s := 5 fi

leads to the following code and line numbers:

LN LB UB CODE

1 1
1 1
1 1

2 1
2 1
2 1
2 3
3 3
3 3
3 3
3 3
3 3
3 3
4 4

2 LOADV
2 LOADC
2 JLE

2
2
2
3
3
3
3
3
3
3

LOADC
STORE
VOID2
JMP

L:LOADC
STORE
VOID0
LOADC
STORE
VOIDl

4 M:

3. EXTENSIONS

p
0
L

.3
q

M
4
r

5
s

COMMENT

stack value of variable p
stack constant 0
jump to Lon less then or equal
and remove top 2 elements from stack
stack constant 3
store top element in variable q
remove top element; line increment 2
jump to M
stack constant 4
store top element in variable r
remove top element; line increment 0
stack constant 5
store top element in variables
remove top element; line increment 1

6

1 The LMC algorithm can also be used to keep track of statement numbers

instead of line numbers.

2 The method can be extended to deal with problems raised by global op­

timizations, such as moving code out of loops and eliminating common

subexpressions. The extension consists of introducing the additional

instruction

ALINE N

to define an absolute line number N. When this instruction is en--
countered during computation of the line number, it has the effect of

assigning the value N to both LB and UB. Moved code fragments must

be surrounded with ALINE instructions to define line numbers

corresponding to the line number of their original position in the

code and to the line number of the code that follows. An additional

ALINE is also needed to fill the gap in line number increments at the

place where the code was moved from. Common subexpressions are han­

dled by replacing all deleted subexpressions by ALINE instructions

that take care of the line number increment caused by the deleted ex­

pression. Addition of ALINE instructions causes a (probably insigni­

ficant) -increase of execution time and program size. In the worst

case, the optimized program including ALINE inst~uctions is not

better than the unoptimized program!

7

3 When it is impossible to add new instructions or employ unused fields

in the machine code, one is forced to generate additional instruc­

tions for the line number bookkeeping. Even under such unfavourable

circumstances, the LMC technique can be used to advantage. For exam­

ple, on the PDPll·a compiler might generate dummy instructions of the

form

MOV Rn,Rn

where Rn stands for one of the machine registers RO through R6. The

register number can be used as line number increment. This instruc­

tion occupies two bytes of code and requires 600 ns to execute. Com­

pare this with the case that line numbers are maintained explicitly

by means of instructions of the form

MOV #linenumber,LN

which require six bytes of code and approximately 1200 ns to execute.

On the CDC CYBER one uses dummy instructions of the form

SB0 Xj+Bk

to enforce certain alignment requirements. The (unused) register in­

dices j and k provide a convenient way to encode a six-bit value for

the line number increments.

On the IBM S/370, one can think of inserting operations of the

form

BC 0,increment

This gives a four-bit field for the line number increment and a fair­

ly low cost in execution time and program size.

4. REFERENCES

[1]

[2]

[3]

Hansen, P.B. & Hartmann, A.C., Sequential Pascal report, Informa­

tion Science, California Institute of Technology, 1975

Kruseman Aretz, F.E.J., On the bookkeeping of source-text line

numbers during the execution phase of Algol 60 program,.!!! MC-25

Informatica Symposium, Mathematical Centre Tracts 37, 1971.

Satterthwaite, E., Debugging tools for high level languages,

Software Practice and Experience ~(1972) 197-217.

8

