
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)
IW 113/79

DUTCH GRAPHICS INTERACTION STANDARDS COMMITTEE

SOME ISSUES IN INTERACTIVE PROGRAMMING REVISITED

Preprint

~
MC

JULI

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK l\f:.i\TH::~.'.;\T1SCH CENTRUM
----/~fv~STt:i~U/\.l,./i-

PJun:ted a:t :the Ma:thema:tlc.ai. Ce.ntJr.e, 49, 2e BoeJLha.a.vet,.tJuia;t, Am.6:tell.da.m.

The Ma:thema.:Uc.ai. Centlr.e, 6ou.nded :the 11-:th 06 FebJr.u.aJLy 1946, .l6 a non­
pll.06..i.:t ..i..n1>.ti:tu.tion a-i.m..i..ng a:t :the pll.omo:Uon 06 puJte ma:thema:tlc.6 and ..i..:t6
applica:tlon6. 1:t .l6 .&pon1>0Jr.ed by :the Ne:theJrl.a.nd.6 GoveJLnmen:t :thll.ough :the
Ne:theJrl.a.nd.6 0.Jr.gan.lza:tlon 6oJr. :the Advanc.emen:t 06 PUite Re.&eaJtc.h (Z.W.O).

1980 Mathematics subject classification: 68B99, 68K05

ACM-Computing Review-categories: 8.2

Some issues in interactive programming revisited*)

by

Dutch Graphics Interaction Standards Committee**)

ABSTRACT

During the past year a group of people involved in various ways

in computer graphics in The Netherlands have held regular discussions on

topics in the intersecting fields of graphics standards, input tools and

interactive programs. We feel that we have developed some clarifying

definitions and principles which we would like to cummunicate. Repercus­

sions on the recently proposed Core standard would be in the area of

facilities for echoing, prompting and higher level input functions.

KEY WORDS & PHRASES: Computer graphics, graphics standards, CORE,

portability, interactive programs, input devices

*) This report will be submitted for publication elsewhere.

Membership of this semi-official group consists (in alphabetical order)
of: Jan van den Bos, Johan Ero, Paul ten Hagen, Rens Kessener, Henk
Oudshoorn, Rinus Plasmeijer, Marleen Sint, Joop van der Star,.Jan Street,
and Arthur Veen.
Correspondence to: Paul ten Hagen, Mathematical Centre, 2e Boerhaavestr.
49, 1091 AL Am~terdam, The Netherlands.

MAN-MACHINE DIALOGUE

For many people who have to work with interactive programs it
is still hard to accept that their partner is not a superhuman
combining the capabilities of both a human and a big computer. In
fact the machine lacks many of the qualities that are essential to
make the interaction as flexible, natural and effective as we have
come to expect from most human-human dialogues. Nevertheless we can
improve man-machine dialogues a great deal by adhering to some
simple guidelines during the design of interactive programs.

Among the features we think are important and which are often
missing in present interactive programs are the following:

1. The master-slave relationship should be clear. We call the user
the master if he has full freedom of choice as to the next step
of the dialogue; we consider him a slave when his options are
severely limited. In general, we prefer the user to be the
master and the machine to be the slave. However, when dialogue
efficiency demands it, this relationship can be r.eversed, but
only during short and predictable interaction sequences. Even
then the user should at all times be able to regain complete
control by means of an escape or interrupting mechanism. This
mechanism itself should be flexible and graceful in the sense
that it allows the user a choice regarding the state the
dialogue should return to and the part of the past input that
should be discarded (backtracking).

2. The program and the user should be in agreement about the state
of the dialogue. To facilitate this the program should either
reveal its state upon request or continuously display its state
or state transitions. This can be accomplished through a general
"status inquiry function" which should always be accessible.
When the computer is the ·master features like menus and
parameter prompting would be of great help.

3. Amount and frequency of information exchange should be
dynamically adjustable. This adjust~ent can be automatic (e.g.
depending on the user's experience with the program), as long as
the user is able to overrule it. At every point the user should
be able to request detailed guidance ("help" feature).

4. Feedback should be appropriate. We will elaborate on this in a
later section.

1

PORTABILITY IN GRAPHICS

A reasonable and pragmatic definition of a "portable program"
is a "program which, when ported to another installation, can be
made to run on that installation with an effort which is small (say
10 to 25%) in comparison with the effort it would take to write a
completely new, functionally equivalent program". When trying to
port a graphics program one is faced with general problems like
local dialects of the implementation language, problems following
from the difference between host and target machine such as integer
capacity, and problems which follow from differences in the
available graphics hardware. The later problems are by far the most
difficult to overcome - may the differences between different
computers be considerable, those between different kinds of graphics
hardware a.re much greater still. The characteristics of a storage
tube, a refresh display and a raster display vary so widely that it
is hard to write an application program which is not geared towards
a specific device.

Nevertheless an attempt is made in one of the major efforts
towards standardization, the so-called Core proposal[1], to define
an intermediate, device independent level. A program which performs
all graphical actions in terms of Core primitives, can be ported to
each installation on which the Core is implemented. Whether such an
intermediat.e level will serve its purpose critically depends on the
following properties of the primitives chosen: it must be
comparative1ly easy to implement them on a variety of installations,
they must allow the use of the most powerful features of the most
sophisticat.ed hardware available, and application programmers should
be satisfie1d with their expressive power. One has to be aware that
the first two of these requirements are often in conflict: The more
powerful the primitives, the harder they are to implement on other
than the best equipped installations.

Although we think the Core proposal adequately provides
portability and machine independence and deserves strong support, we
feel that, as far as the input part is concerned, two points deserve
more attention: echoing, and facilities for constructing higher
level input tools from primitive ones.

2

ECHO PROMPT AND FEEDBACK

Interaction comprises input and output. The output has three
aspects worthy of special consideration because they are specific
for an interactive environment:

Echo is an immediate response to a basic and primitive input
stimulus. The only function of the echo is to acknowledge that a
stimulus was received. It gives no information about the state. of
the program beyond the fact that the program is running and input
from the device is acceptable. The echo does neither indicate the
initiation or completion of any action by the machine nor does it
indicate correctness of the input sequence. The response time
between stimulus and echo must not be noticeable to the user. This
implies that in most cases the echo will have to be initiated and
generated locally (e.g. provided by intelligence in the display
station). Its form is dependent on the device and its content
determined by the input. Echo therefore should be part of the Core
package. There should be a choice in echo modes including "no echo"
(if the hardware can support this).

Prompt is a signal asking the user for input. It usually indicates
what kind of input is expected and what state the program is in. The
content of the prompt is application dependent and it usually
implies that the last requested action is completed. For these
reasons the prompt cannot be generated locally. In most cases the
form of the prompt would indicate which physical device(s) the user
is expected to use. For instance for a logical CHOICE input the
prompt could be blinki111 menu items on one installation and
illuminating the appropriate function buttons on another one. At
least the form of the prompt is therefore device dependent and thus
should be part of the Core package. The application program should
be able to specify the content of the prompt and have a choice in
prompting modes, including none.

Feedback is.all output which cannot be
but which still strongly influences the
It greatly determines the quality of
therefore should be fully application
part of the Core package.

classified as echo or prompt
user's part of the dialogue.
the interaction process and

dependent. It should not be

These three classes have fuzzy boundaries and may in fact
partially overlap. It is however helpful to distinguish the echo,
prompt or feedback function in particular output in an interactive
program, and to design the program behaviour accordingly.

3

INPUT TOOLS

The Core proposes a small set of so called logical devices,
input primitives described in terms of their function only,
independent (at least in principle) of any physical realisation.
This last claim is doubtful. The Core primitives keyboard, pick,
button, locator and valuator are modeled very closely after existing
physical equivalents, namely keyboard, lightpen, button, tablet or
tracker ball and control dial. As a result, implementing these
primitive~1 will be trivial for an installation where the physical
devices mentioned are available in the number the Core prescribes.
When they are not, they must be simulated by others which are. This
may lead to rather grotesque results, like simulating a pick by
blinking each item on the screen in turn and having the user push a
button when the right one blinks.

Faced with an awkward implementation, a graphics programmer may
easily decide not to use the Core at all. Reorganising and rewriting
the complete input part of a program to be ported can sometimes lead
to a much better result than using the available Core
implementation, especially when the target installation is much less
equipped than the host. Baecker [2] illustrates this point of view
with several examples, in support of his conclusion that portability
of graphics programs, at least as far as the input is concerned, is
impossiblE~. If he is right, this has consequences for the
organisation of graphics programs - the part where the input is
handled and the data structures used by modeling functions are
assembled, should be separated completely from the remainder of the
program; in that way rewriting this part when porting the program to
another installation is facilitated.

Such a philosophy is not consistent with the construction of
higher leYel input functions as proposed by (among others) Van den
Bos, Hopgood and Anson [3,5,6] where the structure of the whole
program t1:mds to reflect the :::;tructure of the input.

We believe though that Baecker's view is too pessimistic. Not
all simulations are as clumsy as the pick simulation just mentioned.
More important, it is not clear whether the main difficulty in
implementing the Core on an arbitrary installation lies in the
variety of graphics devices, or in the choice of primitives. The
small distance between each Core logical device and a specific
physical device, is in itself a source of difficulties when one
tries to map such a logical device onto any other (combination of)
physical device(s).

Choosing primitives of a somewhat higher level, for example the
virtual devices of Wallace LBJ and, surprisingly, of Baecker [2],
may take away much of the problem.

4

There is however room for doubt whether this is the right
moment to choose higher level primitives. Only recently the higher
level input functions are allowing us to gain some insight in how to
perform structured input, and it will take some time until
experience with such higher level functions has taught what
requirements should be fulfilled by higher level primitives.
Furthermore, graphics hardware is still evolving rapidly and it may
be difficult later on to fit in a new, as yet unknown input device.
At the same time the use of some devices now causing trouble may
become obsolete. One should wait with introducing higher level
primitives until the graphics community has gotten used to working
with higher level input functions. However, as the Core proposal
stands, there are .!lQ. facilities to construct these higher level
input functions. We strongly recommend the inclusion of features in
the Core to make at least named sequence~ and sets of the presently
proposed input primitives possible and to provide read functions
operating on such entities. This could be a stepping-stone to the
more elaborate higher level input models being investigated at the
moment by several people. At the same time it would provide a
testbed for the idea of higher level functions.

CONCLUDING REMARK~

One of the great and not to be underestimated advantages of the
Core in its present form is, that it has a fair chance to be really
used by all kinds of people. In fact, this property seems to us
more important than any of the specific primitives actually
incorporated, and no improvement in any single primitive is worth
loosing it. With the exception of the improvements and alterations
suggested earlier in this report, it seems best to us at the moment
to leave things as they are. In the meantime a task force should be
created to look in more detail at input primitives. This task force
should keep the finger at the pulse of experiences with higher level
input functions and related developments, in order to propose
modifications to the Core proposal reflecting the maturity of input
handling which we hopefully will have reached a few years from now.
As long as porting the Core to arbitrary hardware seems impossible,
it seems better to take the opposite view and consider the Core as a
guideline to what hardware one should buy - at least if one expects
to benefit from porting programs written at other "Core friendly"
installations to ones own system.

5

REFERENCES

1. ACM-Siggraph GSPC, First report on graphics standards, Proc.
ACM-Siggraph, 1977, San Jose, Cal., USA

2. Baecker, R. Towards an effective characterization of graphical
interaction, IFIPS Workgroup 5.2 (CAD) meeting, May 1979, Seillac
(Paris)

3. van den Bos J. Definition and use of higher-level graphics input
tools, Proc. ACM-Siggraph, 1978, Atlanta, USA, pp. 38-42

4. van den Bos J. High-level graphics input tools and their
semantics, IFIPS Workgroup 5.2 (CAD) meeting, May 1979, Seillac
(Paris)

s. Hopgood, F.K. and Duce, D.A. A prodcution system approach to
interactive graphic program design, IFIPS workgroup 5.2 (CAD)
meeting, May 1979, Seillac (Paris)

6. Anson, E.K. The semantics of graphical input, IFIPS workgroup 5.2
(CAD) meeting, May 1979, Seillac (Paris)

7. Anson, E.K. The semantics of graphical input, Proc. ACM-Siggraph,
1979, Chicago, USA

8. Wallace, V.L. The semantics of graphics input devices, Proc.
ACM-Siggraph, 1976, Miami, Fla, USA

6

