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ABSTRACT 

In [17] G. PAUN studied families of languages generated by iterated 

gsm mappings, iterated finite substitutions, and iterated homomorphisms. 

In this note we generalize some results in [17], and we discuss the rela­

tion between iterated finite substitutions (homomorphisms) and (determin­

istic) tabled context-independent Lindenmayer systems. 

KEY WORDS & PHRASES: generalized sequential machines, tabled Lindenmayer 

systems, controlled rewriting. 
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1. INTRODUCTION 

Since the class of generalized sequential machine (or gsm) mappings is 

closed under the (associative) operation of composition [11], it is natural 

to describe the iteration of gsm mappings in terms of formal languages [17]. 

* For each finite set U of gsm mappings and each language L, let u (L) be 

the language obtained by applying on Lall possible finite sequences of gsm 

mappings composed of elements of U. Interpreting U as an alphabet we may de­

fine a language Mover U and consider languages of the fol:lll M(L) where we 

now restrict'the iteration process to those sequences over U that belong to 

M. We will refer to Mas the control language, since M controls the itera­

tion on L of elements from U. 

In [17] G. PAUN investigated families of languages M(L) where Mis a 

regular language and Lis taken from one of the families in the Chomsky hier­

archy (cf. [26]). Moreover, in this framework Paun studied the iteration of 

finite substitutions and homomorphisms by means of generalized sequential 

machines having a single state only. 

The aim of the present note is twofold. Firstly, we consider the more 

general case in which Land Mare taken from arbitrary language families 

Land M respectively (satisfying some simple conditions only) rather than 

from a privileged family in the Chomsky hierarchy (Section 2). Secondly, we 

will refer to another area in which iterated finite substitutions and homo­

morphisms have been investigated, viz. the theory of (extended tabled) 

Lindenmayer systems. So certain results obtained in Lindenmayer systems 

theory may be used to solve problems left open in [17] (cf. Section 3). 
V 

This note may be considered as a continuation of PAUN's paper [17]. 

Therefore we assume the reader to be familiar with the notational conventions 

established in [17]. For other unexplained terminology and additional back­

ground material we refer to [14, 15, 16, 19]. 

As usual we consider two languages equal if they differ by at most the 

empty word A. Similarly, two language families are defined to be equal if 

they contain the same languages modulo A. 
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2. CONTROLLED ITERATED GSM MAPPINGS 

We first introduce some definitions and notation concerning the family 

of languages generate·d by controlled iterated (non) deterministic gsm mappings. 

DEFINITION. Let Land M be families of languages. Then S"D(L,M) = {M(L) 

* Ms U , U is a finite set of deterministic gsm mappings; LE L; ME M}, 

S"(L,M) = {M(L) IM f; u*, U is a finite set of nondeterministic gsm mappings·; 

LE L; ME M}. The corresponding language families based on the controlled 

iteration of·>--free (non)deterministic gsm mappings are denoted by S(L,M) 
D 

and S (L,M). □ 

In order to avoid trivialities we always assume that the initial lang­

uage Lis >.-free. 

Note that S"(L,L3 ) and S(L,L3 ) coincide with the families S"(L) and 

S(L) respectively, as defined in [17]. 

We show that the role played by the family Lis rather unimportant (cf. 

Lemma 1 below) as soon as M 2 L and M possesses some simple properties. 

An isomorphism (or "renaming of symbols") is a one-to-one homomorphism. 

Let p be the reversal operation i.e. the mapping satisfying p(>.) = >., 

p(a 1a 2 ... an-lan) = anan_ 1 ... a 2a 1 , and p(L) = {p(w) I w EL} for each language 

L. Let LSYMBOL be the language family defined by LSYMBOL = {{cr} I a is a 

symbol}. 

LEMMA 1. Let L and M be families of languages such that LSYMBOL s L f; M. If 

M is closed under isomorphism, reversal and concatenation, then 

S"(L M) 
SYMBOL' ' 

S(L,lvf) = 

PROOF. Let L~ = M(L) for some M 
I~ . 

* + - -+ 
f; U , ME Mand Ls I , LE L. Let Ls I 

be an isomorphic copy of L such that I, E and U are mutually disjoint. 

Furthermore, let a be a symbol not in I u I u U. Define the new control 
- - -language MO by M0 = p (L)M, while u is extended to u u I. For each a E I we 

define a new gsm mapping a by 
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a.(<J) = fo}, 

a. (w) = fow}, + for each w EL , a EL. 

A It will be clear that M0 ({o}) = M(L), and hence we have S (L,M) ~ 
A 

S (LSYMBOL'M). Since the gsm mappings a may be chosen A-free and determin-

istic, similar inclusions hold in the three other cases, whereas the inverse 

inclusions are obvious. D 

A family of languages is called natural [24] if it is closed under 

* intersection with L for each finite alphabet L. Let N(L) be the smallest 

natural family which includes the family L. Clearly, we have 

N(L) = {L n L* ILE L; Lis a finite alphabet}. 

Next we show that regular control on iterated gsm mappings is equiva­

lent to applying the operator N to the corresponding uncontrolled family 

(cf. Lanma 2. Note that NSAD(L,L3) = SAD(L,L3) and similarly for SA, SD and 

s.) 
But we first introduce some notation. 

DEFINITION. Let L be a family of languages. Then 

SA(L) = {u*(L) I U is a finite set of nondeterministic gsm 
0 

mappings; LE L}, 

s;0 ct) = {u*(L) I u is a finite set of determinstic gsm 

mappings; LE L}. 

The language families based on the iteration of A-free (non)determin­
D istic gsm mappings are denoted by S0 (L) and S0 (L). D 

LEMMA 2. If L is closed under 

(i) NS~D(L) = SA0 ct,L3), 
D D 

(ii) NS0cL> = S (L,L 3>, 

isomorphism, then 
A A NS 0 (L> = S (L,L 3 >, 

N~L> = S(L,L3). 
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PROOF. 

(i) The proof is similar to the proof of Theorem 2.1 in [1]. 

(ii) We only show NS~(L} = S0 (L,L3) since the other case is completely ana­

logous. 

Firstly, the inclusion NSg(L) c S0 (L,L3) is obvious. So it remains to 

establish the converse inclusion. 

Let L = M (L0 ) be in s0 (L, L3), i.e. L0 E L, M s u* is a regular languag·e, 

and U = {g1 , ••• ,gk} is a finite set of A-free deterministic gsm mappings. 

Let M be accepted by a deterministic finite automaton (Q,U,Clo,QF,o) where 

Q is the set of states, U is the input alphabet, q0 is the initial state, 

~ is the set of final states, and o: Q x U ➔ Q is the transition function. 

If Eis the union of the input and output alphabets of all gsm's in U, 

then we introduce a new alphabet E1 =Eu Ex Q, a new set of gsm mappings 

* * u 1 = {h0 ,h1 , ••• ,hk} such that L = u1 (L1) n E with L1 = t(L0 ) where the iso-

morphism tis defined by t(a) = [a,q0 J for each a EE. Clearly, we have 

L 1 E L 

The gsm mappings h 1 , ••• ,hk are obtained fran g1 , ••• ,gk in the following 

way. For each i (1 ~ i ~ k) if sa + b 1 ••• b s' is a A-free production in g., n 1 

then h. possesses a finite set 
1 

of corresponding productions s[a,q] ➔ 

[b1 ,q'] ••• [bn,q' ]s' for each q,q' E Q such that o (q,gi) = q'. Note that hi 

is a A-free deterministic gsm mapping. The gsm mapping h0 is a partial homo­

morphism defined by h0 ([a,q]) = a iff q E ~- (In all other cases h0 is un-

defined.) 

* * It is straightforward to show that u 1 (L1) n E = L. Hence we have 

s°(L,L3> = NS~(L}. □ 

Lemmas 1 and 2 enable us to extend Theorem 2 in [ 17] and Theorems 2 

and 23 in [26] in the following way (cf. Corollary 2 in [17]). 

THEOREM 3. Let: L and M be families of languages such 1:hat: LSYMBOL = L S L0 , 

and L3 s Ms L0 • Then 

(1) 

(2) 
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PROOF. 
A A 

(1) From Lemmas 1 and 2 it follows that S (L3 ,L3) = S (LSYMBOL'L3) = 

N~t(LSYMBOL).ATh~ monotoni~ity of SA and N implies that SA(L3 ,L3 ) f 

S (L,M) and S (L3 ,L3) ~ NS0 (L). By Church's thesis (or an argument simi­

lar to the proof of Theorem 1 in [17]) we have SA(L,M) f L0 and 
A NS0 (L) .s L. 

According to Theorem 2 in [ 1 7] we have L0 

completes the proof. 

(2) Using Theorem 23 in [26] we obtain in a similar way L0 
NSAD (L ' ) C NSAD (L) C SAD (L,M) C L • □ 

0 SYMBOL - 0 - - 0 

In Theorem 3 it was shown that all type-0 languages are obtained by 

means of controlled iterated (possibly erasing) gsm mappings. We now show 

that for some families of control languages the family L0 can also be achiev­

ed by controlled iterated A-free gsm mappings (cf. Theorem 2.2 in [1] or 

Proposition 4.3 in [3]). 

THEOREM 4. Let M be a family of languages closed under reversal. If {h (L) I 
D 

L € M; his a (possibly erasing) homomorphism}= L0 , then S (LSYMBOL'M) = 

S(LSYMBOL'M) = LO. 

PROOF. Remark that M ~ L0 , and therefore by Church's thesis S0 (LSYMBOL'M) s 

S(LSYMBOL'M) f L0 . So it remains to show that L0 ~ S0 (LSYMBOL'M). 

Let L f L+ be a A-free language in L0 • Then there exist a language 

Ms U+ in Mand a homomorphism h: U+ + L+ such that h(M) = L. For each g ·in 

u we will define a A-free deterministic gsm mapping such that (p (M)) ({$}) = L 
D 

for some$¢ L, i.e. L € S (LSYMBOL'M). In defining g we distinguish the 

following cases: 

(1) h(g) - A. Then the gsm mapping g is defined to be the identity mapping. 

(2) h(g) # A. In this case g is defined by 

g($) =h(g) 

g(x) 
. + 

= h(g)x for each x € L (or equivalently, x # $), 

which can be easily realized by a A-free deterministic gsm. D. 



6 

Note that Theorem 4 applies to the family L1 , the intersections of 

linear context-free languages [6], and each complexity class which includes 

DSPACE(log n) (i.e. the family of languages accepted by two-way determin­

istic multi-tape Turing machines which scan at most log n tape squares at 

each auxiliary tape during a computation on an input of length n) [3]. On 

the other hand it is still open whether e.g. SD(LSYMBOL'L2) and S(LSYMBOL'L2) 

are properly included in L0 • 

3. RELATED OPERATIONS 

In this section we first give some definitions and notation: concerning 

tabled Lindenmayer (or L) systems. Then we relate the families H(L3 ) and 

F(L3), as defined in [17], to certain classes of tabled L systems. This en­

ables us to solve the open problems in [17] (p. 932) because the correspond­

ing problems in L systems theory have already been solved. 

DEFINITION. Let Mand A be families of languages. An M-controlled extended 

tabled Lindenmayer system with A-axioms or an (M)ETOL(A) system 

G = (V,E,U,M,A) consists of 

- an alphabet V 

- a terminal alphabet rs V 

- a finite set U of finite substitution over V 

* - a language M :: u in M (M is the control language of G) 

* A - a language A sv in (A is the initial language of G). 

The language generated by G is defined by L(G) * = M(A) n E . 

If u contains only homomorphisms over V, then G is called determinis­

tic or an (M)EDTOL(A) system. If each finite substitution [or homomorphism] 

in U is A-free then G is called propagating or an (M)EPTOL(A) [or 

(M)EPDTOL(A)] system. For X = ETOL, EDTOL, etc. the family of languages 

generated by (M)x(A) systems is denoted by (M)x(A). D 

Moreover, in order to comply with standard terminology in L systems 

theory we use the following notational conventions: 

(1) We drop the "E" in the family name when V = E; e.g. (M)TOL(A), 

(M)DTOL(A), etc. 
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(2) Whenever A= LSYMBOL we omit the reference to A; e.g. (M)ETOL, (M)EDTOL, 

etc. 

(3) In case M = {u* I U is finite} we delete M in the family name; e.g. 

ETOL(A), EDTOL(A)", etc. 

Combinations of these conventions are of course possible; so families like 

ETOL, EDTOL, (M)TOL are defined in an implicit way. 

Note that for each M and each A we have (M) ETOL (A) = N ( (M) TOL (A) ) and · 

(M)EDTOL(A) = N((M)DTOL(A)). 

From the definitions we immediately obtain the following equivalences. 

PROPOSITION 5. Let L be a family of languages. Then 

□ 

Here H(L) is defined by H(L) = {R(L) IL E L; RE L3, R £ u*; U is a 

finite set of A-free homomorphisms}, and similarly for HA(L), F(L), and 

FA(L); cf. [17]. 

THEOREM 6. 

(1) For each family L with LSYMBOL £ L C EDTOL, H (L) = HA CL> = EDTOL = -
EPDTOL (modulo A). 

(2) For each family L with LSYMBOL s L £ ETOL, F CL> = FA(L) = ETOL = EPTOL 

(modulo A), 

PROOF. In both cases the former and the latter equalities are known (cf. 

[17] and respectively [18, 4]). So it remains to show the middle equality. 

(1) From Proposition 5 and the assumption on Lit follows that (L3 )DTOL S 

(L3)DTOL(L) = HA(L) S (L3)DTOL(EDTOL). In the proof of Lemma 3.3 in [5] 

it was shown that (L3)DTOL = (L3)EDTOL which in turn equals EDTOL [4]. 

In the same way we obtain (L3)DTOL(EDTOL) = (L3)EDTOL(EDTOL) = 

EDTOL(EDTOL). Since EDTOL is the smallest (nontrivial) natural family 

closed under iterated homomorphism [4], we have EDTOL(EDTOL) = EDTOL. 

Hence EDTOL S HA(L) c EDTOL. 
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(2) 
;\ 

As under (1) we have (L3)TOL ~ (L3)TOL(L) = F (L) S (L3)TOL(ETOL). From 

Theorem 1 in [9] it follows that (L3)TOL = (L3)ETOL and hence (L3)TOL = 

ETOL by Theorem 2.1 in [1]. Similarly, we have (L3)TOL(ETOL) = 

(L3 )ETOL(ETOL) =·ETOL(ETOL). As ETOL is the smallest (nontrivial) natu­

ral fami.ly closed under iterated finite substitution [7], it follows 

that ETOL(ETOL) = ETOL, which finally yields f;\(L) = ETOL. 0 

COROLLARY 8. 

(1) H;\(L3) is properly included in F;\(L3). 

(2) HA(L3 ) and L2 are incomparable, i.e. neither family includes the other 

one. 

PROOF. (1) follows from Corollary 7 above and Corollary 4 in [8]. Corollary 

7 together with the main result in [10] imply (2). D 

Clearly, Corollary 8 solves the open problems in [17] (p. 932). 

By Corollary 7 many results obtained for the families ETOL and EDTOL 

(cf. e.g. [4, 7, 18]) now become applicable to FA(L3) and to HA(L3) respec­

tively. In particular Theorem 9 and Proposition 2 in [17] extend to the main 

result in [7] and to Corollary 4.5 in [4] respectively. 

For further generalizations to M-controlled tabled L systems, the (M­

controlled) iteration of K-substitutions where K is an arbitrary language 

family, etc. we refer to the literature [1 - 5, 12, 13, 20 - 26]. 
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