
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.V. TUCKER

IW 115/79

ALGEBRAIC SPECIFICATIONS OF COMPUTABLE AND SEMI­
COMPUTABLE DATA STRUCTURES

Preprint.

~
MC

AUGUSTUS

2e boerhaavestraat 49 amsterdam

it,B.UOTHE.Ef\. h,1/\ T:r~:--.. ~,;\T!":'.C:H c;EN l HL-1.i~
P,M:.,fl:.i\DA:Yt

PJunted a;t. .the Ma;t.he.ma.U.c.a.l Ce.ntJr.e, 49, 2e BoeJr.ha.ave-6.tJc..a,a;t, Am.6.teJr.dam.

The Ma;t.he.ma.U.c.a.l Cen:tJLe, 6ou.nded .the 11-.th 06 FeblLu.aJLy 1946, ..U a. non­
pll.o 6U -i..n1>:tltu,tio n cumi.ng a;t. .the pll.Omotio n O 6 pUll.e ma;t.he.ma.U.C-6 a.nd LU
a.pp.U.c.a:tlonti. I:t ..U .6pon1>01Led by .the Ne.theJtla.ncu GoveJr.nment .th/Lough .the
Ne.theJtla.ncu Oll.ga.n-i..za.U.on 6olL .the Adva.nc.e.ment 06 PU/Le Re6ea.ll.c.h (Z.W.O).

1980 Mathematics subject classification: 03D45, 03D80, 68B15

ACM-Computing Reviews-category: 4.34.

* Algebraic specifications of computable and semicomputable data structures

by

** J.A. Bergstra & J.V. Tucker

ABSTRACT

We address theoretical issues to do with algebraic specification methods

for data structures, particularly the so called hidden function and hidden

sort specifications. On giving exact definitions of the computable and semi­

computable data structures we show that every computable data structure

possesses a (special kind of) finite, equational hidden functions specifica­

tion and that every semicomputable data structure possesses a (special kind

of) finite, equational hidden sorts specification. In passing we answer 5

questions recently posed by S. Kamin and are able to virtually complete the

classification of the comparative power of his 27 categories of algebraic

specification methods.

KEY WORDS & PHRASES: abstract data structures, algebraic specification,

hidden functions, hidden sorts, computable and

semicomputable algebras

* This paper is not for review; it is meant for publication elsewhere.

** Department of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA LEIDEN, The Netherlands.

1

INTRODUCTION

The purpose of this paper is to make some theoretical contributions to

the algebraic theory of data type specification associated with the names

J.V. Guttag, J.J. Horning, S. Zilles, B. Liskov, M. Majster, the ADJ Group.

Underlying this theory is the idea that each data type, in a programming

system Lor particular program P should be characterised explicitly in Lor

Pin an algebraic fashion by defining it as a collection of operators [with

explicitly defined properties E so that the control and assignment structure

of the type are precisely specified and salient features of its implementa­

tion made visible. The algebraic theory of data type specification studies

algebraic prescriptions ([,E) for data types. The rapid growth of such stud­

ies has not been unproblematical largely because of technical problems of

an algebraic nature (one thinks of the literature generated by Majster's

Transversal Stack [8] which fails to have the much favoured finite, equation­

al specification, see KAPUR [7]). And this has led to a profusion of algebra­

ic specification methods some ad hoc, designed for particular examples.

Recently, s. KAMIN [6] introduced a classification scheme, embracing

many of the methods so far applied, and summarized what was known concerning

their comparative power and adequacy, asking questions of the form: Given

two methods M,M' is M more generally applicable than M'? and, Does a given

method M define all the data types one wants? Here we continue the classi­

fication of these methods by proving two very general adequacy theorems and

answering several questions recorded as open in Kamin's survey.

We do this by taking a point of view closer to that of Majster in her

work on (in-)adequacy [9] than that of Kamin. Each type, when specified

algebraically by a pair ([,E) gives rise to a class K of all algebras
T

satisfying the properties of E and this class K of all data structures of
T

type, completely determines the semantical structure of,. Therefore to

discuss the adequacy of the known specification methods we give, in section

two, an exact defipition of the computable and semicomputable data structures

belonging to any type. We prove, in section three, that every finitely gener­

ated computable data structure A has a particular kind of finite, equational

hidden function specification, called a finite, equational hidden enrichment;

and, in section four, we prove that every finitely generated semicomputable

2

algebra has ai particular kind of finite, equational hidden sorts specifi­

cation called a finite, equational hidden enrichment by sorts. Section one

contains the algebra we need, and the other comparative/adequacy results

appear mainly in sections two and five.

2. ALGEBRAIC PRELIMINARIES

The reader is assumed familiar with Kamin's admirable survey [6] and

with the initial algebra methodology of the ADJ GROUP [1] on which it rests;

an acquaintance with Majster's paper [9] is also useful. Here we shall col­

lect a number of algebraic facts, but we begin by fixing terminology and

notation: in so doing we shall note any correspondences between our techni­

cal vocabulary and the seven commonly occurring useful, distinct meanings

of the word data type in the literature of Programming Methodology listed

by D. Gries i.n [4, pp.263-268].

Each data structure A can be thought to consist of a finite family

A1 , ... ,An of data domains, or component data structures, together with a

finite family of operations and relations of the forms

>.., JJ
Oi

>..
Fl

X ••• X

X • , • X

➔ A
)l

for some k E w, the natural numbers, andµ,>... E {1, .•. ,n}, 1 ~ i ~ k. Of
J.

course, the relations of A become redundant under the assumption that among

the data domains is the Boolean B = {0,1}. Defining a data structure to be

a heterogenous algebra in this way represents the third use of the word type

in Gries's list and subsumes the second; we use the terms data structure

and algebra synonymously.

The signature rA of a heterogenous algebra A consists of a name, called

a sort, for eiach of its domains and a standardised notation for each of its

operations which names the sorts on which they are defined, such data si<J­

natures formalise the first use of type in Gries's list. By a data type class

or a data type semantics we shall here mean any class K of data structures

of common data signature, the fourth useage of type in Gries's list. Thus a

3

basic task of algebraic data type specification is to give formal algebraic,

syntactical definitions (L,E) of data type classes Kand of particular data

structures A either absolutely or relative to some class K; the sixth and

seventh useages of type in Gries's list arise in such specification mecha­

nisms. (The fifth, and last, useage in the list arises in specifying cons­

tructions of new data type classes and structures from old ones.) Henceforth,

we concern ourselves with the problems of data structure specification.

We assume concepts such as subalgebras; congruences; factor algebras;

homo-, mono-, epi-, and iso-, morphisms are known along with that of initial
-

algebras for classes of algebras and this machinery which is the basis of

Kamin's classification scheme (see [6,1,2]):

A data structure A is to be specified by a data signature Land a set

of equations E over L where these equations are of three kinds. Let TL be

the L term algebra and TL[x1 , ••. ,xn] be the L polynomial algebra in the vari­

ables x1 , ... ,xn. An identity t = t' is called a simple equation over L if

t,t' E TL and is called a (polynomial) equation over I if t,t' E Tt[x1 , ... ,xnJ.

A conditional equation over Lis a formula of the form t 1 = ti A ••• A tk =
tk ➔ t = t' where t,t',ti,ti E TL[x1 , •.• ,Xn] for 1 ~ i ~ k. The sets of all

such equations are nested

SEQ(L) EQ(L) CEQ(L).

The initiality of TL for the class of ALG(L) of all L algebras is used to

construct from a set of such equations E in a specification (L,E) an initial

object TL,E as a factor algebra of TL for the class of all L algebras sa­

tisfying the properties of E: the class of all so called E-algebras with

signature L. This is done as follows:

Any set of equations E defines a set of pairs Es c TL x TL which satis­

fy-the formulae of E in the usual way. Thus if E c SEQ(L) then E = E; if
s

E c EQ(L) then Es = { (t(s1 , •.• ,sn)' t' (s1 , ... ,sn)): t = t' EE, s 1 , .•• ,sn E TL}

where if t E TL[x1 , •• _.,xn] then t(s1 , ••• ,sn) is the result of substituting

si for Xi int, 1 ~ i ~ n; and so on. Then TL,E is by definition TL/=Es·

A pair o: ,E} is a specification for the data structure A if TL ,E ;;;; A.

The complexity of a specification (L,E) will be measured in terms of

the kind of equations included in E and whether Eis finite, recursive or

4

recursively enumerable. In preparation for describing Kamin's classification

more precisely, let us remark on the constructivity of our various sets of

algebraic syntax. We assume TL, TL x TL, TL[x1 , ••• ,Xn]' SEQ(L), EQ(L), CEQ(L),

have a standard godel numbering o so that given any godel number of a term,

polynomial, equation and so on, we can recursively calculate godel numbers

for all its component subterms. In saying, for example E c CEQ(L) is a re­

cursive or recursively enumerable set we will formally mean the set o-1 (E)

is recursive or r.e. and in saying E = {e.: i EW} is recursively enumerated
l.

by f(i) = e. we will formally mean f is a recursive function w + o-1 (E) such
,l.

that of: w +Eis surjective.

A set of equations E over a signature may be a finite ·(F), recursive

(REC) or recursively enumerable (RE) set of simple (S), polynomial in sever­

al variables (V), or conditional (C) equations. Let r E {F, REC, RE} x {s,v,c}.

Then a specification (L,E) is said to be of typer if Eis a set of equations

of type (abbreviated by) r.

A data structure A possesses a r specification (without hidden functions

or hidden sorts) if there exists a specification (L,E) of typer such that

T ~A.These specifications are abbreviated (f,N) specifications: N for
L ,E

no, in anticipation of the more elaborate specifications which are the main

subject of this paper. It is, perhaps, useful to place this simple fact

here as an illustration of (f,N) specification.

If A is an algebra and a 1 , .•. , an E A then (A1 , a 1 , •.• , an) is the algebra

with domains and operations those of A but with a 1 , .•. ,an adjoined to the

constants of A.

1.1. PROPOSITION. Let A be finite and generated by a 1 , ... ,an. Then

(A,a1 , ..• ,an) has a (F,S,N) specification.

PROOF. Let A., the component data domain of A named by sort i, consist of
• l. . .

elements b1
1 , ... ,b1 • For each i, .·choose m. polynomials such that t:(a1, ... ,a) == b\

mi " l. J " n J
1 ~ j ~ m .. Now for each operation o ,µ of A write out the graph of o ,µ,

l.

(A,µ
graph o)

in terms of these polynomials; thus

µ
t. (a) ,

J

where a= (a1 , ... ,a), and collect these identities as simple equations
n-

over L, the signature of (A,a1 , .•. ,an), into the finite set E. Then

(A,al, ... ,a) ~ T_. • Q.E.D.
n L,, E

5

If cr or a is an operation or constant of algebra A then we invariably

denote the corresponding notations in LA by E._ or~ respectively. A useful

algebra is (w;O,+1) where +l(n) = n+l, its signature we write LO ={O,S}. ,s
The prime subalgebra PA of an algebra A is the intersection of all

subalgebras of A: the smallest subalgebra of A. Equivalently, PA is the

subalgebra of A generated by the constants named in LA. A is said to be

prime if A= P or, equivalently, if A has no proper subalgebras.
A

Hidden function and hidden sort specifications of algebras A are based

upon signature contractions of algebras B where LB ::i LA. Two such contrac­

tions are important: let A be an algebra and LA ::i L then,

AIL denotes the algebra with domains those of A named by the sorts of

Land operations only those of A named in L;

<A>L de:notes the prime subalgebra of AIL, often termed the L-prime sub­

algebra of A .•

The following facts are easy to see.

1. 3. LEMMA. Let A have signature LA ::i L ::i L . Then
1 0

and

1.4. LEMMA. Let A, B be algebras

~:A+ Bis a morphism~= AIL
' 0

of common signatures L ::i L0 .

+ Bi and <A> + .
Lo Lo Lo

Any morphism

KAMIN [6, p.37] uses these contractions to distinguish two kinds of

hidden function specifications and two kinds of hidden sorts specification

for data structures: let r E: {F,REC,RE} x {s,v,c}.

6

A data structure A has a r hidden function specification (1) under the

usual interpretation or (2) under the subalgebra interpretation if there is

a I~ IA, containing exactly the sorts of IA, and a set of equations of

typer over r"' such that (1) T"'. I"' ~ A or (2) <T"' >I ;;;,; A respectively.
L, L,,E !..,A l..,,E A

Similarly for r hidden sort specifications. Kamin's notation (f,HF)

and (f,HS) specifications refer to hidden function and hidden sort speci­

fications using the usual interpretation.

Notice that if the algebra A is prime then a hidden function specifi­

cation (I,E) under the usual interpretation is also one under the subalge­

bra interpretation,

= <T >
I,E IA = A.

Pairs (I,E) for which this occurs we define, in section three, to be hidden

enrichment specifications, and they are the only hidden function specifica­

tions we use. Thus all data structures when specified will appear prime;

this is not accidental.

Let A be a data structure. This is a semantical concept, and it seems

reasonable to suppose it is finitely generated in a computation in which it

appears by initial values a 1 , ... ,an which are either fixed by its data type

or are presented to the type as input. In either case the signature of any

specification (I,E) for A should carry names x 1 , ... ,xn for otherwise pro­

gramming over the specification would not allow one to access all of A (note

that 'running' a toy program scheme over an algebra A computes strictly

within the subalgebra of A generated by its input). This means that if A

is any structure finitely generated by a 1 , ... ,an which one feels acceptable

as a data structure in a computation then one should ask if it is specifi­

able in the form (A,a1 , ... ,an). All this is implicit in the (f,N) specifi­

cations as defined: it is easy to see that the prime algebras of ALG(I) are

precisely the factor algebras of its initial algebra Tr.

We close this· section with two lemmas we use later on.

1.5. LEMMA. Let (I 0 ,E0) and (I,E) be specifications with I: 0 c I and E0 c E.

If there exists a transversal Jc Tio such that

7

(ii) for each constant c EL - L0 , there is at E J such that c - t;
E

(iii) for each k~ry cr EL - L0 , and any t 1 , •.• ,tk E J, there is a

t E J such that cr(t1 , .•• ,tk) -Et; then T~ I~ ~ T~ •
t..,E t..o t..o,Eo

PROOF. Since E0 c E and J is a transversal it is easy to see that

~([t]) = [t]E, fort E J, well defines a LO homomorphism T~. E + T~ El~ •
Eo t..or O t.., t..Q_

condition (i) implies ~ is injective because if t 1 ,t2 E J and [t1 JE0 =I- [t2 JE0

then [t1 JE =I- [t2 JE. Conditions (ii) and (iii) imply~ is surjective as fol­

lows: we show that for each t E TL there is a t 0 E J such that t =E t 0 .

Now if t E TLO then t -Eo to, for some to E J, and sot =E to as =Eo C =E·

Assume t E TL - TL • We argue by induction on the complexity oft.
0

The basis sees t as a constant in L - LO and is immediate from con-

dition (ii).

Lett= cr(s 1 , ..• ,sk) for some cr EL and assume there exist t 1 , •.• ,tk EJ

such that Si =E ti, 1 ~ i ~ k. Then t -E cr(t1,·••rtk). If cr E Lo then

cr(t1 , ••• ,tk) E TLO and obviously t _E t 0 for some t 0 E J. If cr EL - LO then

cr(t1 , ••. ,tk) _E t 0 for some t 0 E J by condition (iii) and sot =E t 0 . Q.E.D.

1.6 LEMMA. Let (L0 ,E0) and (L,E) be specifications with LO c L, E0 c E and

Let A and B be LO and L algebras such that

If A ~ T and Bis an E-algebra then B ~ T~,E
Lo,Eo l.,

PROOF. The hypotheses amply TL,EIL0 ~ BIL 0 by, say, L0-isomorphism ~- More­

over, the initiality of T~ 0 1~ for E0-algebras, inherited from T~ E,
. ' l.,, t..Q t..Q, 0

implies that~ is the only LO homomorphism TL,EIL0 + BIL0 • Since Bis an E-

algebra there exists a L homomorphism~= TL,E + B which restricts to a LO

homomorphism T~ I~ + Bl~ • Thus~=~ and must be bijective; in particular,
t..,E t..Q t..Q

~ must be a L isomorphism. Q.E.D.

8

2. COMPUTABLE AND SEMICOMPUTABLE ALGEBRAS

Our semantic measure of adequacy is invested in the concepts of comput­

able and sem.icomputable data structures which are defined in a moment. These

definitions are based upon work of M.O. RABIN [12] and, in particular, A.I.

MAL'CEV [10] devoted to inventing a theory of computable algebraic systems

and they represent a distinct improvement on other formulations, such as

Majster's definition of a computable data type in [9], because they are

completely formal and give concepts which are isomorphism invariants: the

hall-mark of genuine al.gebraic properties. For background material we re­

commend MAL'CEV's [10].

A data structure A is said to be effectively presented if correspond­

ing to its family of component data domains A1 , ... ,An there are mutually

disjoint recursive sets n1 , .•. ,Q , n. cw, 1 ~ i ~ n, and surjections
n l.

a.: Q -+ A., 1 ~ i ~ n such that for each operation cr = cr(A1,···,Ak,µ):
l. i l.

AA 1 x ••• x AAk-+ Aµ of A there is a recursive tracking function
= ,.... ()1.1, ••• ,Ak,µ) ·. ,.., ,.., ,.., h' . cra va ••Al x ••• x ••Ak-+ ••µ w 1.ch commutes the diagram:

(5

(5
a

wherein aAl >< ••• x aAk (xAl, ..• ,xAk) = (aA1 (xA1), ... ,aAk (xAk)).

A is a computable data structure if for each 1 ~ i ~ n the relation

- , defined on Q. by x = y iff a. (x) = a. {y) in A., is recursive. And
ai i. ai i. i. i.

A is a semicomputable data structure if each of these - is recursively
ai

enumerable.

Combining the n1 , .•. ,Qn and the a 1 , ••. ,an we can obtain a recursive

number of al9ebra _Q of signature E and a E epimorphism a: Q-+ A. Thus A

is effectively presented when it is the homomorphic image of a recursive.

number algebra. Combining the - 1 ~ i ~ n, into= identifies the com-
ai a

putability or semicomputability of A with the recursiveness or recursive

enumerability of Pairs (Q,a) we refer to as effective, recursive (or -a•

computable),, and semirecursive (or semicomputable) coordinatisations,

accordingly ..

Here are some facts which are easily proved.

1. Every countable data structure A possesses an effective coordina­

tisation.

2. If .A is computable, or semicomputable, and B is isomorphic to A,

then Bis computable or semicomputable.

9

3. If l\ is a finitely generated data structure computable or semi­

computable t~der both a: aa ➔ A and S: a 8 ➔ Athena and Sare recursively

equivalent in the sense. that there exist recursive functions f,g which com­

mute the diagram:

See MAL'CEV [10].

2.1. LEMMA. Bvery computable data structure A is isomorphic to a recursive,

number algebra a each of whose numerical data domains a. is the set of
J.

natural numbers, w, or the set of the first m natural numbers, w, accord­
m

ing to whether or not the corresponding data domain A. is infinite or finite
J.

of cardinalJ~ty m.

PROOF. Since A is computable it possesses a computable coordinatisation

(a ,a) consisting
a

f . na . . na . h o recursive sets"·, surJections a.: a,. ➔ A. wit re-
i J. i i

cursive con~rruences - ,
ai

and recursive tracking operations, 1:,; i:,; n.

For each 1:,; i:,; n, define the recursive sets r.
i

a
ca. by

i

XE r. ~XE aa & (Vz < x)[z E aa ➔ z -
i i i

so that a.: r. ➔ A. is bijective; let f. be a recursive
i J. i i

bijection w ➔ r.,
i

if r. is infinite, or a finite bijection w ➔ r., if r. is finite with m.
J. mi

elements, and denote the domain of each f. by
i

a.f. is a bijection a. ➔ A ..
i i i i

i i i
a .. Thus for 1:,; i:,; n,

J.

A,µ a
Now for each recursive tracking function cr : a, x •••

a /\1

10

A,µ
define the recursive function a 8 x ••• x Q by

µ

A,µ A,µ ~
It is easy to check that 0 0 tracks a on QA , ••• ,~,A , Q whence it

~ 1A µ k µ
follows that combining the n1, ••• ,Qn and these a 8• makes a recursive

numerical algebra Q isomorphic to A under 8 as required in the lemma. Q.E.D.

Obviously, no isomorphic or faithful representation, such as that

provided by Qin Lemma 2.1, is available to the semicomputable data struc­

tures, else they would be computable; actually each semicomputable algebra

A can be represented as the image of such a Q under epimorphism 8 with _8
r.e. and we shall now show this in the finitely generated case.

The godel numbering of a TL, discussed in section one, is, of course,

a canonical kind of recursive coordinatisation of TL which makes it a ~om­

putable L algebra. By Lemma 1.1 we can take the domain of this godel number­

ing to be a L algebra with component domains w or w, for various m, and so
m

speak of a canonical isomorphic representation (Q*,y*).

If A is finitely generated by a 1 , ..• ,an then by initially, (A,a1 , •.• ,an)

with signature Lis the image of a unique epimorphism v: TL+ (A,a1 , ••• ,an)

and so we have an effective coordinatisation y = vy*:Q* +TE+ (A1a1 , ••• ,an).

(This proves remark 1 in the finitely generated case). Notice that

is the set of all simple equations over L true in A, T~
~,£

If A is semicomputable then it follows from remark 3

~ (A,a1, ••• ,an).

that= is r.e. . a
and we have in ya representation for semicomputable algebras analogous

to that in 1.1. But this observation also means that£ is r.e. and so we

have shown one half of

22. PROPOSITION. Let A be an algebra finitely generated by a 1 , ••• ,an. Then

(A,a1 , ••• ,an) is semicomputable if, and only if, it possesses an (RE,S,N)

specification.

The converse is easy to formally verify. Now, in the argument above,

if Ai~ computable then we get~ is recursive:

23. PROPOSITION. Let A be a computable algebra finitely generated by

a 1 , ••• ,an. Then (A,a1 , ••• ,an) has a (REC,S,N) specification.

11

The converse of 2.3 is false as we shall see in section five.

Adequacy, for Kamin, is measured syntactically by means of (RE,S,N)

specifications. The situation as far as specifications not involving hidde~

functions, or hidden sorts, he reports to be this.

The (RE,S,N), (RE,V,N) and (RE,C,N) all specify the same classes of

data structures; later, in 5.1, we add the (REC,C,N) specifications to this

list and then show, in 5.5, that (REC,V,N) specifications define strictly

fewer data structures. (Note also 2.3 in this connection).

The (F,V,N) specifications define strictly fewer structures than

(F,C,N) specifications, moreover, Kamin announces that the ADJ Group's dis­

covery of a computable data structure with a (F,C,N) specificatioq but no

(F,V,N) specification; a computable algebra with no (F,C,N) specification

can be obtained from the proof of 3.3. Kamin asked [6, p.34] if the much

favoured (F,V,N) specifications admit algebras wh&ch are not computable,

this we can answer straightaway:

2.4.THEOREM. There exists a group G finitely generated by g 1 , ••• ,gn which

is semicomputable, but not computable, and contains (an isomorphic copy of)

every semicomputable group, such that (G,g1 , •.• ,gn) has a (F,V,N) specifi­

cation.

-1
PROOF. Let LO={-, ,1} and L = LO u {x1 , ••• ,xn}. Let E0 be a finite set

of equations over LO which define group structures so that TL,Eo is the

free group on n generators, an initial algebra specification of the class

GROUP(n) of all n generator groups. Let G be a group finitely generated by

g1 , ••• ,gn and finitely presented by (x1 , ••• ,xn;r1 , ••• ,rm); let E =

E0 u {r1 = 1, •.. ,rm=l~. Then (G,g1 , ••• ,gn) has the (F,V,N) specification

(L,E). By Higman•s· Theorem [3] we can choose such a G not only to have

insoluble word problem, but even to contain a copy of every finitely gene­

rated semicomputable group. Q.E.D.

This argument yields a useful reference point for the mathematical

12

literature.

2 .5. PROPOSI'I'ION. Let V be a variety of algebras defined by a finite set of

laws. If A EV is finitely generated by a 1 , ••. ,an and is finitely present­

ed with respect to V then (A,a1 , ... ,an) has a (F,V,N) specification.

So, for example, every finitely generated commutative ring is finitely

presented with respect to the variety of commutative rings (by the Hilbert

Basis Theore,m) and so has a (F,V,N) specification: a fact not without in­

terest if one wishes to apply these algebraic methods to data type specifi­

cation in algebraic manipulation programs. Actually, such rings are all

computable a.nd, of course, finitely generated abelian groups are finitely

presentable and computable. But it is worth noting that commutativity does

not always guarantee computability: there exists a finitely definable va­

riety of commutative loops whose free loop on one generator is not comput­

able, see MA,L' CEV [11] .

The situation as far as specifications involving hidden functions and

sorts Kamin reports is far less complete. Beyond the obvious equivalences

of (RE,S,N) with (RE,S,HF), (RE,V,HF), (RE,C,HF), (RE,S,HS), (RE,V,HS),

(RE,C,HS), and Majster's well known example showing that (F,V,N) and

(F,V,HF) are distinct nothing much else is known. Here we contribute

(REC,S,HE), and so (REC,V,HE), (REC,C,HE), as equivalents of (RE,S,N) in

5.2 as well as (F,V,HES), a special kind of (F,V,HS) specification in 4.1.

The next section shows that (F,V,HE) are adequate for all computable alge­

bras.

The main outstanding question is Does every finitely generated semi­

computable data structure possess a (F,V,HE) specification?

3. HIDDEN ENRICHMENT SPECIFICATIONS OF COMPUTABLE ALGEBRAS

A data structure A has a r hidden enrichment specification if there

is a L ~ LA' containing exactly the sorts of LA, and a set of equations E

of typer over TE such that

13

This we abbreviate as a (f,HE) specification. Of special interest are the

(F,V,HE) specifications so observe that an algebra A has a (F,V,HE) speci-

fication if there exists an algebra B, with I:B ::, L
A

and containing the same

sorts, such that B has a (F,V,N) specification and Bl LA = """ A. In this
LA

paper all constructions involving hidden functions will be hidden enrich-

ments; this section and the next use only (F,V,HE) specifications while

section five considers (REC,S,HE) specifications.

This theorem shows that (F,V,HE) specifications are adequate for all

data structures arising in Computer Science.

3.1. THEOREM. Let A be a computable algebra finitely generated by a 1 , .•. ,an.

Then (A,a1 , .•. ,an) has a (F,V,HE) specification.

PROOF. We shall write down a detailed proof for the case that A is single

sorted. From. this the reader should find no difficulties, beyond those of

notational complications, in preparing an equally precise proof for the

case that A has more than one sort (we comment further on this at the end

of the argument). The case when A is single sorted and finite is taken care

of in Proposition 1.1 so assume A is infinite.

By Lemm.a 2.1, (A,a1 , ... ,an) is isomorphic to a recursive number alge-

bra of the form R = (w;f1 , ... ,fm,cl, ... ,en) where the fi are recursive

functions tracking the corresponding operations of A and the c. are numbers
l

correspondinig to the a .. Notice that R is prime since (A,a1 , .•• ,a) is
l n

prime. We shall show R has a (F,V,HE) specification by constructing an ap-

propriate algebra r, possessing a (F,V,N) specification, such that

= <f> e:; R.
LR

We will need this technical lemma:

3.2. LEMMA. Let f 1 , ... ,fm be primitive recursive functions and 1.1 , .. ,:_e_ the

functions appearing in their explicit definitions. Then

has a (F,V,N) specification.

14

PROOF. Without loss of generality, we can assume the operations of A are

ordered in li.st 0,+1,e 1 , ... ,8u so that any function is to the right of all - ,{_,+m
those functions appearing in its explicit definition. Define the sequence

of algebras P.,0 = (w;0,+1) and A 1 = (A ,e 1) for n = 0, ... ,l+m-1. We prove
n+ n n+

inductively that each A has a (F,V,N) specification so that, in particular,
n

Al+m =Ahas.

At the base of the sequence this is obvious: let I:0 = {O,s} then

Ao 9:: TI:o

Assume P.,
n

has a (F,V,N) specification (I: ,E) so that A 9:: T and
n n n I:n,En

consider A 1 .
n+

Now the new function 8 1 is either a projection function,
n+

or is defined by composition or primitive recursion over other 8. where
]_

i < n+l. These three cases are treated in like manner so we shall write out

only the casei of primitive recursion.

Here

So set I: == I: u {6 l} and E to be E with these equations adjoined
n+l n n+ n+l n

Clearly (I: 1 ,E 1) is a (F,V,N) specification so we must show
n+. n+

T 9:: A . We shall use Lemma 1.5. We
I:n+1,En+1 n+l

A 9:: T so we must verify that T J
n I:n,En I:n+1,En+1 I:n

shall use Lemma 1. 6.

know A 1 1 =
n+ I:n

9:: T_. and
,..n,En

A and
n

for this we

r
Consider J = {s (0): r E w}. Now J is a transversal for TI: E because

n, n
T 9:: Jl, 9:: A 9:: T Condition (i) of Lemma 1.6 is fullfilled by

I:n,EnJI:o nlr:o O I:o"
E 1 because A 1 is an E 1 algebra, condition (ii) is automatic and so we

n+ n+ n+
are left with condition (iii). This condition is checked by considering
- r r1 rk
8 1 (s (0) ,s (0) , ... ,s (0)) and proving by induction on r that it is

n+
E 1 equivalent to an element of J going by the equations for 8 1 to

n+ n+

elements of T~ in which J is an E c E 1 transversal. Q.E.D.
~n n n+

We shall now construct r from R = (w;f1 , .•• ,fm,c1 , ..• ,cn).
k

Let f: w + w be a recursive function. Then the graph off

15

is recursively enumerable, ROGERS [13]. Since every r.e. set has a primitive

recursive enumeration, ROGERS [13], let h 1 , ••• ,~, g: w + w be primitive

recursive functions enumerating graph(f). Thus,

graph(f) = { (h1 (z), •.. ,~ (z) ,g(z)): z E w}

and, in particular, for all z E w,

For each k.-ary recursive operation f. of R choose primitive recursive
. J . . J

functions hi 1 ••• ,~,gJ which enumerate graph(fj) and let

lists of functions making up the explicit definitions of

spectively. Define

- -+ A .. and µ. be
l.J . J .

the h~ and gJ
l.

. --+ j j j
r = (w,0,+1,A, ,,µ,,h1,···,h"' ,g ,f.,c1,·••1C)1<"< 1<"<k . J.J J -""k. J n -J-m, _J._ .

J J

Clearly, rj ~ = <f>~ ~ R because R is prime. We have to show r has a
'·R ~R

(F,V,N) specification.

the

re-

. --+ j j j
First set ro = (w;0,+1,Aij'µj,h1, ••. ,hkj'g)1~j~m,1~i~kj and let its

signature be Lo· Then rl Eo = <f>Eo ~ ro and, by Lemma 3.2, ro has a (F,V,N)

specification (E 0 ,E0). We now define a specification for r: let r have

signature E, so E = i:0 u ER, and let Ebe E0 with these equations added:
c·

for each constant'c. EL I c. = s Jco);
, R J . . .
' - -J -J -J for each operation f. EE , f.(h1 (x) , ••• ,hk(X)) = g (X).

J R J
The pair (E,E) is a (F,V,N) specification so we verify T~ ~ r. This

~,E
is done by Lemma 1. 5.

16

Clearly r is an E-algebra so all that remains is the hypothesis T I ~
E,E Eo

~ T · for this we look to Lemma 1 .6.
Eo,Eo I r

Consider J = {S (0): r E: w}. That J is a transversal for T follows
Eo,Eo

from the fact that T · I ~ r I ~
E 0 'Eo 0 S · O 0 S

To,s· Conditions (i) and (ii) of

Lemma 1.6 are true of J by Inspection of E which leaves condition (iii). So
- r1 rk

consider the term f(S (0) , .•. ,s (0)). The isomorphism between T and
Eo,Eo z ri - z r0 implies there is ans (0) such thats (0) - h.S (0)

Eo l
for 1 ::=:; i ::=:; k.

Thus

- z
-E g (S (0)) •

- z - z
Since gS (0) E: TEo' and J is an E0 transversal, gS (0) _

whence the condition follows as - c = .
Eo E

Si(O) for some i
Eo

In the many sorted case, Lemma 2. 1 provides an isomorphic many sorted

recursive nwmber algebra R whose infinite domains are all wand whose finite

domains are 1JJ for various m. To reconstruct the proof one needs to intro-
m

duce a sort index to the notation of the proof as one shows R has a (F,V,HE)

specification and to use it to keep track of the distinction between those

domains which are finite and those which are infinite, no new technical

ideas are required beyond those of the above argument. Q.E.D.

The importance of hidden operations became apparent when MAJSTER [8]

pointed out that a particular stack-like data structure failed to admit a

(F,V,N) specification and JONES [5] and the ADJ Group [1] showed it could

be given a (F,V,HF) specification. Here is a very simple example which

separates the two methods.

Let A= (w;0,+1,f) where f(n)
2 = n for n E: w.

3.3. PROPOSI'rION. A has a (F,V,HE) specification but possesses no (F,V,N)

specification.

PROOF. A (F,V,HE) specification of A follows from Theorem 3.1 and is obvious

anyway. Suppose that (E,E) is a (F,V,N) specification of A. We assume that

E contains no trivial equations of the form t 1 = t 2 where t 1 and t 2 are

identical polynomials, and write E = E1 u E2 U E3 where

E1 contains the simple equations,

E2 contains the equations of any one of the following three forms:

t 1 (x) = t 2 , t 2 = t 3 (x) , t 1 (x) = t 3 (x) with t 2 simple and

x occurring free in t 1 (x) and t 3 (x), and

E3 contains the equations of the form t 1 (x) = t 2 (x).

First of all E2 turns out to be empty; for instance t 1 (x) = t 2 can never

hold because all functions in A are injective, and consequently t 1 (x) is

(interpreted by) an injective function that cannot have valve t 2 for all

arguments. By substituting _Q_ for yin an equation t 1 (x) = t 3 (y) we obtain

an equation of the form t 1 (x) = t 2 •

17

Now we show that E3 cannot be empty. To see this we assume the converse,

i.e. T ~ A.
I,E1 n2

Let Ek= {.f(~n(_Q_)) = S (0): n E w, n s k}. For a sufficiently large

k, say k 0 , Ek implies all equations in E1 . As TI:,Ei is an Ek-algebra, for

each k, we have that T~ E is an Ek -algebra and TI: is an E1-algebra,
L,' 1 0 ,Eko

hence both are isomorphic, so TIE ~A.This can be contradicted by giving
'ko

an example of an Ek -algebra in which A cannot be homomorphically embedded.
0

The example is this:

{

x 2 if x s kO

B = (w,+1,g) where g(x) =

k 2 otherwise.
0

Thus we know that E3 is not empty. We will derive a final contradiction

from this. Let t 1 (x) = t 2 (x) be an equation in E3 . Then t 1 (f(x)) = t 2 (f(x))

is a valid equation in A. Let IA' be I minus O; let B be the following
A -

structure:

Define the following map H: TI 1 [f(x)] +
A

= x2 + 1 for i E w.

TI [x].
B

18

H (f (x)) = fa (x)

H(S(t(x))) = f 1 (f (..•. f (x) ..)) if H(t(x)) = f (..• f (x) ..)
- -e.O+ al ¾_ -a.O ~

H(!_(t)) = fa (H(t)).

We observe that His injective (use induction on complexity of terms in

Tr, [f (x)]) and that t and H(t) have the same interpretations as functions
A

on w(again with induction). Let

We consider the semigroup G of functions on w generated by f 0 ,f1 , ...

under composition. In G the following equation holds fa1 , •.• ,fap =

= fb 1 , ••• ,fb with a 1 ..• a and b 1 ••. b different sequences of indices.
q p q

A contradiction finally follows from the observation that G is free.

To prov,e this assume fa 1 , ••• ,fap = fb 1 , ••• ,fbq· If p -:/= q then, as po­

lynomials on w, both sides have different degrees (2P and 2q) and conse­

quently cannot represent identical functions. So we may assume p = q.

We need some notation:
i i i i i i i i

a = fa. , ••• ,fa; T = fbi, ... ,fbp; 8 a +T p = cr -T . Note that
i 1 ~ 1 p-1+1 .

deg(cr) = deg(o) = deg(T) = 2 , for is p.

Now suppose a' and T' are not equal terms, take j to be maximal such

that a. -:/= b ..
J J j-k

By induction on k one shows fork E {O, ••. ,j-1} that p -:/= 0.

Basis, k = 0:

j = n implies pj

j < n implies pj

-I= 0
·+1 j+t

because crJ = T for i > j entails a. = b ..
.t .t-1 1 1 .t

Induction step let p -:/= 0. Then p = fa.t-l a

b
n

-:f 0

- bo ,{..-1

19

l l l l p-l+1 l-1
because p -:f 0 implie·s deg(p o) ~ deg(o) ~ 2 ~ 2. Hence deg(p) ~ 2.

This concludes the argument. Q.E.D.

It is worth noting this proof can be adapted to show that A has no (F,C,N)

specification.

4. HIDDEN ENRICHMENT BY SORTS SPECIFICATIONS OF SEMICOMPUTABLE ALGEBRAS

A data structure A has a r hidden enrichment by sorts specification if

there exists a r ~ IA and a set of equations E of typer over TL such that

This we abbreviate as a (f,HES) specification. We work only with (F,V,HES)

specifications so observe that an algebra A has a (F,V,HES) specification

if there exists an algebra B with a (F,V,HE) specification such that

Bl~ = ~A.Hidden sorts seems first to have been used by
£.A LA

P.A. SUBRAHMANYAM [14] in order to sepcify MAJSTER's Traversable Stack [8].

4.1. THEOREM. Let A be a semicomputable algebra finitely generated by

a 1 , ••• ,an. Then (A,a1 , ••. ,an) has a (F,V,HES) specification.

PROOF. our remarks coIID!lencing the proof of Theorem 3.1 are once more ap­

plicable here so we proceed to write down the argument in case A is single

sorted and infinite.

Let L be the signature of (A,a1 , ••• ,a). Since A is semicomputable we
n 1 l

can choose a recursive number algebra R = (w;cr , ••• ,cr ,c1 , ••• ,c) and an y y n
epimorphism y: R + (A,a1 , ••• ,an) such that y(c.) = a. and= is r.e., and

l. l. y
where y is factored by·a canonical L isomorphism y*: R + TL,

20

so that£= {y*(i) = y*(j): (i,j) E ==y} is the set of all identities in Tr

true in A, see section two.

By ROGERS [13], we can choose primitive recursive functions f,g to

enumerate= so that - = {(f(z) ,g(z)): z E w} and£= {y f(z) = y g(z):
y y * *

z E w}. Adjoin these functions to R to make (R,f,g) whose signature we

refer to as I: (f ,g).

Consider this structure made by adjoining (R,f,g) to (A,a1 , ..• ,an) as

a new sort using y:

, 1 l
B = (A,w;cr1 , ..• ,cr 0 ,a1 , •.. ,a ,cr , ... ,a ,c1 , ... ,c ,f,g,y).

· ~ n y y n

Clearly Bir== (A,a1 , .•. ,an) because w is not a sort of r. We shall prove

the theorem by showing B has a (F,V,HE) specification.

Since (R,f,g) is computable we can apply the argument of Theorem 3.1

to obtain a (F,V,N) specification (r0 ,E0) of a new recursive number algebra

Ro such that T 3" Ro , Ro I 3" (R, f , g) and Ro I 3" (w ; 0 , + 1) • In
ro,Eo r(f,g) o,s

particular,

Define B1 to be B with all the new operations of

If r 1 = rB1 then r 1 :::, r, r 1 :::, r 0 :::, r(f,g) and r 1
(F,V,N) specification (r 1 ,E1).

Define E\ to be E0 together with the equations over r 1 ,

yf(X) = yg(X);

= B.

has a

cr 1 ,E1) is a (F,V,N) specification. To show Tr 1 ,E1 3" B1 we proceed in two

steps. First we claim T.,.. E is an £-algebra so T.,... E 3" T.,.. • Second-
~1, 1 ~1, 1 ~1,E1U£

ly we claim a1 3" T.,.. • Consider this second claim first. B1 is an E1 u £
~1,E1U£

algebra so, by initiality and fact that B1 is prime, there is a unique

21

epimorphism ~: T~ E + B1 . So check injectivity for~: split~ into ~1 =
L.1, 1ue: ·

~(Tr1 ,E1 ue:> Ir and ~2 = ~ (Tr1 ,E1 UE:) I ro.

Now T~ E I~ is an e:-algebra and ~1 : T~ E I~+ B11 ~ =
L.11 1ue: L, L.11 1Ue: L, L,

Hence TL 1 ,Elue:i L is initial for e:-algebras and TL1 ,Eue:1· r ~
case of ~2 follows the same lines.

So consider the first claim. Observe that {Sn(O): n E w} is a trans­

versal for T~ E so that fSn(O) =E Sf(n) and gSn(O) = Sg(n) since
L.Q, 0 0 Eo

Tro,Eolr(f,g): (R,f,g). Moreover one may now use the equations given for

E1 to show y(S (0)) =E y*(n) by induction on the complexity_of terms.
1 - f(z) - - n - - n

From these observations: y (f(z)) =E y(S (0)) - y(fS (0)) -E1 y(gS (0))
- g(n) * 1 E1

=E y(S (0)) =E y (g(z)) whence T~ E is an e:-algebra. Q.E.D.
1 1 * L,1, 1

5. MISCELLANY

Here we prove three propositions which will answer Kamin's second and

third questions.

5.1. PROPOSITION. Let A be a semicomputable algebra finitely generated by

a 1 , ••. ,an. Then (A,a1 , ••. ,an) has a (REC,C,N) specification.

PROOF. By Proposition 2.2, (A,a1 , ... ,an) has an (RE,S,N) specification

(L,E) where E = {e. :i E w}
l.

c SEQ(L) is r.e. enumerated by f(i) = e .• Let x
l.

be a constant symbol of rand define

the form

x=xA ••• Ax=
i times

E to be the set of all conditionals of
X

for i € w. Clearly T~ E ~ T ~A.But
L.1 X L.°,E

E is a recursive subset of CEQ(L)
X

for, given any conditional C = c + e, to decide CE E one first decides
X

if c is an iteration of x = x: if it is not then Ci E; if it is then know­
x

ing it is, say, i conj~nctions of x = x one computes f(il = ei and tests

whether or note. = e. Q.E.D.
l.

5.2. PROPOSITION. Let A be a semicomputable algebra finitely generated by

a 1 , ••• ,an. Then (A,a1 , ••• ,an) has a (REC,S,HE} specification.

22

PROOF. First, using Proposition 2.2, take E to be an r.e. set of simple

equations such that TL,E ~ (A,a1 , ••• ,an); write E = Us Es where Es is the

subset of E pertaining to sorts of Land choose recursive functions f 6 ,gs

to enumerate E so that E = {(f (i),g (i)): i E w}.
s s s s

For each sorts adjoin to La new function symbol I , to form a new
s

signature L', and define E' to be the set of simple equations
s

I (t) = t
s

I~(f (i)) = g (i)
s s s

fort E TL,

for i E w

E' = U E' is a recursive set of simple equations over L', by reasoning
s s

analogous to that in Proposition -5.1, and TL',E'IL ~ TL,E. Q.E.D.

Thus we have from 5.2 a counter~example to the converse of Proposition

2.3: if TL',E' were always computable then TL,E would. be always computable.

Kamin's·second and third questions asked if (REC,V,N) specifications

defined fewer data structures than the (REC,V,HF) and (REC,C,N) specifica­

tions: these are answered affirmatively by combining this last fact with

5.2 and 5.1 respectively.

5.3. PROPOSITION. There are semicomputable algebras A with no (REC,V,N)

specifications.

PROOF. Let L = {0,S,f,g} where f,g are unary function symbols. Let w cw

and define Ew C TL X TL by

n = fS o: n E w}.

Observe, now, that for any t,t' E TL, t =Ewt' iff either t = t' in TL or

t = o(fSn(O)) and t' = o(gSn(O)), or vice versa, for some polynomial o(X)

over Land n E W; in particular, notice that each equivalence class of

has at most two elements.

5.4. LEMMA. If TL,Ew has a (REC,V,N) specification then w is recursive.

Now 5.3 follows from 5.4 on choosing W to be an r.e., non-recursive

23

set and setting A= TE,Ew (becausen E W iff fSn(O) =Ew gSn(O)). Here is the

proof of the lemma:

Assume TE,Ew ~ TE,E where Eis a recursive set of polynomial equations

over E. Then, from initiality, -Ew is -E and TE,Ew = TE,E. Partition E into

its simple equations E1 and its non-simple equations E2 and consider

t 1 (X) = t 2 (Y) E E2 (notice that equations may contain at most two variables

since E contains only unary function symbols). If X,Y are different variables

then putting Y = 0 the set {t1 (s): s E TE} c [t2 (0)]E which contradicts the

finiteness of E equivalence classes: so no such equations may belong to E.
'

If X = Y then t 1 (X) = t 2 (x) again fails to be valid in TE,Ew unless t 1 and

t 2 are identical polynomials and so the equation is trivial; to see this

choose n E Wand, substituting,

obtain an equivalence class of four elements (if Wis empty then it is re­

cursive, of course).

Thus E can be taken to consist of simple axioms only and we can deduce

Wis recursive from

n n n n
If fS (0) = gS (0) EE then fS (0) gs (0) and n E w. So assume

-Ew
fSn(O) = gSn(O) t E. The set {cr(t) = cr(t'): t = t' EE, cr any polynomial

over E} defines an equivalence relation= on TE extending= (in fact it is
n n n n E

=E) but fS (0) = gs (0) i = so fS (0) = gS (0) i -E = -Ew and son i w. Q.E.D.

REFERENCES

[1] GOGUEN, J.A., J.W. THATCHER & E.G. WAGNER, An initial algebra approach

to the specification, correctness and implementation of abstract

data types, in R.T. Yeh (ed.) Current trends in programming

methodology IV, Data structuring, Prentice Hall.

24

[2] _ GOGUEN, J.A., E.G. WAGNER & J.B. WRIGHT, Specification of abstract

data types using conditional axioms, IBM Research Report,

RC 6214, Yorktown Heights, 1979.

[3] HIGMAN, G., Subgroups of finitely presented groups, Proceedings Royal

Society, London, (A) 262 455-475.

[4] GRIES, D., (ed.), Programming methodology, Springer Verlag, New York,

1978.

[5] JONES, D.W., A note on some limits of the algebraic specification·
'

method, SIGPLAN Notices _!l (4) (1978) 64-67.

[6] KAMIN, s., Some definitions for algebraic data type specifications,

SIGPLAN Notices _!! (3). (1979) 28-37.

[7] KAPUR, D., Specifications of Majster's Traversable Stack and Veloso's

Traversable Stack, SIGPLAN Notices_!! (5) (1979) 46-53.

[8] MAJSTER, M.E., Limits of the "algebraic" specification of abstract

data types, SIGPLAN Notices g (10) (1977) 37-42.

[9] _, Data types, abstract data types and their specification -------
problem, Theoretical Computer Science!!_ (1979) 89-127.

[10] MAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys

16 (1961) 77-129.

[11 J , Identical relations on varieties of quasigroups, Ameri­

can Mathematical Society Translations 82 (1969) 225-235.

[12] RABIN, M.O., Computable algebra, general theory and the theory of

computable fields, Transactions American Mathematical Society

95 (1960) 341-360

[13] ROGERS, H., Theory of recursive functions and effective computability,

McGraw-Hill, New York, 1967.

[14] SUBRAHMANYAM, _P.A"., On a finite axiomatisation of the data type L,

SIGPLAN Notices 13 (4) (1978) 80-84.

