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ABSTRACT 

The notions of upper and lower derivatives of a recursive (non-deter

ministic) program are defined, and used to characterize termination for such 

a program in terms of the well-foundedness of a function with respect to a 

predicate. This extends earlier work of Hitchcock and Park to the case of 

nested recursions, formulated in terms of a least-fixed-point construct. It 

is shown how this characterization can be interpreted as stating that a re

cursive procedure always terminates iff it exhibit·s neither global nor local 

nontermination. 
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1 • INTRODUCTION 

The notion of dePivative of a program was introduced by Hitchcock and 

Park [H,P] as an aid to investigate properties of program termination. More 

specifically, they showed how termination of a recursive program scheme may 

be expressed through the well-foundedness of a relation involving the so

called upper and lower derivatives of the scheme. The framework in which 

this result is derived is a calculus of binary relations extended with re

cursion via the least-fixed-point construct µX[ ••• J. However, their main 

result was proved only under a number of restrictions: (i) only determinis

tic programs, (ii) no nested µ-constructs, (iii) some further technical re

strictions. In De Bakker [dBi], it was shown how to generalize the 

theory of [H,P] in the framework of denotational semantics (using the Egli

Milner ordering to deal with nondeterminacy, thus lifting_ restriction (i)) 

in such a way that restriction (iii) also disappeared, but maintaining re

striction (ii). The present paper gives the full story in that we now also 

deal with nested µ-constructs. This necessities a non-trivial extension of 

the definition of upper and lower derivatives (cf.· 5.lc, 5.3c), and, accord

ingly, a considerably more intricate proof (surpassing in complexity all 

proofs in the µ-calculus we have had experience with) of the basic theorem 

(5.5) connecting these two notions. 

Section 2 of this paper describes the syntax, section 3 provides the 

necessary background in denotational semantics, section 4 introduces a 

fundamental auxiliary result allowing us to syntactically reduce termination 

of a program (involving recursion) to termination of its components, and in 

section 5 we define the upper and lower derivatives of a program and state 

(without proof) the basic theorem relating the two. Finally, in section 6 

we introduce the notion of a function being well-founded with respect to a 

predicate, thus refining an idea in [H,P], and prove as main theorem the an

nounced extension of the result there. The section closes with an example 

illustrating how this result may be interpreted as stating that a recursive 

procedure terminates everywhere iff it exhibits neither gZobaZ nor ZocaZ 
nontermination. 

A fuller exposition of this paper, with detailed proofs, is given in 

chapter 8 of [dB2]. 
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2. SYNTAX 

The definition in this and the next section, though to some extent 

variations on familiar themes in denotational semantics, also include some 

new ideas, e.g., role of b E S:tat, of µZ[p], and of f 1 + f 2• 

Convention. "Let (a.E)V be the set ••• " is short for "let V be the set ••• , 

with variable a. ranging over V". 

2.1. DEFINITIONS 

"=" denotes identity between syntactic constructs. Let (nE)1nte be the 

set of integer constants. Let (x,yE)1ntv,(X,YE)S.tmv,(ZE)Cndv be the (infi

nite, well-ordered) sets of integeP-, statement-, and condition vmabZes. 

Let (SE) 1 exp be the set of integer e:x:pressi9ns defined by 

s. ·= .. xlnlsts21 if b then s 1 else s 2 fi 

Let (bE) Bex.p be the set of booZean e:x:pressions defined by 

b::= truels 1=s 2 17blb 1~b2 

Let (SE) S:tat be the set of statements defined by 

S::= x:=slblS 1;s2 1s 1us2 1x µX[SJ 

Let (p,qE) Cond be the set of conditions defined by 

p::= truels 1=s2 17plp1=>p2 l3x[p]IS{p}IS<p>IZlµZ[p] 

Let (fE) Ano~ be the set of atomic formuZae defined by 

f: : = p IS l ~ S 2 If l Af 2 

Let (gE) FoJc.m be the set of formuZae defined by 

2.2. FREE AND BOUND VARIABLES; SUBSTITUTION 

The variables x, X and Z are bound in 3x[p], µX[S] and µZ[p] respect

ively. intv(s), stmv(S), cndv(f), etc., denote the sets of free integer-, 

statement-, and condition variables ins, S, f etc. Constructs which differ 

at most in their bound (integer, statement or condition) variables are called 

congruent (denoted by";;;:"). 



p[s/x] denotes the result of substituting s for (free occurrences of) 

x 1.n p; similarly for S[S'/X] and p[q/Z]. The usual precautions to avoid 

clashes between free and bound variables apply. 

2.3. REMARKS 
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2.3.I. Integ1er and boolean expressions are of no concern 1.n our theory - as 

long as their evaluation always terminates - and are kept as simple as pos

sible. 

2.3.2. Let S = S(X). Then µX[S(X)] corresponds to a call of the recursive 

procedure P declared by P <= S(P). The boolean expression b considered as a 

statement may be understood by the following correspondence with statements 

in more tradional syntaxes: if b then s 1 else s 2 fi ~ b;s 1 u 7b;s2 , while 

b do Sod~ µX[b;S;Xu7b] (Xistmv(S)), and with Dijktra's "guarded commands" 

[DJ: if bl ➔ S l □ ... □ b ➔ S f i ~ (b I ; S l u ... ub ; S ) , do bl ➔ SI □ ... Db ➔ S - n n- n n - n n 
od ~ µX[(b 1;s 1u ... ub ;S );Xu 7b 1A ... A7b] (Xistmv(S,),i=I, ... ,n). 
- n n n 1. 

2.3.3. S{p} and S<p> correspond to the hleakest precondition for respectively 

partial and total correctness of S w.r.t. p. 

2.3.4. In µZ[p], pis assumed to be syntactically monotonic in Z, i.e., Z 

does not occur in p within the scope of an odd number of 7-symbols (when 

p 1::ip2 1.s rewritten as 7p 1vp2). The construct µZ[p] allows us to recursively 

define conditions, which then obtain meaning as the usual least fixed point 

of a suitable operator. 

2.3.5. For f 1 ➔ f 2 cf. remark 3.6.7 below. A formula true+ f will be abbre

viated to f. 

3. SEMANTICS 

3.1. COMPLETE PARTIAL ORDERS AND COMPLETE LATTICES 

A complete partial order or cpo (xE)C is a partially ordered set with 
00 

a least element iC such that each (ascending) chain <x.>. 0 has a lub U.x .• 
1. 1.= 1. 1. 

A complete lattice is a partially ordered set C in which every subset X has 

a lub UX and (hence also) a glb nx; thus C is a cpo, with i = nc. 
C 

Let c 1 and c2 be cpo's. A function f: c 1➔c2 is strict if f(ic) = ic , 
I 2 



4 

monotonic if x 1 C x2 ==- f(x 1) !;; f(x2) and continuous if it is monotonic and 

also, for each chain <xi> i in c 1, f ( U ixi) C Ui f (xi) (or equivalently, 

f(U .x.) = U.f(x.)). If c2 is a complete lattice, then f: c 1-+e2 is anti-1. l. l. l. 

continuous if for each chain <x. >. in c 1, f (Li .x.) = n . f (x.) (which implies 
l. l. l. l. l. l. 

that f is anti-monotonic, i.e. x 1 ~x2 ==- f(x2) Cf(x1)). 

The sets of all strict, monotonic and continuous functions from c 1 to 

c2 are denoted, respectivelyd}Y Ct·sC2 , Ct"+mc2 and c 1+cc2 • These are all 

cpo's, when we define f 1~f2~vx E c 1(f 1(x)Cf2 (x)), and .Le~ = AXEC1 • .Lc. 
· a· · C • 1 2 2 A cpo C 1.s 1,screte 1.f for x 1 ,x2 E C, x1 _ x2 1.ff x 1 = .LC or x1 = x2 • 

3.2. LEAST FIXED POINTS 

If C is a cpo and f: C-+ C then the least fixed point off, µf, may 
m 

exist. If so, it is given by either of the formulas 

µf = n {XI f (x) = x} 

or 

µf = ri {x If (x) ~ x}. 

The existence of µf is guaranteed by either of the following conditions: 

(1) f is continuous, 

(2) C is a complete lattice (Knaster-Tarski). 

In the former case, µf is also given by the formula 

0 i+l i 
where f (.LC)= .LC and f (.LC)= f(f (.LC)). 

Two useful properties of the least fixed point (for monotonic f), to 

which we will refer later, are: 

fpp ("fixed point property"): f(µf) = µf 

Zfp ("least fixed point"): 

3.3. SOME SPECIFIC CPO'S 

Let v0 be the set of integers, and let (oE)W0 = {tt,ff} be the set of 



truth-values. wO is a complete lattice, if we define Lw =ff.Let 
df df Q 

(a.E)V = v 0u{LV} and (BE)W = wOu{¾}. V and W are considered as discrete 

cpo's. (Note that LW * LW.!) 
. O 1 • f For x1,x2 1.n a cpo C, et~ B then x1 

XI if B = tt' x2 if B = ff>. 

Let (crE)L dJ (Intv + vO) u {LL} be the set of states. Again, this is 

a discrete cpo. We will abbreviate LL to L. Let T d! h EL I. is finite or 

L E .} • T is a cpo, where we defid: (Egli-Milner) • 1 ~ • 2 iff <J.E. 1 and 

, 1\{J.} E , 2, or • 1 = , 2>, and J. = {L}. 
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df T df 
Let (<j>E)M = L + T, and ('ITE)II = L +s wO• M is the set of (nondetermin-

istic) state transformations, and II is the set of p~edicates on L. Note that 

II is a complete lattice (since wO is). Let (yE)r dJ (S.tmv +M) u (Cndv +II). 

Variants of states etc.: We define cr{a/x} to be the state cr' such that 

a' = L if cr = L, and otherwise cr' (y) = <cr(y) if y $ x, a if y = x>. y{<j>/X} 

and y{'IT/Z} are defined similarly. 

3.4. COMPOSITION OF STATE TRANSFORMATIONS AND PREDICATES 

The first 11011 is used to define the meaning of s1;s2 (3.5c below), 

while the second 11011 and"□" are used to define the meanings of S<p> and 

S{p} respectively (3.5d). 

3 • 4 • 2 • Remark 

" 0 " (in both definitions) is monotonic and continuous in both argu

ments, while"□" is monotonic, but not continuous, in its first argument, 

and anti-continuous (and hence anti-monotonic) in its second. 

3.5. DEFINITIONS 

The functions V: Iexp + (L+V),W: Bexp + (L+W), M: S:t.a.:t. + (f+M), 

T: Cond + (r+II), F: A6o~ + (r+II) are defined by: 
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a. V(s)(i) = iv, and, for er* i, V(x)(cr) = cr(x), •.• ,V(if b then s 1 else s 2 

fi) (er) = }.f W(b) (er) then V(s 1) (er) else V(s 2) (cr)fi 

b. W(b) (i) = iw, and, for er * i, W(true) (er) = tt, ••• , W(b 1::;b 2 ) (er) = 

(W(b 1)(cr) => W(b 2)(cr)) 

c. M(x:=s) (y) = .\cr•{cr{V(s) (cr)/x}}, M(b) (y) = 11.cr• if W(b) (er) then {er} else 

0 fi, M(s 1;s2)(y) = M(s 2)(y) 0 M(s 1)(y), M(s 1us 2)(y) = M(s 1)(y) uM(s 2)(y), 

M(X)(y) = y(X), M(µX[SJ)(y) = µ[11.~•M(S)(y{~/X})J. 

d. T(true) (y) = 11.cr• (er ;;ti), ••• , T(3x[p]) (y) = 11.cr•3a[T(p) (y) (cr{a/x}) J, T(S{p}) 

(y) = T(p)(y) □M(S)(y),T(S<p>)(y) = T(p)(y) 0 M(S)(y),T(Z)(y) = y(Z), 

T(µZ[p])(y) = µ[11.w•T(p)(y{w/Z}). 

e. F(p)(y) = T(p)(y),F(s 1 ~ s 2 (y) = 11.cr•((cr.ti)A(M(s 1)(y)(cr) ~ M(s 2)(y)(cr))), 

F(f1Af2)(y) = F(fl)(y)AF(f2)(y). 

A formula g == f 1 ➔ £2 is called valid (denoted by l=g) if 'v'y['v'cr.ti (F(f 1) 

(y)(cr)] => Vcr.ti[F(f2)(y)(cr)]], and an inference gl,.~.,gn_ is called sound 

if I= g 1 , ••• , I= gn imp 1 i es I= g • 

3.6. REMARKS 

df df 
3.6.1. qi = ),4>·M(S)(y{¢/X}) EM ➔ M, '¥ = 11.w•T(p)(y{w/Z}) E II ➔ II, hence 

C m 
the least fixed points µqi,µ'¥ do exist (cf. parts d and e of definition 3.5). 

3.6.2. l=p ::i S{q} iff Sis partially correct w.r.t. p,q (often written 

I= {p}S{q}). l=p ::i S<q> iff S is totally correct w.r.t. p,q (sometimes 

written I= [p ]S[q]). 

3.6.3. We have the familiar properties of S{q}: I= (S 1 ;s2){q} = S1{s2{q}}, 

l=S{q 1Aq2} = S{q 1}AS{q2}, I= (s 1us 2){q} = s 1{q}AS 2{q}, etc., and similarly 

for S<q>. 

3.6.4. I= S<t,rue> holds iff execution of S always terminates (i.e. 

ii M(S)(y)(cr) for all y,cr). 

3.6.5. Hence I= S<p> = S<true> A S{p}. 

3.6.6. S<p> is monotonic in both Sand p, but S{p} is anti-monotonic in S 

( i. e. , I= ( S 1 C S 2 ) ➔ ( S 2 { p} ::i S 1 { p}) ) • ( Cf. 3 • 4. 2. ) 

fl 
3.6.7. Observe that l=f 1 ➔ £2 is a stronger fact than soundness of f 2 • The 

meaning of the former is of the form 'v'y[l=>2], of the latter 'v'y[l] => 'v'y[2]. 



3.7. FIXED POINT PROPERTIES FOR STATEMENTS AND CONDITIONS 

We re-state the fixed point properties given above (in 3.2). 

fpp I= µX[S] = S[µX[S]/X] 

lfp 

and similarly for µZ[p]. 

3.8. CONTINUITY AND ANTI-CONTINUITY OF CONDITIONS; SCOTTS INDUCTION RULE 

3.8.1. We say that pis continuous in X, or anti-continuous in X, if 

\¢•T(p)(y{¢/X}) (EM➔IT) is continuous or anti-continuous respectively. 

3.8.2. Examples. If X does not occur free in p or q, then (by 3.4.2) {X}p 

is anti-continuous in X, <X>p is continuous in X and (hence) (<X>p)::, q is 

anti-continuous in X. 

3.8.3. Below (in 4.3) we will use the following version of Scott's induc

tion rule: The inference 

p[Q/X], (pA (XC µX[ S ]) ) ➔p[ S/X] 
- p[µX[S]/X] 

is sound, provided pis anti-continuous in X. 

4. TERMINATION 

7 

In this section we study the construct S<true>. By remark 3.6.4, we 

have that th,~ validity of S<true> amounts to termination of S (for all y ,cr). 

We are now interested in a syntactic decomposition of S<true>, determined by 

the structur,~ of S. More specifically, we want to define a condition S by 

induction on the complexity of S, such that 

I= S = S<true>. 

We will show how to define 11~11 by induction on the complexity of S, 

such that (*) is indeed satisfied. Now for S =XE S:tmv, there is no 
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possibility of syntactically reducing S, so we extend the class of conditions 

Cond with an additional clause p::= ••• IX, and correspondingly extend the de

finition of T by: T(X)(y) (cr) = (l. i y(X)(cr)). 

We first give the definition of S, and then an explanation of it. (A 

substitution of the form p[q/X], occurring below, is defined in a natural 

way; e.g. Y[q/X] = <q if X = Y, .Y otherwise>.) 

4.1. DEFINITION 

a. (x:=s)~ ~ = true, b = true 
b. (S 1;s2)~ = s1As 1{s2}, (s 1us2) 

µZ[S[µX[S]/X][Z/XJ], 

_ S 1As2 
c. µX[S]~ _ where Z is (for definiteness) the first 

condition variable. 

Note. One can verify that, for all X and S, Sis syntactically monotonic 

in X, and hence clause c is well-formed (cf. 2.3.4). 

4.2. DISCUSSION OF THE ABOVE DEFINITION 

We want to see that (*) holds for Sas defined above. This is given 

by theorem 4.3 below, but a few heuristic remarks on the definition should 

be helpful now. 

Clauses a and b should be clear. (a) Since x:=s and b always termi

nate, (*) holds for these two types of S. (b) We show that (*) is preserved 

for these cases: I= (s 1 ;S2)<true> = s 1<S2<true» = (ind.hyp) s 1<S2> = (by 

3.6.5) S1<true> A s 1{s2} = (ind.hyp.) s1 A S1{s2}. Similarly for the case 

s = s 1us2• 

Clause c deserves some explanation. We anticipate a result (step b in 

the course of proving theorem 4.3); viz., for each Sand s O, 

(A simpler guess for expressing S[SO/x]~ 

I= S[sO/x]~ = S[SO/XJ, can be seen to be 

S = X;S 1 with Xi h.tmv(S 1).) 

~ ~ in terms of Sand sO, namely 

false by considering e.g. the case 

Now taking s O = µX[SJ in(**), and applying fpp (3.7), we obtain 



= s[µx[sJ1xJ[µx[sJ~1xJ. 
'---v---' 

Thus µX[S] satisfies the above fixed point relationship, making plausible 

definition 4.lc (which gives it as the least such fixed point). 

4. 3. THEOREM. J= S = S<true>. 

PROOF. The proof is fairly involved, and only sketched here. (iE{l, ... ,n}, 

n2':0). 

a. S ~ S' => S ~ S'. This is shown by simultaneously proving, by induction 

on the complexity of S, that 

(i) s ~ S' => s ~ S' 
(ii) S[X'/X]~ ~ S[X'/X][X'/X] 

b. S[S./X.]~·-;;; S[S./X.].[S./X.]. 
L L L L L L L L L 

Induction on. the complexity of S, using part a. 

c. l=S[S./X.].[S.<true>/X.J. :::i S[S./X.]. <true> 
L L L L -- L L L L L 

(Taking n = 0, we infer that I= S :::i S<true>) 

d. I= (S! CS'.'). A (q!:::iq'.'). ➔ S[S!/X.].[q!/Y.].:::, S[S'.'/X.].[q'.'/Y.]. 
L - L L L L L L L L L L L · L L L L L L 

I.e., S = S (X, Y) is monotonic in both X and Y. Proved by induction on the 
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complexity of S. The case S - s 1 ;s2 is not obvious, since then S = S 1AS 1{s2}, 

and s 1{s2} is not monotonic in s 1 (cf. 3.6.6). But here we use the equiva

lence l=Sl A Sl{S2} = ·sl A s/s2>' (from part c, with n = O), and note that 

s 1<S2> is monotonic in s 1 • 

e. J= S<true> :::i S. Induction on the complexity of S. If S = µX[s 0 J, apply 

Scott's induction rule (3.8.3) with p= (X<true>) :::i µX[S 0 ] (cf. 3.8.2), using 

the induction hypothesis and parts c,d. 

5. DERIVATIVES 

We will define the upper and lower derivatives of a statement S, and 

state a fundamental theorem connecting these two notions. Before giving the 

exact definitions, we make some introductory remarks. 

The upper derivative of S w.r.t. X, written :~, is an element of S.t.at, 
and has the following intended meaning: Dropping they-arguments for sim

dS plicity, we have that 0 1 E M(dX)(cr) iff execution of S for input state 0 



leads to cr' as an intermediate state just before execution of X starts. E.g., 

if S = sl ;X;S2;X;S3 u s4, X i. .otmv(Si), i = 1, ••• ,4, then !i = St u st ;XI ;S2. 

For statements without recursion, we may also briefly say that !i is the 

union of all prefixes of X in S. 

Let X ~ Stmv. The lower derivative of S w.r.t. X, written oX(S), is an 

element of Con.d, and has the intended meaning: oX(S) is true in a state when

ever S terminates in cr provided that, for each XE X, execution of X for all 

states cr' in M(!i)(cr) terminates. (Hence, o0(s) = S.) 
(This is essentially the idea as introduced in [H,P J for statements 

without inner µ-terms. The novelty of our definition lies in clauses c of 

definitions 5. I and 5. 3.) 
as Combining the two intended meanings of dX and oX(S), we expect that 

the following result holds: For each X '1 X, 

I= ox(s) = !i {x} A oXu{x} (s). 

Let us give the verbal transliteration of this for the case that X = 0: 
S terminates in cr iff both (i) and (ii) are satisfied: 

(i) Execution of X terminates for all cr' (;ti) in M(:~) (cr), 

(ii) S terminates in cr provided execution of X for all cr 1 (;:e.1) 

terminates. 

as 
in M<ax)(cr) 

(Note that a more naive equivalence: I= S = X A o {X} (S) would not work, 

since termhiation of X is required for the wrong states.) 

5.1. DEFINITION (upper derivative). 

a. 
clx:=s db _ dY {true, if X - y 

ax - false, ax= false, 
ax -

false, if X t y 

b. 
clSI ;S2 as as 2 d(S 1us2) dSI dS2 I 

dX - dX u s I; ax ' dX - dX u ax 

false, if X = y 

c. 
clµY[S] as as 

if X t Y, where XI dX - µXI [ <ax u dY;Xl) [ µY[S]/Y] J' 

is the first statement variable i. stmv(X,Y,S). 
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5.2. REMARKS 

5.2.1. By way of comment to clause 5.lc, we offer the following: We expect 
dS1[S2/YJ dSt dSJ dS2 

that (*): I= dX = dX [S/YJ u dY [S/YJ; dX • In words (first 

forgetting about the substitutions on the right-hand side): Prefixes of X 

in s1[S/YJ are obtained either as prefixes of X in s1, or by composing 

prefixes of Yin s1 on the right with prefixes of X in s2• Supplementing 

this description with the indicated substitutions then explains the plausi

bility of(*). Taking s1 = S, s2 = µY[S], and applying fpp, we obtain as 
dµY[S] I dµY[S] dS dS dµY[S] 

property of dX : = dx = dX [µY[S]/Y] u dY [µY[S]/Y]; dX • We 

see that dµ!iXJ satisfies a fixed point relationship, and, since our fixed 

points are usually least, one may now understand clause 5.lc. 

I . dS 
5.2.2. If X i stmv(S) then = dX = false. 

5.3. DEFINITION (lower derivative). 

c. oX(µX[SJ) - µZ[oX\{X}(S)[µX[SJ/X][Z/XJJ, where Z is the first condition 

variable. 

5.4. REMARKS 

~ 5.4.1. The definitions of o0(s) and S (4.1) coincide. 

5.4.2. ox(Sl;S2; •.• ;Sn) = ox(Sl) A Sl{ox(S2)} A Sl;S2{ox(S3)} A 

A SI ;S2; •. • ;Sn-l{oX(Sn)}. 

5.4.4. X free in ox(S) ~XE stmv(S)\X. 

I dS ~ 
5.5. THEOREM. For X £ X, = oX(S) = dX {X} A oXu{X} (S) • 

PROOF. Induction on the complexity of S. The only interesting case is that 
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S - µY[S 0], Yi X. We have to show that 

µZ[8X\{Y}(S 0)[S/Y][Z/iJJ 

I= -· 

The proof - omitted here - involves fairly complicated manipulations in 

the µ-calculus, using fpp and l,fp and properties of S{q} (cf. 3.6.3). 

5.6. COROLLABX. For Xi X, 

PROOF. It appears that, in the proof of theorem 5.5, {p} may be replaced 

everywhere by <p>. 

6. DERIVATIVES AND TERMINATION 

We expre:ss termination of a recursive procedure µX[S] 1.n terms of the 

so-called well-foundedness of a function with respect to a predicate (in

volving:~ and 8{X}(S), respectively.) 

6. 1 • DEFINITION. ¢ is called well-founded in a w. r. t. 1r if 

(i) There exists no infinite sequence a0 = a,a 1, ..• , such that ai+l e 

¢(a.), i = 0,1, .•. 
l. 

(ii) There exists no finite sequence a0 = a,a 1, ... ,ak such that ai+l e 

¢(eri), i = O, .•• ,k, ak ;t .1, and 1r(erk) = ff. 

6.2. REMARKS 

6.2.1. By strictness,¢ is not well-founded in .l w.r.t. any TT, 

6.2.2. If, for each a' e ¢(er), ¢ is well-founded in er' w.r.t. TT, and more

over, TT(er) = tt, then¢ is well-founded in er w.r.t. TT, 

6.3. LEMMA. For each ¢,er,1r 

a. µ[ATT 1 •((1r' 0 ¢)ATT)](er) = tt ~¢is wel,l,-founded in a w.r.t. TT 

b. ¢ is weU-founded in er w.r.t. TT ~µDTT'·((TT' □¢)ATT)](er) = tt. 
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PROOF. 
df 

a. Let TI 1 = µ[ATI 1 •((TI 10¢') A TI)], and let TI¢,TI denote the predicate which, 

for each cr, expresses that¢ is well-founded in cr w.r.t. TI. We show that 

TI 1 ~ TI¢,TI' or, by lfp, that (TI¢,TI 0 ¢) A TI~ TI¢,TI' Now this is immediate by 

6.2.2. 
df 

b. Let TI 2 = µ[h'•((TI 1 □¢) A TI)]. Assume that¢ is well-founded in cr w.r.t. 

TI, but TI 2 (cr) = ff. Clearly, cr 7 1.. By fpp, then ((TI 2□¢) A TI)(cr) =ff.Thus, 

either TI(cr) = ff, contradicting definition 6.1 (ii), or there exists cr' E ¢(cr), 

cr' 7 1., such that TI 2 (cr') =ff.Thus, again by fpp, either TI(cr') = ff, con

tradicting 6. 1 (ii), or we obtain cr" 7 1. such that cr" E ¢ (cr') and TI 2 (cr") =ff. 

Repeating the argument, either we find a finite sequence a0 = a, ... ,ak (k~O) 

such that cri+ 1 E ¢(cri), i = O, ••• ,k-1, crk 7 1., and TI(crk) = ff, or we obtain 

an infinite sequence cr0 = cr,cr 1,cr 2 , ... , such that cri+I E ¢(cri), i = 0,1, ..•• 

In both cases, we have found a contradiction. 

6.4. DEFINITION. Sis called well-founded w.r.t. p if for all y,cr, M(s)(y) 

is well-founded in cr w.r.t. T(p)(y). 

6.5. COROLLARY. 

a. I= µZ[S<Z> A p] => S is well-founded w.r. t. p 

b. S is well-founded w.r. t. p => I= µZ[S{Z} A p]. 

0 dS 6.6. DEFINITION. S - (dX)[µX[S]/X], 

We now come to main theorem of the paper (an intuitive explanation of 

which is given afterwards). 

6. 7. THEOREM. The following two facts are equivalent: 

a. I= µX[S] <true> 

b. Sis well-founded w.r.t. S. 
0 

PROOF. We have successively: 

I= 
~ dS ~ 

A o{X}(S) (by 5. 5 and 5.4.1) a. S = -: {X} 
dX. 

I= S[µX[S]/X] 0 ~ 
b. = S{X} A S (subst. µX[S] for X) 

0 
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c. I= S[µX[SJ/XJ[Z/XJ = S{Z} As (subst. Z for X) 
0 

I= 
~ ~ 0 (prefixing d. µZ[S[µX[SJ/XJ[Z/XJJ = µZ[S{Z} A SJ µZ) 

0 

e. I= µX[SJ <true>= µZ[S{Z} A SJ (4.1, 4.3) 
0 

I= 
0 

f. µX[SJ <true> = µZ[S<Z> A SJ (as a-e, starting from 5.6). 
0 

(Note: inc, we use that Xis not free in o{X}(S) by 5.4.4, hence also not 

in S.) 
0 

The theorem now follows from e,f and corollary 6.5. 

6.8. DISCUSSION 

We have derived the following result: A recursive procedure µX[SJ 
0 • 

terminates for all input states 7 i iff Sis.well-founded w.r.t. S. How 
0 

should one understand this proposition? Let us consider e_.g. the procedure 
df 

µ ::: µX[SJ, where S = s 1;X;S2;X;S3 u s4 , with Xi stmv(Si), i = 1, ••• ,k. 

Then I= S = s 1 u s 1 ;µ;S 2 (using 5.2.2). Also I= o{X} (S) = s1 A s 1; 

X {$2} A Sl;X;S2;X (s3} A 84 (using 5.4.2, 5.4.3, 5.4.1), and so I=§= 

SI A sl;µ{S2} A Sl;µ;S2;µ{S3} A 84. Forgetting about they-arguments, we 

have that for all cr: 

a. There exists no infinite sequence cr0 = cr,cr 1, ••• , such that cri+l E M(s 1u 

s 1;µ;S 2)(cri)' i = 0,1, •••• Since Sis nothing but the statement executed 

between a call ofµ at a certain level of recursion depth, and a call at 

the next deeper level, we see that the non-existence of such an infinite 

sequence amounts to the absence of infinite recursion, i.e., it is not 

possible that the procedure goes on calling itself indefinitely. 
0 

b. There exists no finite sequence cr0 = cr, ••• ,crk, such that cri+l eM(S)(cri), 

i = O, ••• ,k-1, crk 7 i, and T(§)(crk) =ff.Assume that, contrariwise, 

such a sequence would exist. This would mean that, at a certain level of 

recursion depth, we have obtained an intermediate state crk 7 

T(S)(crk) =ff.By the definition of S this means that either 
O 0 

(i) s 1 does not terminate in crk, or 

i such that 

(ii) There exists some cr' 7 i such that cr' E M(s 1;µ)(crk) and s 2 does 

not terminate in cr', or 

(iii) There exists some cr" 7 i such that cr" E M(s 1;µ;S 2;µ)(crk) and s 3 
does not terminate in cr", or 



(iv) s4 does not terminate in crk. 

Altogether, we see that§ is false in crk *~precisely when there is some 

instance of ZocaZ nontermination stemming from crk, i.e., nontermination 

which is not due to infinite recursion ofµ, but to nontermination of one 

of the S.-components ofµ. 
1 . 
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Combining results a and b, we see that µX[S] terminates everywhere 

whenever, for all cr, there is neither the possibility of infinite recursion 

(global nontermination), nor the possibility of the computation reaching 

some intermediate state which leads to local nontermination. 

References 

[dBi] DE BAKKER, J.W., Semantics and termination of nondeterministic 
rd 

recursive programs, in Proc. 3 Coll. Automata, Languages and 

Programming (S. Michaelson & R. Milner, eds), pp.435-477, Edin

burgh University Press (1976). 

[dB2] DE BAKKER, J.W., Mathematical theory of program correctness. To appear. 

[DJ DIJKSTRA, E.W., A DicipZine of Programming, Prentice-Hall (1976). 

[H,P] HITCHCOCK, P. & D.M.R. PARK, Induction rules and proofs of termina-

tion, in Proc. 1st Coll. Automata, Languages and Programming 

(M. Nivat, ed.), pp.225-251, North-Holland (1973). 




