
stichting

mathematisch

centrum
~
MC

AFDELING INFORMATICA IW 116/79 SEPTEMBER
{DEPARTMENT OF COMPUTER SCIENCE)

J.W. DE BAKKER & J. I. ZUCKER

DERIVATIVES OF PROGRAMS

Preprint

2e boerhaavestraat 49 amsterdam

i,ial.10TH£E.K fv1A1Htt,.,,;\'f!SCn 1..i;.1;,rnY<tiA

A!v'lSIU·U)I\M

PJz.,,[n:te.d a.t .the. Ma.the.ma.:U.c.ai. Ce.ntJr.e., 49, 2 e. BoeJLha.a.ve.-6.tJc.a.a.t, AmJ.i.teJLdam.

The. Ma.the.ma.:Uc.ai. Ce.ntJr.e., 6ou.nde.d .the. 11-.th 06 Fe.b11.ua/1-!f 1946, .u, a. non­
p11.06U inJ.i:t,.U!Ltlon a,.i_m,i_ng a.t .the. p11.om0Uon 06 puJte. ma.the.ma.:U.C6 a.nd UJ.i
a.ppUc.a.:U.on6. I.t .u, J.iponJ.io11.e.d by .the. Ne..theJLtandJ.i GoveJLnme.n:t .thll.ough .the.
Ne..theJrl.a.ncv.1 011.ga.niza.:U.on 6011. .the. Adva.nc.e.me.n:t a 6 PuJte. Re.-6 e.a.11.c.h (Z. W. 0) •

1980 Mathematics subject classification: 68B10, 68C05

ACM-Computing RE~views Category: 5. 24

Derivatives of Programs*)

by

**) J.W. de Bakker & J.I. Zucker

ABSTRACT

The notions of upper and lower derivatives of a recursive (non-deter­

ministic) program are defined, and used to characterize termination for such

a program in terms of the well-foundedness of a function with respect to a

predicate. This extends earlier work of Hitchcock and Park to the case of

nested recursions, formulated in terms of a least-fixed-point construct. It

is shown how this characterization can be interpreted as stating that a re­

cursive procedure always terminates iff it exhibit·s neither global nor local

nontermination.

KEY WORDS & PHRASES: denotational semantics, derivative of a program,

recursive procedure, termination, nontermination,

global nontermination, local nontermination,

divergence of a program.

**)

This report will be submitted for publication elsewhere.

Address of the second author after October 1979:
Dept. of Mathematics and Computer Science, Bar Ilan University,
Ramat Gan, Israel

1 • INTRODUCTION

The notion of dePivative of a program was introduced by Hitchcock and

Park [H,P] as an aid to investigate properties of program termination. More

specifically, they showed how termination of a recursive program scheme may

be expressed through the well-foundedness of a relation involving the so­

called upper and lower derivatives of the scheme. The framework in which

this result is derived is a calculus of binary relations extended with re­

cursion via the least-fixed-point construct µX[••• J. However, their main

result was proved only under a number of restrictions: (i) only determinis­

tic programs, (ii) no nested µ-constructs, (iii) some further technical re­

strictions. In De Bakker [dBi], it was shown how to generalize the

theory of [H,P] in the framework of denotational semantics (using the Egli­

Milner ordering to deal with nondeterminacy, thus lifting_ restriction (i))

in such a way that restriction (iii) also disappeared, but maintaining re­

striction (ii). The present paper gives the full story in that we now also

deal with nested µ-constructs. This necessities a non-trivial extension of

the definition of upper and lower derivatives (cf.· 5.lc, 5.3c), and, accord­

ingly, a considerably more intricate proof (surpassing in complexity all

proofs in the µ-calculus we have had experience with) of the basic theorem

(5.5) connecting these two notions.

Section 2 of this paper describes the syntax, section 3 provides the

necessary background in denotational semantics, section 4 introduces a

fundamental auxiliary result allowing us to syntactically reduce termination

of a program (involving recursion) to termination of its components, and in

section 5 we define the upper and lower derivatives of a program and state

(without proof) the basic theorem relating the two. Finally, in section 6

we introduce the notion of a function being well-founded with respect to a

predicate, thus refining an idea in [H,P], and prove as main theorem the an­

nounced extension of the result there. The section closes with an example

illustrating how this result may be interpreted as stating that a recursive

procedure terminates everywhere iff it exhibits neither gZobaZ nor ZocaZ
nontermination.

A fuller exposition of this paper, with detailed proofs, is given in

chapter 8 of [dB2].

2

2. SYNTAX

The definition in this and the next section, though to some extent

variations on familiar themes in denotational semantics, also include some

new ideas, e.g., role of b E S:tat, of µZ[p], and of f 1 + f 2•

Convention. "Let (a.E)V be the set ••• " is short for "let V be the set ••• ,

with variable a. ranging over V".

2.1. DEFINITIONS

"=" denotes identity between syntactic constructs. Let (nE)1nte be the

set of integer constants. Let (x,yE)1ntv,(X,YE)S.tmv,(ZE)Cndv be the (infi­

nite, well-ordered) sets of integeP-, statement-, and condition vmabZes.

Let (SE) 1 exp be the set of integer e:x:pressi9ns defined by

s. ·= .. xlnlsts21 if b then s 1 else s 2 fi

Let (bE) Bex.p be the set of booZean e:x:pressions defined by

b::= truels 1=s 2 17blb 1~b2

Let (SE) S:tat be the set of statements defined by

S::= x:=slblS 1;s2 1s 1us2 1x µX[SJ

Let (p,qE) Cond be the set of conditions defined by

p::= truels 1=s2 17plp1=>p2 l3x[p]IS{p}IS<p>IZlµZ[p]

Let (fE) Ano~ be the set of atomic formuZae defined by

f: : = p IS l ~ S 2 If l Af 2

Let (gE) FoJc.m be the set of formuZae defined by

2.2. FREE AND BOUND VARIABLES; SUBSTITUTION

The variables x, X and Z are bound in 3x[p], µX[S] and µZ[p] respect­

ively. intv(s), stmv(S), cndv(f), etc., denote the sets of free integer-,

statement-, and condition variables ins, S, f etc. Constructs which differ

at most in their bound (integer, statement or condition) variables are called

congruent (denoted by";;;:").

p[s/x] denotes the result of substituting s for (free occurrences of)

x 1.n p; similarly for S[S'/X] and p[q/Z]. The usual precautions to avoid

clashes between free and bound variables apply.

2.3. REMARKS

3

2.3.I. Integ1er and boolean expressions are of no concern 1.n our theory - as

long as their evaluation always terminates - and are kept as simple as pos­

sible.

2.3.2. Let S = S(X). Then µX[S(X)] corresponds to a call of the recursive

procedure P declared by P <= S(P). The boolean expression b considered as a

statement may be understood by the following correspondence with statements

in more tradional syntaxes: if b then s 1 else s 2 fi ~ b;s 1 u 7b;s2 , while

b do Sod~ µX[b;S;Xu7b] (Xistmv(S)), and with Dijktra's "guarded commands"

[DJ: if bl ➔ S l □ ... □ b ➔ S f i ~ (b I ; S l u ... ub ; S) , do bl ➔ SI □ ... Db ➔ S - n n- n n - n n
od ~ µX[(b 1;s 1u ... ub ;S);Xu 7b 1A ... A7b] (Xistmv(S,),i=I, ... ,n).
- n n n 1.

2.3.3. S{p} and S<p> correspond to the hleakest precondition for respectively

partial and total correctness of S w.r.t. p.

2.3.4. In µZ[p], pis assumed to be syntactically monotonic in Z, i.e., Z

does not occur in p within the scope of an odd number of 7-symbols (when

p 1::ip2 1.s rewritten as 7p 1vp2). The construct µZ[p] allows us to recursively

define conditions, which then obtain meaning as the usual least fixed point

of a suitable operator.

2.3.5. For f 1 ➔ f 2 cf. remark 3.6.7 below. A formula true+ f will be abbre­

viated to f.

3. SEMANTICS

3.1. COMPLETE PARTIAL ORDERS AND COMPLETE LATTICES

A complete partial order or cpo (xE)C is a partially ordered set with
00

a least element iC such that each (ascending) chain <x.>. 0 has a lub U.x .•
1. 1.= 1. 1.

A complete lattice is a partially ordered set C in which every subset X has

a lub UX and (hence also) a glb nx; thus C is a cpo, with i = nc.
C

Let c 1 and c2 be cpo's. A function f: c 1➔c2 is strict if f(ic) = ic ,
I 2

4

monotonic if x 1 C x2 ==- f(x 1) !;; f(x2) and continuous if it is monotonic and

also, for each chain <xi> i in c 1, f (U ixi) C Ui f (xi) (or equivalently,

f(U .x.) = U.f(x.)). If c2 is a complete lattice, then f: c 1-+e2 is anti-1. l. l. l.

continuous if for each chain <x. >. in c 1, f (Li .x.) = n . f (x.) (which implies
l. l. l. l. l. l.

that f is anti-monotonic, i.e. x 1 ~x2 ==- f(x2) Cf(x1)).

The sets of all strict, monotonic and continuous functions from c 1 to

c2 are denoted, respectivelyd}Y Ct·sC2 , Ct"+mc2 and c 1+cc2 • These are all

cpo's, when we define f 1~f2~vx E c 1(f 1(x)Cf2 (x)), and .Le~ = AXEC1 • .Lc.
· a· · C • 1 2 2 A cpo C 1.s 1,screte 1.f for x 1 ,x2 E C, x1 _ x2 1.ff x 1 = .LC or x1 = x2 •

3.2. LEAST FIXED POINTS

If C is a cpo and f: C-+ C then the least fixed point off, µf, may
m

exist. If so, it is given by either of the formulas

µf = n {XI f (x) = x}

or

µf = ri {x If (x) ~ x}.

The existence of µf is guaranteed by either of the following conditions:

(1) f is continuous,

(2) C is a complete lattice (Knaster-Tarski).

In the former case, µf is also given by the formula

0 i+l i
where f (.LC)= .LC and f (.LC)= f(f (.LC)).

Two useful properties of the least fixed point (for monotonic f), to

which we will refer later, are:

fpp ("fixed point property"): f(µf) = µf

Zfp ("least fixed point"):

3.3. SOME SPECIFIC CPO'S

Let v0 be the set of integers, and let (oE)W0 = {tt,ff} be the set of

truth-values. wO is a complete lattice, if we define Lw =ff.Let
df df Q

(a.E)V = v 0u{LV} and (BE)W = wOu{¾}. V and W are considered as discrete

cpo's. (Note that LW * LW.!)
. O 1 • f For x1,x2 1.n a cpo C, et~ B then x1

XI if B = tt' x2 if B = ff>.

Let (crE)L dJ (Intv + vO) u {LL} be the set of states. Again, this is

a discrete cpo. We will abbreviate LL to L. Let T d! h EL I. is finite or

L E .} • T is a cpo, where we defid: (Egli-Milner) • 1 ~ • 2 iff <J.E. 1 and

, 1\{J.} E , 2, or • 1 = , 2>, and J. = {L}.

5

df T df
Let (<j>E)M = L + T, and ('ITE)II = L +s wO• M is the set of (nondetermin-

istic) state transformations, and II is the set of p~edicates on L. Note that

II is a complete lattice (since wO is). Let (yE)r dJ (S.tmv +M) u (Cndv +II).

Variants of states etc.: We define cr{a/x} to be the state cr' such that

a' = L if cr = L, and otherwise cr' (y) = <cr(y) if y $ x, a if y = x>. y{<j>/X}

and y{'IT/Z} are defined similarly.

3.4. COMPOSITION OF STATE TRANSFORMATIONS AND PREDICATES

The first 11011 is used to define the meaning of s1;s2 (3.5c below),

while the second 11011 and"□" are used to define the meanings of S<p> and

S{p} respectively (3.5d).

3 • 4 • 2 • Remark

" 0 " (in both definitions) is monotonic and continuous in both argu­

ments, while"□" is monotonic, but not continuous, in its first argument,

and anti-continuous (and hence anti-monotonic) in its second.

3.5. DEFINITIONS

The functions V: Iexp + (L+V),W: Bexp + (L+W), M: S:t.a.:t. + (f+M),

T: Cond + (r+II), F: A6o~ + (r+II) are defined by:

6

a. V(s)(i) = iv, and, for er* i, V(x)(cr) = cr(x), •.• ,V(if b then s 1 else s 2

fi) (er) = }.f W(b) (er) then V(s 1) (er) else V(s 2) (cr)fi

b. W(b) (i) = iw, and, for er * i, W(true) (er) = tt, ••• , W(b 1::;b 2) (er) =

(W(b 1)(cr) => W(b 2)(cr))

c. M(x:=s) (y) = .\cr•{cr{V(s) (cr)/x}}, M(b) (y) = 11.cr• if W(b) (er) then {er} else

0 fi, M(s 1;s2)(y) = M(s 2)(y) 0 M(s 1)(y), M(s 1us 2)(y) = M(s 1)(y) uM(s 2)(y),

M(X)(y) = y(X), M(µX[SJ)(y) = µ[11.~•M(S)(y{~/X})J.

d. T(true) (y) = 11.cr• (er ;;ti), ••• , T(3x[p]) (y) = 11.cr•3a[T(p) (y) (cr{a/x}) J, T(S{p})

(y) = T(p)(y) □M(S)(y),T(S<p>)(y) = T(p)(y) 0 M(S)(y),T(Z)(y) = y(Z),

T(µZ[p])(y) = µ[11.w•T(p)(y{w/Z}).

e. F(p)(y) = T(p)(y),F(s 1 ~ s 2 (y) = 11.cr•((cr.ti)A(M(s 1)(y)(cr) ~ M(s 2)(y)(cr))),

F(f1Af2)(y) = F(fl)(y)AF(f2)(y).

A formula g == f 1 ➔ £2 is called valid (denoted by l=g) if 'v'y['v'cr.ti (F(f 1)

(y)(cr)] => Vcr.ti[F(f2)(y)(cr)]], and an inference gl,.~.,gn_ is called sound

if I= g 1 , ••• , I= gn imp 1 i es I= g •

3.6. REMARKS

df df
3.6.1. qi =),4>·M(S)(y{¢/X}) EM ➔ M, '¥ = 11.w•T(p)(y{w/Z}) E II ➔ II, hence

C m
the least fixed points µqi,µ'¥ do exist (cf. parts d and e of definition 3.5).

3.6.2. l=p ::i S{q} iff Sis partially correct w.r.t. p,q (often written

I= {p}S{q}). l=p ::i S<q> iff S is totally correct w.r.t. p,q (sometimes

written I= [p]S[q]).

3.6.3. We have the familiar properties of S{q}: I= (S 1 ;s2){q} = S1{s2{q}},

l=S{q 1Aq2} = S{q 1}AS{q2}, I= (s 1us 2){q} = s 1{q}AS 2{q}, etc., and similarly

for S<q>.

3.6.4. I= S<t,rue> holds iff execution of S always terminates (i.e.

ii M(S)(y)(cr) for all y,cr).

3.6.5. Hence I= S<p> = S<true> A S{p}.

3.6.6. S<p> is monotonic in both Sand p, but S{p} is anti-monotonic in S

(i. e. , I= (S 1 C S 2) ➔ (S 2 { p} ::i S 1 { p})) • (Cf. 3 • 4. 2.)

fl
3.6.7. Observe that l=f 1 ➔ £2 is a stronger fact than soundness of f 2 • The

meaning of the former is of the form 'v'y[l=>2], of the latter 'v'y[l] => 'v'y[2].

3.7. FIXED POINT PROPERTIES FOR STATEMENTS AND CONDITIONS

We re-state the fixed point properties given above (in 3.2).

fpp I= µX[S] = S[µX[S]/X]

lfp

and similarly for µZ[p].

3.8. CONTINUITY AND ANTI-CONTINUITY OF CONDITIONS; SCOTTS INDUCTION RULE

3.8.1. We say that pis continuous in X, or anti-continuous in X, if

\¢•T(p)(y{¢/X}) (EM➔IT) is continuous or anti-continuous respectively.

3.8.2. Examples. If X does not occur free in p or q, then (by 3.4.2) {X}p

is anti-continuous in X, <X>p is continuous in X and (hence) (<X>p)::, q is

anti-continuous in X.

3.8.3. Below (in 4.3) we will use the following version of Scott's induc­

tion rule: The inference

p[Q/X], (pA (XC µX[S])) ➔p[S/X]
- p[µX[S]/X]

is sound, provided pis anti-continuous in X.

4. TERMINATION

7

In this section we study the construct S<true>. By remark 3.6.4, we

have that th,~ validity of S<true> amounts to termination of S (for all y ,cr).

We are now interested in a syntactic decomposition of S<true>, determined by

the structur,~ of S. More specifically, we want to define a condition S by

induction on the complexity of S, such that

I= S = S<true>.

We will show how to define 11~11 by induction on the complexity of S,

such that (*) is indeed satisfied. Now for S =XE S:tmv, there is no

8

possibility of syntactically reducing S, so we extend the class of conditions

Cond with an additional clause p::= ••• IX, and correspondingly extend the de­

finition of T by: T(X)(y) (cr) = (l. i y(X)(cr)).

We first give the definition of S, and then an explanation of it. (A

substitution of the form p[q/X], occurring below, is defined in a natural

way; e.g. Y[q/X] = <q if X = Y, .Y otherwise>.)

4.1. DEFINITION

a. (x:=s)~ ~ = true, b = true
b. (S 1;s2)~ = s1As 1{s2}, (s 1us2)

µZ[S[µX[S]/X][Z/XJ],

_ S 1As2
c. µX[S]~ _ where Z is (for definiteness) the first

condition variable.

Note. One can verify that, for all X and S, Sis syntactically monotonic

in X, and hence clause c is well-formed (cf. 2.3.4).

4.2. DISCUSSION OF THE ABOVE DEFINITION

We want to see that (*) holds for Sas defined above. This is given

by theorem 4.3 below, but a few heuristic remarks on the definition should

be helpful now.

Clauses a and b should be clear. (a) Since x:=s and b always termi­

nate, (*) holds for these two types of S. (b) We show that (*) is preserved

for these cases: I= (s 1 ;S2)<true> = s 1<S2<true» = (ind.hyp) s 1<S2> = (by

3.6.5) S1<true> A s 1{s2} = (ind.hyp.) s1 A S1{s2}. Similarly for the case

s = s 1us2•

Clause c deserves some explanation. We anticipate a result (step b in

the course of proving theorem 4.3); viz., for each Sand s O,

(A simpler guess for expressing S[SO/x]~

I= S[sO/x]~ = S[SO/XJ, can be seen to be

S = X;S 1 with Xi h.tmv(S 1).)

~ ~ in terms of Sand sO, namely

false by considering e.g. the case

Now taking s O = µX[SJ in(**), and applying fpp (3.7), we obtain

= s[µx[sJ1xJ[µx[sJ~1xJ.
'---v---'

Thus µX[S] satisfies the above fixed point relationship, making plausible

definition 4.lc (which gives it as the least such fixed point).

4. 3. THEOREM. J= S = S<true>.

PROOF. The proof is fairly involved, and only sketched here. (iE{l, ... ,n},

n2':0).

a. S ~ S' => S ~ S'. This is shown by simultaneously proving, by induction

on the complexity of S, that

(i) s ~ S' => s ~ S'
(ii) S[X'/X]~ ~ S[X'/X][X'/X]

b. S[S./X.]~·-;;; S[S./X.].[S./X.].
L L L L L L L L L

Induction on. the complexity of S, using part a.

c. l=S[S./X.].[S.<true>/X.J. :::i S[S./X.]. <true>
L L L L -- L L L L L

(Taking n = 0, we infer that I= S :::i S<true>)

d. I= (S! CS'.'). A (q!:::iq'.'). ➔ S[S!/X.].[q!/Y.].:::, S[S'.'/X.].[q'.'/Y.].
L - L L L L L L L L L L L · L L L L L L

I.e., S = S (X, Y) is monotonic in both X and Y. Proved by induction on the

9

complexity of S. The case S - s 1 ;s2 is not obvious, since then S = S 1AS 1{s2},

and s 1{s2} is not monotonic in s 1 (cf. 3.6.6). But here we use the equiva­

lence l=Sl A Sl{S2} = ·sl A s/s2>' (from part c, with n = O), and note that

s 1<S2> is monotonic in s 1 •

e. J= S<true> :::i S. Induction on the complexity of S. If S = µX[s 0 J, apply

Scott's induction rule (3.8.3) with p= (X<true>) :::i µX[S 0] (cf. 3.8.2), using

the induction hypothesis and parts c,d.

5. DERIVATIVES

We will define the upper and lower derivatives of a statement S, and

state a fundamental theorem connecting these two notions. Before giving the

exact definitions, we make some introductory remarks.

The upper derivative of S w.r.t. X, written :~, is an element of S.t.at,
and has the following intended meaning: Dropping they-arguments for sim­

dS plicity, we have that 0 1 E M(dX)(cr) iff execution of S for input state 0

leads to cr' as an intermediate state just before execution of X starts. E.g.,

if S = sl ;X;S2;X;S3 u s4, X i. .otmv(Si), i = 1, ••• ,4, then !i = St u st ;XI ;S2.

For statements without recursion, we may also briefly say that !i is the

union of all prefixes of X in S.

Let X ~ Stmv. The lower derivative of S w.r.t. X, written oX(S), is an

element of Con.d, and has the intended meaning: oX(S) is true in a state when­

ever S terminates in cr provided that, for each XE X, execution of X for all

states cr' in M(!i)(cr) terminates. (Hence, o0(s) = S.)
(This is essentially the idea as introduced in [H,P J for statements

without inner µ-terms. The novelty of our definition lies in clauses c of

definitions 5. I and 5. 3.)
as Combining the two intended meanings of dX and oX(S), we expect that

the following result holds: For each X '1 X,

I= ox(s) = !i {x} A oXu{x} (s).

Let us give the verbal transliteration of this for the case that X = 0:
S terminates in cr iff both (i) and (ii) are satisfied:

(i) Execution of X terminates for all cr' (;ti) in M(:~) (cr),

(ii) S terminates in cr provided execution of X for all cr 1 (;:e.1)

terminates.

as
in M<ax)(cr)

(Note that a more naive equivalence: I= S = X A o {X} (S) would not work,

since termhiation of X is required for the wrong states.)

5.1. DEFINITION (upper derivative).

a.
clx:=s db _ dY {true, if X - y

ax - false, ax= false,
ax -

false, if X t y

b.
clSI ;S2 as as 2 d(S 1us2) dSI dS2 I

dX - dX u s I; ax ' dX - dX u ax

false, if X = y

c.
clµY[S] as as

if X t Y, where XI dX - µXI [<ax u dY;Xl) [µY[S]/Y] J'

is the first statement variable i. stmv(X,Y,S).

1 1

5.2. REMARKS

5.2.1. By way of comment to clause 5.lc, we offer the following: We expect
dS1[S2/YJ dSt dSJ dS2

that (*): I= dX = dX [S/YJ u dY [S/YJ; dX • In words (first

forgetting about the substitutions on the right-hand side): Prefixes of X

in s1[S/YJ are obtained either as prefixes of X in s1, or by composing

prefixes of Yin s1 on the right with prefixes of X in s2• Supplementing

this description with the indicated substitutions then explains the plausi­

bility of(*). Taking s1 = S, s2 = µY[S], and applying fpp, we obtain as
dµY[S] I dµY[S] dS dS dµY[S]

property of dX : = dx = dX [µY[S]/Y] u dY [µY[S]/Y]; dX • We

see that dµ!iXJ satisfies a fixed point relationship, and, since our fixed

points are usually least, one may now understand clause 5.lc.

I . dS
5.2.2. If X i stmv(S) then = dX = false.

5.3. DEFINITION (lower derivative).

c. oX(µX[SJ) - µZ[oX\{X}(S)[µX[SJ/X][Z/XJJ, where Z is the first condition

variable.

5.4. REMARKS

~ 5.4.1. The definitions of o0(s) and S (4.1) coincide.

5.4.2. ox(Sl;S2; •.• ;Sn) = ox(Sl) A Sl{ox(S2)} A Sl;S2{ox(S3)} A

A SI ;S2; •. • ;Sn-l{oX(Sn)}.

5.4.4. X free in ox(S) ~XE stmv(S)\X.

I dS ~
5.5. THEOREM. For X £ X, = oX(S) = dX {X} A oXu{X} (S) •

PROOF. Induction on the complexity of S. The only interesting case is that

12

S - µY[S 0], Yi X. We have to show that

µZ[8X\{Y}(S 0)[S/Y][Z/iJJ

I= -·

The proof - omitted here - involves fairly complicated manipulations in

the µ-calculus, using fpp and l,fp and properties of S{q} (cf. 3.6.3).

5.6. COROLLABX. For Xi X,

PROOF. It appears that, in the proof of theorem 5.5, {p} may be replaced

everywhere by <p>.

6. DERIVATIVES AND TERMINATION

We expre:ss termination of a recursive procedure µX[S] 1.n terms of the

so-called well-foundedness of a function with respect to a predicate (in­

volving:~ and 8{X}(S), respectively.)

6. 1 • DEFINITION. ¢ is called well-founded in a w. r. t. 1r if

(i) There exists no infinite sequence a0 = a,a 1, ..• , such that ai+l e

¢(a.), i = 0,1, .•.
l.

(ii) There exists no finite sequence a0 = a,a 1, ... ,ak such that ai+l e

¢(eri), i = O, .•• ,k, ak ;t .1, and 1r(erk) = ff.

6.2. REMARKS

6.2.1. By strictness,¢ is not well-founded in .l w.r.t. any TT,

6.2.2. If, for each a' e ¢(er), ¢ is well-founded in er' w.r.t. TT, and more­

over, TT(er) = tt, then¢ is well-founded in er w.r.t. TT,

6.3. LEMMA. For each ¢,er,1r

a. µ[ATT 1 •((1r' 0 ¢)ATT)](er) = tt ~¢is wel,l,-founded in a w.r.t. TT

b. ¢ is weU-founded in er w.r.t. TT ~µDTT'·((TT' □¢)ATT)](er) = tt.

13

PROOF.
df

a. Let TI 1 = µ[ATI 1 •((TI 10¢') A TI)], and let TI¢,TI denote the predicate which,

for each cr, expresses that¢ is well-founded in cr w.r.t. TI. We show that

TI 1 ~ TI¢,TI' or, by lfp, that (TI¢,TI 0 ¢) A TI~ TI¢,TI' Now this is immediate by

6.2.2.
df

b. Let TI 2 = µ[h'•((TI 1 □¢) A TI)]. Assume that¢ is well-founded in cr w.r.t.

TI, but TI 2 (cr) = ff. Clearly, cr 7 1.. By fpp, then ((TI 2□¢) A TI)(cr) =ff.Thus,

either TI(cr) = ff, contradicting definition 6.1 (ii), or there exists cr' E ¢(cr),

cr' 7 1., such that TI 2 (cr') =ff.Thus, again by fpp, either TI(cr') = ff, con­

tradicting 6. 1 (ii), or we obtain cr" 7 1. such that cr" E ¢ (cr') and TI 2 (cr") =ff.

Repeating the argument, either we find a finite sequence a0 = a, ... ,ak (k~O)

such that cri+ 1 E ¢(cri), i = O, ••• ,k-1, crk 7 1., and TI(crk) = ff, or we obtain

an infinite sequence cr0 = cr,cr 1,cr 2 , ... , such that cri+I E ¢(cri), i = 0,1, ..••

In both cases, we have found a contradiction.

6.4. DEFINITION. Sis called well-founded w.r.t. p if for all y,cr, M(s)(y)

is well-founded in cr w.r.t. T(p)(y).

6.5. COROLLARY.

a. I= µZ[S<Z> A p] => S is well-founded w.r. t. p

b. S is well-founded w.r. t. p => I= µZ[S{Z} A p].

0 dS 6.6. DEFINITION. S - (dX)[µX[S]/X],

We now come to main theorem of the paper (an intuitive explanation of

which is given afterwards).

6. 7. THEOREM. The following two facts are equivalent:

a. I= µX[S] <true>

b. Sis well-founded w.r.t. S.
0

PROOF. We have successively:

I=
~ dS ~

A o{X}(S) (by 5. 5 and 5.4.1) a. S = -: {X}
dX.

I= S[µX[S]/X] 0 ~
b. = S{X} A S (subst. µX[S] for X)

0

14

c. I= S[µX[SJ/XJ[Z/XJ = S{Z} As (subst. Z for X)
0

I=
~ ~ 0 (prefixing d. µZ[S[µX[SJ/XJ[Z/XJJ = µZ[S{Z} A SJ µZ)

0

e. I= µX[SJ <true>= µZ[S{Z} A SJ (4.1, 4.3)
0

I=
0

f. µX[SJ <true> = µZ[S<Z> A SJ (as a-e, starting from 5.6).
0

(Note: inc, we use that Xis not free in o{X}(S) by 5.4.4, hence also not

in S.)
0

The theorem now follows from e,f and corollary 6.5.

6.8. DISCUSSION

We have derived the following result: A recursive procedure µX[SJ
0 •

terminates for all input states 7 i iff Sis.well-founded w.r.t. S. How
0

should one understand this proposition? Let us consider e_.g. the procedure
df

µ ::: µX[SJ, where S = s 1;X;S2;X;S3 u s4 , with Xi stmv(Si), i = 1, ••• ,k.

Then I= S = s 1 u s 1 ;µ;S 2 (using 5.2.2). Also I= o{X} (S) = s1 A s 1;

X {$2} A Sl;X;S2;X (s3} A 84 (using 5.4.2, 5.4.3, 5.4.1), and so I=§=

SI A sl;µ{S2} A Sl;µ;S2;µ{S3} A 84. Forgetting about they-arguments, we

have that for all cr:

a. There exists no infinite sequence cr0 = cr,cr 1, ••• , such that cri+l E M(s 1u

s 1;µ;S 2)(cri)' i = 0,1, •••• Since Sis nothing but the statement executed

between a call ofµ at a certain level of recursion depth, and a call at

the next deeper level, we see that the non-existence of such an infinite

sequence amounts to the absence of infinite recursion, i.e., it is not

possible that the procedure goes on calling itself indefinitely.
0

b. There exists no finite sequence cr0 = cr, ••• ,crk, such that cri+l eM(S)(cri),

i = O, ••• ,k-1, crk 7 i, and T(§)(crk) =ff.Assume that, contrariwise,

such a sequence would exist. This would mean that, at a certain level of

recursion depth, we have obtained an intermediate state crk 7

T(S)(crk) =ff.By the definition of S this means that either
O 0

(i) s 1 does not terminate in crk, or

i such that

(ii) There exists some cr' 7 i such that cr' E M(s 1;µ)(crk) and s 2 does

not terminate in cr', or

(iii) There exists some cr" 7 i such that cr" E M(s 1;µ;S 2;µ)(crk) and s 3
does not terminate in cr", or

(iv) s4 does not terminate in crk.

Altogether, we see that§ is false in crk *~precisely when there is some

instance of ZocaZ nontermination stemming from crk, i.e., nontermination

which is not due to infinite recursion ofµ, but to nontermination of one

of the S.-components ofµ.
1 .

15

Combining results a and b, we see that µX[S] terminates everywhere

whenever, for all cr, there is neither the possibility of infinite recursion

(global nontermination), nor the possibility of the computation reaching

some intermediate state which leads to local nontermination.

References

[dBi] DE BAKKER, J.W., Semantics and termination of nondeterministic
rd

recursive programs, in Proc. 3 Coll. Automata, Languages and

Programming (S. Michaelson & R. Milner, eds), pp.435-477, Edin­

burgh University Press (1976).

[dB2] DE BAKKER, J.W., Mathematical theory of program correctness. To appear.

[DJ DIJKSTRA, E.W., A DicipZine of Programming, Prentice-Hall (1976).

[H,P] HITCHCOCK, P. & D.M.R. PARK, Induction rules and proofs of termina-

tion, in Proc. 1st Coll. Automata, Languages and Programming

(M. Nivat, ed.), pp.225-251, North-Holland (1973).

