
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS

BITONIC SORT ON ULTRACOMPUTERS

Preprint

~
MC

IW 117/79 SEPTEMBER

2e boerhaavestraat 49 amsterdam

&81.JOTHEEK MAl'HEfVl.L\TlSCii <.,..1illi.UM

,AW(.j fi:.iWAM

P,unted a:t tile Ma.:thema.:Uc.a.t Centlte, 49, 2e BoeJLhaa.vu.tJc.a.a:t, A.rrud;elldam.

The Ma:thema.:Uc.a.t Centlte, 6ou.nded tile 77-til 06 Feblw.aJLy 1946, ,l6 a. non­
pJto 6U: .ln6.tLtuti.o n a,i.m,i,ng a:t tile pJtomo:tio n o 6 pUll.e ma.:thema.:UC6 a.nd -l:t6
a.pp.Uc.a:tion6. 1:t -l6 .6pon601ted by :the Nethell1.a.nd6 GoveJtnment :thJtou.gh :the
Nethe/L.f..a.nd6 OJtga.ni.za.:Uon 601t :the Adva.nc.ement 06 Pu/le Ruea.Jtc.h (Z.W.O).

1980 Mathematics Subject Classification: 68C25, 68E05

ACM-Computing Reviews-categories: 5.25, 5.31, 5.22

Bitonic sort on Ultracomputers*)

by

L.G.L.T. Meertens

ABSTRACT

Ultracomputers are assemblages of processors that are able to operate

concurrently and can exchange data through communication lines in, say, one

cycle of operation.

Batcher's bitonic sort is a sorting network, capable of sorting n in-
2

puts in 0((1og n)) stages. When adapted to conventional computers, it gives

rise to an algorithm that runs in time 0(n(log n) 2).

This report describes the algorithm adapted to ultracomputers. The re­

sulting algorithm will take time 0((1og N) 2) for ultracomputers of "size"

N. The implicit constant factor is low, so that even for moderate values of

N the ultracomputer architecture performs faster than the 0 (N log N) time

conventional architecture can achieve.

KEY WORDS & PHRASES: computational complexity, sorting networks, parallelism,

ultracomputers, bitonic sort.

*) This research has been done while the author was visiting the Courant
Institute of Mathematical Sciences, New York University, New York.
It has been published there asUltracomputer Note #1.
This report will be submitted for publication elsewhere.

1

1. INTRODUCTION

Ultracomputers [1] are assemblages of processors that are able to oper­

ate concurrently and can exchange data through communication lines in, say,

one cycle of operation.

Batcher's bitonic sort (cf. [2], pp.232 ff) is a sorting network, capa­

ble of sorting n inputs in 0((1og n) 2) stages. When adapted to conventional

computers, it gives rise to an algorithm that runs in time 0(n(log n) 2). The

method can also be adapted to ultracomputers to exploit their high degree
2

of parallelism. The resulting algorithm will take time 0((1og N)) for ultra-

computers of "size" N. The implicit constant factor is low, so that even for

moderate values of N the ultracomputer architecture performs faster than the

0(N log N) time conventional architecture can achieve.

The purpose of this note is to describe the adapted _algorithm. After

some preliminaries a first version of the algorithm is given whose correct­

ness is easily shown. Next, this algorithm is transformed to make it suitable

for an ultracomputer.

2. PRELIMINARIES

DEFINITION. A sequence s O, ••• ,sri-l of elements from a totally ordered set

is bitonic if there exist i and j, 0 ~ i ~ j ~ n-1, such that either

s. ~ 5i+1 ~-. -~ s. and s. ;,:
sj+1 ;,: ... ;,: s

n-1
;,: so ;,: 51 ;,: ... ;,:

l. J J
or

s. ;,: 5i+1
;,: ... ;,: s. and s. ~ sj+1 ~-. -~ s

n-1
~ so ~ 51 ~- .. ~

l. J J

(If the sequence is made into a cycle by connecting the rear back to the

front, this means that both ways of going from s. to s. give an ordered
l. J

"run".) Note that a sequence of length~ 3 is always bitonic.

Bitonic sort hinges on the following

s.'
l.

s .•
l.

LEMMA 1. Let s 0 , •.• ,s2n-l be bitonic. For i = O, ••• ,n-1, interchange si and

s . ifs . < s 1 .• Then for the resulting sequence, both s O, ••• ,sn-l and
n+1. n+1.

2

sn, ... ,s2n-l are bitonic. Moreover, each of the elements s 0 , ..• ,sn-l is less

than or equa.I to each of the elements s , ... , s 2 1 . n n-

PROOF. See BATCHER [3] or STONE [4]. (The proofs given are rather informal.

A more formal proof would be elementary but not very enlightening; it would

proceed by distinguishing a number of cases.) D

D
The elements to be sorted are stored in an array a[0:N-1], where N = 2

for some integer D. The indices of the array will often be written as bit­

strings (binary numbers) b _ 1b _ 2 •.• b 0 , corresponding to the integer
D-1 0 D D

b 12 + ... +b02 • The notation b denotes the substring b b 1 ... b .
D- H:L H H- L

(Note that the subscript runs from high to low; in order to minimize con-

fusion, capital letters will be used for such subscripts.)

DEFINITION. ri stands for a mapping from the set of substrings b into the
H:L

set of order relations~ and~, satisfying Q(b 1) is~ and
H:H+

Q(bH:L+l0) ~ Q(bH:L+l1). One possible solution is given by

is

is

The symbol (I:) stands for the "logical sum" or "exclusive or", so the summa­

tion determines the parity of b . A simpler solution is given by:
H:L

Q(b 10) is ~, Q(b 11).is 2":. (By convention, Q(b 1) is ~ in either case.)
H:L+ H:L+ H:H+

The assertions of the correctness proof will use three predicates,
D-P

defined below. Let the array a be (conceptually) divided into 2 segments
p

of 2 elements each. The indices of the elements of a given segment are pre-

cisely those which have a common initial bitstring b 1 p"
D- :

DEFINITION. Ordered (P) stands for: within each segment the elements are

sorted in Q(b 1)-order.
D- :P

DEFINITION. !Bitonic (P) stands for: each segment forms a bitonic sequence.

P-Q
Let now each segment be subdivided into 2 subsegments, or boxes,

3

of 2Q elements each. If the elements of a segment were sorted in some order,

each element would end up in its destination box according to that order.

DEFINITION. In_Boxes(P,Q) stands for: within each segment the elements are

(already) in their destination boxes according to Q(bD-l:P)-order.

LEMMA 2. If O ~ P ~ D, then

(a) In Boxes(P,P);

(b) if In Boxes(P,O), then Ordered(P);

(c) for P ~ 1, if Ordered(P-1), then Bitonic(P).

PROOF. As to (a), In Boxes(P,P) means that the boxes coincide with the seg­

ments. As there is only one destination box per segment, each element of a

segment must be in its destination box. As to (b), if In Boxes(P,O), the

boxes have one element. So if within a segment the elements are in their

destination box, they must be in place and each segment is sorted. (Actual­

ly, In_Boxes(P,0) is equivalent to Ordered(P).) As to (c), if Ordered(P-1),

then for each segment of length 2P the lower half and the upper half are

both sorted in Q(bD-l:P-l)-order. For the lower half bP-l = 0 and for the

upper half bP-l = 1, so the upper half is sorted in the reverse order of

the order of the lower half. The whole segment is then bitonic. D

DEFINITION. ich(H:P,Q), 0 ~ Q < P ~ H+l ~ D, stands for the following action:

for all b, interchange a[b with bQ = O] and

a[b with bQ = 1] if they are not in Q(bH:P)-order.

LEMMA 3. If O ~ Q < P ~ D, then

{Bitonic(Q+l) & In_Boxes(P,Q+l)}ich(D-1:P,Q){Bitonic(Q)

& In_Boxes(P,Q)}.

PROOF. This lemma is a generalization of Lemma 1 for sequences whose length

is a power of two. (Lemma 1 is obtained from Lemma 3 by taking P = D and

Q = D - 1.) The generalization follows by applying Lemma 1 to each (bitonic)
Q+l P

box of length 2 in a segment of length 2 • The boxes are then "refined"

by splitting each box into two halves (each of which receives again a bito­

nic sequence), and its elements are divided over the two new boxes of length

2Q according to Q(D-1:P)-order. Since the elements were already in their

destination boxes of length 2Q+1 , they now re~ch their destination box of

length 2Q. 0

3. FIRST VERSION OF THE ALGORITHM

{In Boxes(O,O)}

{Ordered(O)}

for P = 1,2, ••• ,D do

{Ordered(P-1)}

end for P

{Bitonic(P) & In Boxes(P,P)}

for Q = P-1,P-2, •.. ,0 do

{Bitonic(Q+1) & In_Boxes(P,Q+1)}

ich(D-1:P,Q)

{Bitonic(Q) & In_Boxes(P,Q)}

end for Q

{In_Boxes(P,O)}

{Ordered(P)}

{ Ordered (D) }.

Correctness Proof: Each of the verification conditions is either trivially

satisfied or is an immediate consequence of Lemmas 2 and 3. The final as­

sertion Ordered(D) asserts that the whole array is sorted in ~-order. 0

4. ALGORITHM FOR BITONIC SORT ON ULTRACOMPUTERS

If the operation ich(D-1:P,Q) could be realized in time 0(1), the
2 algorithm would take time 0(D). If the elements of the array a are stored

4

in consecutive processors of an ultracomputer, it is, however, not possible

to compare two arbitrary elements immediately, since not all processors are

directly connected. Consecutive processors are connected, so operations of

the form ich(H:P,0) operate in time 0(1). Other connections are the shuffle

lines, connecting each processor bD-l:O to the processor o(b0 _1 : 0) =b0bD-l:l"

5

Through this connection, the following parallel assignments take time 0(1):

shuffle:

unshuffle:

for all b, a[b] := a[cr(b)];

for all b, a[cr(b)] := a[b].

The two operations permute a and are each other's inverse.

Let shuffleQ stand for the null action if Q = 0, and for

shuffleQ-l; shuffle if Q ~ 1. So shuffleQ stands for:

for all b, a[b] := a[crQ(b)].

Let unshuffleQ be defined similarly.

LEMMA 4. ich(D-1:P,Q), where O $ Q < P $ D, is equivalent to

unshuffleQ; ich(D-Q-1:P-Q,O); shuffleQ.

PROOF. The operation ich(D-1:P,Q) stands for

for all b, interchange a[b with bQ = O] and

a[b with bQ = 1] if they are not in ~(bD-l:P)-order.

Using the assignment rule, this is seen to be equivalent to

for all b, a[crQ(b)] := a[b] (or unshuffleQ);

for all b, interchange a[crQ(b) with bQ = OJ

and a[crQ(b) with bQ = 1]

if they are not in ~(b -l·P)-order;
. D • Q

for all b, a[b] := a[crQ(b)] (or shuffle).

Substituting in the middle part cr-Q(b') for b, using bR

for R ~ Q, we obtain

= a -Q (b') = b'
R R-Q

for all b', interchange a[b' with b0 = O]

and a[b' with b0 = 1]

if they are not in ~(b 1 >-order.
D-Q- :P-Q

This is exactly the meaning of ich(D-Q-1:P-Q,O). D

Using Lemma 4, the algorithm may be transformed to:

for P = 1,2, •.. ,D do

for Q = P-1,P-2, ••• ,0 do

unshuffleQ;

ich(D-Q-1:P-Q,0);

shuffleQ

end for Q

end for P.

This intermediate version would require time 0(D3).

LEMMA 5. For K ~ 0

LOOPK - for Q = K,K-1, ••. ,0 do unshuffleQ; S(Q); shuffleQ end,

where S(Q) is any statement depending on Q, is equivalent to

K+l
unshuffle ; LOOPK, where

LOOPK = for Q = K,K-1, ••• ,0 do shuffle; S(Q) end.

PROOF. By induction on K. LOOP0 and unshuffle; LOOP0 reduce to an obvious

equivalence. For larger K, we see that LOOPK is equivalent to

K K
unshuffle; S(K); shuffle; LOOPK-l

by moving the first execution of the loop body outside. By the inductive

hypothesis, this is equivalent to

K K K
unshuffle; S(K); shuffle; unshuffle; LOOP~_1 ,

which again is equivalent to

K+l
unshuffle ; shuffle; S(K); LOOP' 1 •

K-

Moving shuffle; S(K) inside the loop, we obtain

K+l
unshuffle ; LOOP i<_· D

6

By this lemma, we finally obtain

Algorithm for bitonic sort on ultracomputers:

for P = 1 , 2 , ••• , D do
p

unshuffle;

for Q = P-1,P-2, ••. ,0 do

shuffle;

ich(D-Q-1:P-Q,O)

end for Q

end for P.

This algorithm clearly takes time 0(D2) = 0((1og N) 2).

7

REMARK. The idea of using shuffles to implement bitonic sort is described in

STONE [4].

REFERENCES

[1] SCHWARTZ, J.T., Ultracomputers, preprint, Computer Science Department,

Courant Institute of Mathematical Sciences, New York University,

New York, 1979.

[2] KNUTH, D.E., The Art of Computer Programming, vol. 3: Sorting and

Searching, Addison Wesley Publ. Cy., 1973.

[3] BATCHER, K.E., Sorting networks and their applications, Proc. AFIPS

Spring Joint Computer Conf., vol. 32, pp.307-314, 1968.

[4] STONE, H.S., Parallel processing with the perfect shuffle, IEEE Trans.

on Computers, v.C-20, pp.153-161, 1971.

