
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

L.G.L.T. MEERTENS

RECURRENT ULTRACOMPUTERS ARE NOT LOG N-FAST

Preprint

~
MC

IW 118/79 SEPTEMBER

2e boerhaavestraat 49 amsterdam

~UQHil;J;K i',1ATrlU,1A,::•.i•-H Cl:.NiiHJ.tii

AMSH.:RDAM

PJunted a.t .the Ma.thema.ti.c.a£. Ce.ntAe, 49 ,· 2e BoeJLha.a.v<U.tlr.aJ:lt, Am.6.teJt.dam.

The Ma.thema.:Uc.a£. Centlz.e, 6ou.nded .the 11-.th 06 Feb1tU1Vty 1946, -l6 a. non.­
p1to6U -ln6.ti:tut,lon. cwn-lng a.t .the pJtomo:Uon 06 pUll.e ma.thema.:Ue1i a.nd .l:t6
a.pp.Uc.a.ti.on6. 1.t -l6 .6pon601ted by .the Ne.thvr1.a.n.d6 GoveJtn.ment .th/tough .the
Ne.the.Jl1.a.n.d6 OJc.ga.n-lza.ti.on 601t .the Adva.nc.ement 06 PU!l.e R<Uea.1tc.h (Z .W. 0) •

1980 Mathematics Subject Classification: 68C25

ACM-Computing Reviews-categories: 5.25, 5.22

*)
Recurrent Ultracomputers are not log N-fast

by

L.G.L.T. Meertens

ABSTRACT

Ultracon~uters are assemblages of processors that are able to operate

concurrently and can exchange data through communication lines in, say, one

cycle of operation. For physical reasons, the fan in/out _of the processors

must be limited. This imposes restrictions on the possible communication

schemes. In order to have the ultracomputer operate efficiently as a whole,

it is desirable that arbitrary exchanges of information between the proces­

sors can be effected in a small number of data shifts.

If a really huge ultracomputer is built, it would be nice if it could

be constructed by coupling smaller ultracomputers, and so on. It will be

shown that the latter desire conflicts to a certain extent with the earlier

one.

KEY WORDS & PHRASES: computational complexity, parallelism, ultracomputers.

*) This research has been done while the author was visiting the Courant
Institute of Mathematical Sciences, New York University, New York. It
has been published there as Ultracomputer Note #2.
This report will be. submitted for publication elsewhere.

1

1. INTRODUCTION

Ultraconwuters [1] are assemblages of processors that are able to oper­

ate concurrently and can exchange data through communication lines in, say,

one cycle of operation. For physical reasons, the fan in/out of the proces­

sors must be limited. This imposes restrictions on the possible communica­

tion schemes. In order to have the ultracomputer operate efficiently as a

whole, it is desirable that arbitrary exchanges of information between the

processors cafil be effected in a small number of data shifts.

If a really huge ultracomputer is built, it would be nice if it could

be constructed by coupling smaller ultracomputers, which in turn are assem­

bled from still smaller ultracomputers, and so on. It will be shown that

the latter deisire conflicts to a certain extent with the earlier one.

2. PARACOMPUT'ERS

For the purposes of this note, a paracomputer is a sequence of directed

graphs. (Ultracomputers are paracomputers satisfying a restriction defined

below.) Throughout the paper, the sequence GD, D = 0,1, ... stands for a

paracomputer. Each GD is a pair <PD,LD>, where PD is the set of nodes (or

"processors") of GD, and LD is a set of edges (or "lines") <p 1 ,p2 > E PD x PD.

We define

</JD = max #{<p ,p > E LDjp1 = p or p 2 = p}
pEPD 1 2

(the maximal fan in/out in GD),

CD #LD,

rD = CD/ND.

To exclude uninteresting cases, it is assumed that ND+ 00 • (Here and in the

sequel, where limits or orders of magnitude are concerned, these are always

understood to be with respect to D + 00 .)

For a paracomputer to be an ultracomputer, the following requirement

is imposed:

(UC) ~ is bounded by some constant¢. 'l'D

LEMMA 1. (UC) implies that rD is bounded.

PROOF.

CD = #LD = #{<p ,p > E LD} s
1 2

s 1 I #({<p ,p > E LD 2 1 2
pEPD

1 I ¢D
1 s = 2 ND¢D, 2

pEPD

so

which by (UC) is bounded. 0

J P1 = p or p 2 = p}

2

The ordeir of magnitude of the number of data shifts required to obtain

an arbitrary permutation on PD will determine how "fast" the paracomputer

is. In order to express this in terms of the graph model, we must go through

some definitions. The set of basic permutations on GD is defined by

BPD = {1r: 1r is a permutation on PD 1r(p) = p or <p,1r(p)> ELD

for all p E PD}.

The permutations PERM(d) of shift depth d, d ~ 0, are inductively de­
D

fined by:

PE',RM (O) -- { } h t d f th . d t . t t . D 1rI , were 1fI sans or e i en ity permu a ion,

PE',RMD(n+l) (n) (n) = { f3 ° 1f: f3 E BP D, 1f E PE~ } - PE~ .

(Note that BPD = PEfil\,O) u PE~l) .)

The shift depth sdD(TI) of a permutation TI on PD is defined by

(sdD (TI))
TIE PERMD •

This definition may leave sdD(TI) undefined for a given TI, in which case we

put sdD (TI) = 00.

The maximal shift depth of GD is now

3

where TI ranges over all permutations on PD. (The treatment of 00 1 s should be

obvious.)

A paracomputer is called f(N)-fast if MD = O(f(ND)) •. For example, the

ultracomputer as defined in SCHWARTZ [1] has . ND = 2D and r,,1) :,;; 4D - 3 for

D ~ 1, so it is log N-fast. In fact, it is easily seen to be strictly log N­

fast, meaning that it is log N-fast but not f(N)-fast for any f(N) = o(logN).

This is the best possible since no ultracomputer can improve on log N-fast­

ness. Note that lower orders of f(N) correspond to faster operation.

LEMMA 2. Let the processors PD of GD be partitioned into two sets Sand T.

Let n = min(#S,#T) and c = #(LDnSxT). Then n:,;; MD•c.

PROOF. Let the permutations on PD be extended in the natural way to map sub­

sets of PD on subsets. Define

a (TI) = # (TI (S) n T) .

We will first show that for SE BPD, a(S) :,;; c. For

a(S) = #(S(S) n T) = #{s E SI S(s) E T}

Let TI be a permutation such that sdD(TI) = d. It is claimed that a(TI) :,;; d•c.

The claim is easily shown correct by induction on d (and in fact, we have

4

just shown it for the cased= 1). For sc\,(,r) = 0, ,r = ,rI' so a(,r) =

(,rI (S) n T) = # (S n T) = 0. For sd0 (,r) > 0, ,r' can be written as So ir', where

sd0 (ir') = sd0 (,r) - 1 and S € BP0 • Since

,r'(S) = ,r'(S) n s u ,r'(S) n TC s u ,r'(S) n T,

,r(S) = f3°,r'(S) = $(,r'(S)) c S(Suir'(S) nT) c S(S) u S(ir'(S) nT),

so

S 0 ir'(S) n Tc S(S) n Tu S(ir'(S) nT) n Tc S(S) n Tu S(ir'(S) nT).

We have

a(,r) = a(S O ,r') = #($ 0 ,r' (S) n T) :;:; #(S(S) n T u S(ir' (S) n T))

:;:; #(S(S) nT) + #S(ir' (S) nT) = #(S(S) nT) + #(,r' (S) nT)

= a(S) + a(,r').

Using a(S) :;:; c, s~(,r') = sd0 (,r) - 1 and the inductive hypothesis, it fol­

lows that

Next, choose (arbitrarily) two subsets S' c Sand T' c T, each of size n.

Let ,r be any permutation such that ,r(S') = T'. Then

n = #T' = #(,r(S') nT'):;:; #(,r(S) nT) = a(,r)

so, since~ is an upper bound of the values of s~(,r),

which proves the lemma. D

5

REMARK. Although it may not be obvious from the formalism of the proof, the

crucial idea is that at any shift Bat most c items from S' may reach (their

destination in) T across the "boundary" between Sand T. It follows that the

lemma will also hold if the processors are not forced to give up their

current contents in passing it on to another processor and receiving data

from a third. Even an unlimited memory capacity of the processors will not

help; the bottle-neck is not the capacity of the processors but that of the

lines.

3. RECURRENT PARACOMPUTERS

A recurrent paracomputer is a paracomputer obeying a recurrence rela-

tion

<P U
D-i

1

In this scheme the processors PD-ik of constituent paracomputers GD-ik are

considered distinct for different values of k, even if ik is the same (by

taking copies if necessary), so the unions involved are disjoint unions. We

require, moreover,

n > 2 and 1 =

(An additional requirement, which we do not need however, might be that
+ LD c PD x PD is disjoint from each PD-ik x PD-ik.) We shall write I for in.

To get the sequence started, we take GD=<~,~> for D < 0 and G0 =

<{A},~>. (A stands for any "atom" to label the processor in the point set

P0 , e.g. the null sequence. For the following considerations the choice of
+ P0 is immaterial, as long as N0 > 0. Moreover, if N0 = 1, the choice of L0

is immaterial.)

For a recurrent paracomputer we have

for D < O;

NO = 1;
n

ND = I ND . for D > 0.
k=1 -1.k

6

Obviously, ND is strictly monotone increasing for D ~ O. The solution to a

recurrence relation of this type can be written explicitly as

n -ik
where the Aj are the roots of the equation Ik=l A = 1. If A is the larg-

est of these roots, we have

(1)
D D

ND= aA + O(µ)

for some positive a and someµ such that lµI < A. (If there is a multiple

root, the general explicit solution is slightly more complicated. We are

concerned with the behaviour of ND, however, and it can be shown that the

largest root is larger than 1 and exceeds the other roots in absolute mag­

nitude, and so has multiplicity 1.)

The

(2)

+
Putting CD= #LD and cD = #LD, we also have

CD =

CD =

recurrence

C =
D

0 for D < 0,

n

CD + I CD. for D
k=l -ik

relation is solved by

D

I
q=l

N C •
D-q q

~ o.

+ (If L0 f ~, the summation should start with q = 0.)

To give an example of a recurrent paracomputer, consider

The superscripts (0) and (1) serve to distinguish the two copies of GD_ 1•

If pis a processor of P 1 , the corresponding processors of P(O) and p(l}
D- D-1 D-1

are written pO and pl, respectively. L~ is then defined as

So ND= 2D. Since ~D = 2D, this recurrent paracomputer is not an ultracom­

puter. It is easily shown to be strictly log N-fast. G is isomorphic to a
D

hypercube (with edges running both ways) of dimension D.

4. MAIN RESULT

THEOREM. Recurrent ultracomputers are not log N-fast.

7

PROOF. By contradiction. Let the sequence GD be a log N-fast recurrent

ultracomputer. We have MD= O(D), so at most a finite number of the values

of MD is infinite. If this should be the case, we augment the corresponding

L~ to make MD finite. This does not influence property (UC). Now, for some

a > 0 , MD < oiD.

we can partition PD into two sets, S = PD-il and T = PD-i 2 u ••• u PD-in.

From I= max ik, k = 1, ... ,n, we have min(#S,#T) ;:;: ND-I" ·Each LD-ik contains
+

members of PD-i. x PD-i. only, so members of S x T contained in L = LD u

J J + # (LD n S x T) :=:; D#L +D = CD. LD-il u ••• u LD-in are members of LD. Consequently,

Application of Lemma 2 yields now

N :=:; MDcD. D-I

Using MD < aD and (2) , we obtain for r D

1 D
rD > a I

q=1

N N
D-q q-I

qNd

-I
Since N N I/ND+ a;.. , we are led to rewrite this as

D-q q-·

-I\
a;.. }"

From (1) it is clear that the sum in the second term has a finite limit,

whereas the first term is clearly unbounded, so rD is unbounded. Together

with Lemma 1 this yields a contradiction. D

8

REMARK. The possibility is still left open that recurrent ultracomputers
l+E .

might exist that are (log N) -fast for arbitrarily small E > O. Note in
-· (l+E)

fact that Lq is bounded. A mere existence proof, e.g. by enumerating

combinations, would not be very helpful; for an ultracomputer to be manage­

able the lines should definitely exhibit some simple pattern. Note, moreover,

that the criterion of boundedness of rD as applied is relatively weak; for

example, if c:0 is constant, the reasoning in the proof of the theorem fails

completely to reveal that the corresponding ultracomputer is at best N-fast,

for no contradiction is obtained concerning the boundedness of rD _for even
l+E (log N) -fastness (although the contradiction follows immediately from

the intermediate ND-I~ MDcD). It seems therefore entirely plausible that

the result of this note could be drastically sharpened.

REFERENCE

[1] SCHWARTZ, J.T., Ultracomputers, Preprint, Computer Science Department,

Courant Institute of Mathematical Sciences, New York University,

New York, 1979.

