
ERRATA IW 121/79

The omission of INFO(v)[5], a boolean variable to be maintained at

each node v of the connected inte~val tree, necessitates the changes below.

page line

7

7

7

7

8-9

11

12

15

+1

+18

+19

+26

+8:+15

-6

+9:+13

INFO(v)[l:4] + INFO(v)[l:5]

Insert:

INFO(v)[5]: a boolean which is true if each leaf

interval of the subtree rooted at vis covered by

an alive line segment which does not cover all of

the v-interval, and is false otherwise.

INFO(v)[3] = + INFO(v)[3] = INFO(v)[5] =

INFO(root)[1] + 0 ➔ INFO(root)[l] + 0 or INFO(root)[5]

add a 5-th element "f" to each 4-tuple in the figures.

change to:

Leftcond := INFO(vf)[1] ~ 1 or INFO(vf)[5];

rightcond := INFO(v)[1] ~ 1 or INFO(v)[5];
r - r

if leftcond and rightcond

then INFO(v)[4] := 0; INFO(v)[5] := true

else if leftcond then INFO(v)[4] := INFO(v)[4]
r

else if rightcond then INFO(v)[4] := INFO(vf)[4]

INFO(v)[4] + INFO(v)[4:5]

change to:

Leftcond := INFO(vl)[1] ~ 1 or INFO(v1)[5];

rightcond := INFO(v)[1] ~ 1 or INFO(v)[5] ,•
r - r

if leftcond and rightcond then

else INFO(v)[5] := false;

if leftcond then INFO(v)[4] := INFO(V)[4]
r

else if rightcond then INFO(v)[4] := INFO(vl)[4]

-10 INFO(v)[2:4] ➔ INFO(v)[2:5]

-5 append: or INFO(root)[5]

-3 and INFO(v)[3] + ,INFO(v)[3] and INFO(v)[5].

AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

P.M.B. VITANYI & D. WOOD

COMPUTING THE PERIMETER OF A SET
OF RECTANGLES

Prnprint

~
MC

IW 121/79 NOVEMBER

2e boerhaavestraat 49 amsterdam

P,un:te.d a.:t .the. Ma.:thema.:ti.c.ai.. Ce.ntlie., 49, 2e. Boe.Jthaa.ve,o:tJuu;t;t, Am&.te.Jtdam.

The. Ma.:themaUc.ai.. Ce.ntlie., 6ounde.d .the. 11-.th 06 Fe.bnu~ty 1946, Ma non­
pno6,i;t im.:t.UuUon cum,i.ng a.:t .the. pnomoUon 06 pune. ma.:thema.:ti.C6 and i.t6
app.U.c.a.:ti.on.&. I:t .l6 .6pon&one.d by .the. Ne.thelli.a.nd.6 Gove.Jtnme.n:t .thnough .the.
Ne.thelli.a.nd.6 Onganiza.:ti.on 6on .the. Advanc.eme.n:t 06 Pune. Re,o e.Mc.h (Z. W. 0) •

1980 Mathematics Subject C.J..assification: 68B15, 68C25, 28.04,
28A75, 26B15, 51M25

ACM-Computer Reviews-Categories: 5.25, 5.39, 4.34, 3.71

Computing the perimeter of a set of rectangles*)

by

) *) Paul M.B. Vitanyi & Derick Wood

ABSTRACT

We describe an algorithm for computing the perimeter (sum of lengths

of boundaries) of the area in the plane covered by a given set of n recti­

linearly-oriented rectangles. With some modifications the algorithm also

computes the measure (surface) of this area. For the latter task such an algo­

rithm was available before. Our main thrust shall be a comparison of the

worst-case performances of the algorithms under various computational as­

sumptions. The results strengthen the conjecture that 0(n) space and 0(n log n)

time simultaneously is unattainable for the perimeter and measure problems

when a realistic model of computation is assumed. The algorithms generalize

easily to higher dimensions. Without substantially altering the time/storage

requirements, the perimeter algorithm can be adapted to output the boundary

of a set of intersecting rectangles (or intervals ind-space), which ~ay be

useful in computer graphics.

KEY WORDS & PHRASES: Geometric complexit~, algorithms and data structures,

intersecting rectilinearly-oriented rectangles, inter­

secting intervals ind-space, perimeter, measure,

boundary.

The work of the second author supported in part by a Natural Sciences
and Engineering Research Council of Canada Grant No. A 7700 and in part
by a grant of the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.)

**) Mathematical Centre, 2e Boerhaavestraat 49,
Amsterdam, The Netherlands

***) Unit for Computer Science, McMaster University,
Hamilton, Ontario LBS 4K1, Canada

This report will be submitted for publication elsewhere,

1

1. INTRODUCTION

Consider the problem of computing the perimeter of a set of n recti­

linearly-oriented rectangles in the plane. That is, we want to determine the

total length of the boundaries delineating the total area covered by the rec­

tangles. This is the 2-dimensional particularization of a problem which we

shall call the perimeter problem. More formally, the perimeter problem is

stated as follows. A closed interval (generalized rectangular parallelepiped)

in a-space consists of all points x = (x1 ,x2 , ... ,xd) such that li s: xis: ui

(1 s: is: d) for some fixed numbers l 1 ,l2 , ... ,ld and u 1 ,u2 .,,,ud with li <ui

for all i. Given n closed intervals in d-space, say A1 ,A2 , ... ,An' the peri­

meter problem asks for an efficient algorithm to compute the (d-1)-dimen-

sional measure of the boundary of
n

as the intersection of U A. and
i=l l

n
u

i=l
the

A .. The boundary of
l

n
U A, is defined

i=l l

closure of its complement in a-space.

Therefore, the boundary will consist of pieces of (d-1)-dimensional hyper-

planes, and the perimeter is the sum of the (d-1)-dimensional measures of

these pieces. For d = 1 the perimeter problem consists
n

in computing the num-

ber of end points
n

vals making up U
i=l

Ford= 2 the

in U
i=l

A .•

A., i.e., twice the number of disjoint closed inter­
l

l

perimeter problem consists in finding the sum of the

lengths of the linesegments which form the boundary of
n
u

i=l
are rectangles in the plane. We shall present an algorithm

A. , where the A' s
l

for solving the

2-dimensional perimeter problem and analyze its complexity. Under certain

cost measures this algorithm is optimal. Virtually the same algorithm can

be used to solve the cased= 1, and then yields running times of the same

order of magnitude as does the cased= 2. Presumably, this is optimal for

d = 1. Generalizations of the algorithm to the cases d ~ 3 do not seem to

be optimal.

Problems like the perimeter problem belong to the general area of geo­

metric complexity. A closely related problem was proposed by KLEE [1977] who

called it thei measure problem. The measure problem asks us to design effi­

cient algorithms to compute the a-dimensional measure of the union of n in­

tervals A1 ,A~,···,A in a-space, d = 1,2, It was soon found, that for
,i n

the 1-dimensi.onal case there was an algorithm with a worst case running time

of 0 (n log n) , which was proved to be optimal.

2

BENTLEY [1977] designed a very efficient algorithm to solve the 2-dimen­

sional case, viz. that of finding the total area in the plane covered by a

set of rectangles. For this purpose he introduced a data-structure called

the segment tree. The algorithm runs in 0 (n log n) time, i.e. , the same as

the optimal algorithm for the 1-dimensional case, and is therefore optimal

too. The generalization of this algorithm to the a-dimensional case runs in

time O(nd-l log n), d ~ 2. The algorithm is also described in VAN LEEUWEN and

WOOD [1979]. In the latter paper BENTLEY's [1977] result also is improved

for dimensions greater or equal to 3, by the exhibition of an algorithm

which solves the measure problem in d dimensions in time O(nd-l), d ~ 3. (This

is achieved by using as underlying data structure not the segment tree, but

the quad tree due to FINKEL and BENTLEY [1974].) Another application of the

segment tree has been in algorithms for reporting all pairs of intersecting

rectangles from a given set of rectangles in the plans, see e.g. BENTLEY

and WOOD [1979].

In the solution to the perimeter problem we give in section 2, the

segment tree will once again prove its value as underlying data structure

for algorithms solving problems connected with sets of intersecting rect­

angles. For completeness sake, we show in section 3 how to modify the given

algorithm to obtain a variant of BENTLEY's [1977] algorithm for solving the

measure problem in 2-space.

Our main thrust shall be to analyze the performances of the algorithms,

both for the perimeter and the measure problem, under various models of com­

putation for the representation and manipulation of numbers. It shall be

shown, that under reasonable assumptions, such as corresponding to actual

computer implementations of the algorithms, O(nlogn) running time implies

~(n logn) space in the worst case for the measure problem, and seems impos­

sible for the perimeter problem.

However, it will also appear that if we allow slightly more time, i.e.
2

O(n log n), then both problems can be solved in 0 (n log log n) space in the

worst case. On a RAM with uniform cost criterion both algorithms run in

0 (n log n) time and 0 (n) space.

We conjecture that an algorithm to solve either problem in simultaneous

0 (n log n) time and O (n) space does not exist under "reasonable" models of

computation. What is reasonable here shall be argued in sections 4 and 5.

In section 5 we shall note that the generalization of the perimeter

algorithm to d dimensions runs in time O(d nd-1 log n) and that this may be
d-1

improved to O(d n) for d 2: 3. How optimal this is (for d 2: 3) we do not

3

know. The presented algorithms for the 2-dimensional case are optimal under

the uniform (constant) cost criterion.

Note that from the results one gets the feeling that the perimeter prob­

lem is more difficult than the measure problem, but the evidence is not con­

clusive.

Problems connected with large sets of intersecting rectangles arise in

many applications. For instance, the determination of all pairs of intersect­

ing rectangles in the plane is a problem arising in maintaining architectural

data bases and forms a crucial step in design rule checking for Very Large

Scale Integrated circuity (VLSI), see BENTLEY and WOOD [1979]. An application

in computer graphics might be to determine the boundary of a set of rectan­

gles. In section 5 we indicate how to adapt the perimeter algorithm to do so.

2. THE PERIMETER PROBLEM

Suppose we are given n rectilinearly-oriented rectangles A1 ,A2 , ••• ,An

(in 2-space) represented as

1 ::; i ::; n,

where l = "low" and u = "high" (or ''upper"). For the area or measure prob­

l~m we wish to compute the measure of the total area in the plane covered

by the rectangles. For the perimeter problem we wish to compute the sum of

the lenghts of the boundaries delineating this area. An approach to a solu­

tion of such problems is usually based on the scanning technique. By scann­

ing the set of rectangles from left-to-right in, say, the x-direction, and

keeping track of appropriate information about the rectangles currently being

scanned, the perimeter or measure is accumulated. Such an approach only re­

quires the scanning of the 2n endpoints of the rectangles, since these are

the points in the scan at which changes occur. In Figure 1 seven rectangles

are displayed together with the corresponding scan lines s 1 ,s2 , ••. ,s14 . To

compute the perimeter of the rectangles we first compute the contribution in

the x-direction and secondly in they-direction.

4

t
y-

axis

- ----
1 - ----
2
- ---- ~-~~~~] A4

!--, _....:,_ __________ +------

3
I
I
I

4 : -I Ac;

5= =---~= -----=--!--1 I
6 __________ 1 __ ,_IA_2 _____ ~_~:--~-~

A3 : : A6 I

7
I I

I
I
I
I

- - - -, - - , - - - - - - - - I
I

I
I
I

I
I
I

I
I

I
I -----I
I
I
I
I
I
I

8

9

I I I
- -- - - - - - -!-I ---:l:--;1-------,,----:-----+--L----__:-__ ____,!~__J

I

I I I
I I I I I I

IA7

I
I
I
I
I
I
I
I
I
I

x-axis ➔

Figure 1.

The contribution P in the x-direction is the sum of the 2n-1 partial con-
x

tributions in the x-direction defined by the 2n scan lines. These, in turn,

are simply twice the number of "maximal connected intervals" at the first

one of a pair of consecutive scan lines multiplied by the distance in be­

tween these scan lines. More precisely:

DEFINITION 1: I is a maximal connected interval, or m.c.i., at scan lines

if:

(i) I is a connected interval of s;
n

(ii) I is contained by u A.;
i=1 l

(iii) I is maximal, i.e. , I is not contained by any super interval I' for

which (i) and (ii) hold;

(iv) There is a number E > 0 such that (i)-(iii) also hold withs substi­

tuted by s 0 , a line parallel to s but o further away from the origin,

for each o, 0 sos E.

Condition (iv) is needed to ensure that upper boundaries of rectangles at s

do not contribute to m.c.i. 'sat s.

5

Let d (i) d(i) d(i)
1 ' 2 , ••• , n•

1
perimeter of then

be the m.c.i.'s at scan lines. for 1 ~ i ~ 2n.
1

rectangles is given by P + P where P is the
X y X

Then the

portion of the perimeter parallel to the x-axis and P is the portion of the
y

perimeter parallel to the y-axis. We can compute P as
X

(1)
\'2n-1

P =2l, 1 n.(s. 1 -s.).
X 1= 1 1+ 1

P is computed similarly. The surface of the area (or the measure) defined
y

by then rectangles is given by

(2)

where length (d) is the length (or 1-dimensional measure) of d. Note that

when two scan lines s. and s. 1 are coincident then s. 1 - s. = 0 and hence
1 1+ 1+ 1

no contribution to the perimeter or measure is involved at step i.

Thus, to compute the perimeter of the set of rectangles we carry out

two scans of the figure, while to compute the measure we scan the figure but

once. (2) demonstrates that, to compute the two-dimensional measure, we need

the one-dimensional measure in they-direction at each scan line (perpendic­

ular to the x-axis.) This fact forms also the basis for the algorithm to

compute the measure as given by BENTLEY [1977] (see also VAN LEEUWEN and

WOOD [1979]).

With each scan lines. we need to associate
1

(i) its x-coordinate (tacitly assumed to be identical withs.);
1

(ii) whether it corresponds to a left or right (lower or higher) end of

a rectangle; and

(iii) the interval or line segment in they-direction the rectangle con­

cerned defines.

To be able to scan the figure in a left-to-right manner we first need

to sort the scan lines by their x-coordinates. To compute P as given by (1)
X

we then move through the scan lines in the sorted order while computing at

step i of this procedure the number of maximal connected intervals at scan

lines .• This we are able to do by using a suitable modification of the
1

segment tree (BENTLEY [1977], BENTLEY and WOOD [1979]) which we shall call

6

the connected interval tree. The major distinction between the segment tree

and the connected interval tree is that identification of the inserted and

deleted line segments is not required in the latter case while it is re­

quired in the former case.

Let us now describe the connected interval tree, its construction and

manipulation .. In Figure 1 7 rectangles are displayed which give rise to 9

line fragments in they-direction, according to the division of the covered

part of the y-axis by they-coordinates of the 7 rectangles. Thus, the pro­

jection of each rectangle on the y-axis is made up of a contiguous subset

of these fraqments. For example, the projection of A3 on the y-axis is made

up of the line fragments numbered 6, 7 and 8. We now construct a minimal

height binary tree with as many leaves as there are fragments in they-di­

rection induced by the rectangles. In our example we construct a minimal

binary tree with 9 leaves representing the fragments 1-9 in left-to-right

order as displayed in Figure 2: the skeletal connected interval tree.

1-9

5-6

1 2 3 4 5 6 7 8 9

Figure 2. The skeletal connected interval tree

The internal nodes of the tree represent the total interval spanned

by their sons; hence for a node v we write v-interval to mean the interval

represented by v. A line segment I covers av-interval if the interval rep­

resented by 'vis contained in I. At each node v in the tree we place four

7

additional pieces of information given by INFO(v) [1:4]. The different fields

of INFO(v) are updated at each scan lines. so as to contain the following
1

information at the end of the update.

INFO(v)[l]: an integer which equals the number of times the v-interval is

completely covered by an alive line segment, that is, the left

(lower) border of a rectangle which has been inserted in the

tree at the present or a previous scan line, and not yet been

deleted from the tree as the result of meeting a right (upper)

border at the present or an earlier scan line. (Cf. also VAN

LEEUWEN and WOOD [1979]).

INFO(v)[2]: a boolean which is true if the leftmost leaf-interval of the

subtree rooted at vis covered by an alive line segment which

does not cover all of the v-interval, and false otherwise.

INFO(v)[3]: a boolean as INFO(v)[2] but about rightmost leaf-intervals.

INFO(v)[4]: an integer which equals the number of maximal connected inter­

vals, contained in the v-interval, which do not contain the

leftmost leaf-interval nor the rightmost leaf-interval of the

subtree rooted at v.

Initially, INFO(v)[l] = INFO(v)[4] = 0 and INFO(v)[2] = INFO(v)[3] =
false for all nodes v 6f the connected interval tree T. At each scan line

si, 1 ~ i ~ 2n, we either insert a line segment (viz. the lower border of a

rectangle) or delete a line segment (viz. the upper border of a rectangle)

from the connected interval tree. Subsequent to the updating which is in­

volved, INFO(root) contains the information needed to determine the number

of maximal connected intervals at s .. Specifically, the number of m.c.i.'s
1 .

equals 1 if INFO(root)[l] ~ 0 and equals INFO(root)[2] + INFO(root)[3] +

INFO(root)[4] otherwise (where we assume true= 1 and false= 0.). For ex­

ample, at scan lines s 2 , s 4 and s 6 of Figure 1 the connected interval tree

will be as shown in Figure 3 a,b and c, were only the significant INFO values

are displayed. Since INFO(root)[l] ~ 0 in all three cases there is only 1

m.c.i. as expected. However, if A1 is deleted from the set of rectangles and

from the trees in Figures 1 and 3 respectively, then at s 2 there is one m.c.i.

since INFO(root)[2] + INFO(root)[3] + INFO(root)[4] = 1; at s 4 there are 2

m.c.i.'s and at s 6 again 2 m.c.i.'s.

8

after s 2 :

(1,f,f,1)

(1,f,f,O)

after s 4 :

(1,f,f,2)

(1,f,f,O) (1,f,f,O)

9

(1,f,f,2)

(1,f,t,0) (1,t,f,0)

(1,f,f,0) (1,f,f,0) (1,f,f,0) (1,f,f,0)

Figure 3.

Having introduced the connected interval tree, we now describe the in­

sertion and deletion procedures for the line segments. Note that the struc­

ture of the tree remains unchanged during these operations, only the infor­

mation contained in the tree is modified.

For convenience sake let I denote the line segment to be inserted or

deleted, and let I(v) denote the v-interval for each node v in the tree T.

Furthermore, let vl, vr and vf denote the leftson, rightson and father of

a node v; and let LEFT(I(v)) and RIGHT(I(v)) denote the leftmost and right­

most leaf-intervals, respectively, of the subtree rooted at v.

Basically, the insertion and deletion in the connected interval tree

follows the strategy used in the segment tree of BENTLEY [1977] and BENTLEY

and WOOD [1979].

On insertion of I into the connected interval tree T, we first visit

the root. At each node v visited during insertion one of the following four

conditions hold.

(i) I(V) c I.

10

(ii) I(V) .½
(iii) I(v) .½
(iv) I(v) .½

I

I

I

and LEFT(I(v)) s I.

and

and

RIGHT(I(v)) SI.

LEFT(I(v)) .½ I and RIGHT(I(v)) $ I.

Note that conditions (i)-(iv) exclude each other. Condition (i) will

increment INFO(v)[l] by 1. Condition (ii) causes INFO(v)[2] to be set to

true. Condition (iii) causes INFO(v)[3] to be set to true. Condition (iv)

may cause a change in INFO(v)[4] to be discussed below.

On visiting a node v, the decision to visit any of the sons of v depends

on whether

(a) I(v) S I.

(b)

(c)

I(v) $ I

I(v $ I

and

and

I(v,e.) n I -,J 0.
I(v) n I -,J 0.

r

In case (a) neither of v's sons is visited. In case (b) ",e. is visited and in

case (c) v is visited. Note that both (b) and (c) may hold, causing a visit
r

to both sons of v. However, it is not difficult to see (and shown in BENTLEY

[1977] and BENTLEY and WOOD [1979]) that at each level of the tree at most

4 nodes may be visited. Since there are at most 2n-1 leaves in the tree, and

the tree is of minimal height by construction, on each insertion of a line

segment into T O(logn) nodes are visited. During deletion of I from T

exactly the same strategy is followed as during insertion. The only differ­

ences lie in the way in which the INFO(v) associated with the visited nodes

v is updated. Hence also during the deletion of a line segment from T O(log n)

nodes are visited. Both insertion and deletion in T have a downward and an

upward phase. We now present the insertion and deletion algorithms for con­

nected interval trees.

Insert(I,v); I is the interval to be inserted, vis the root node of the

connected interval tree;

begin

¢ Downward phase¢

if I(v) SI then INFO(v)[l] := INFO(v)[l] + 1

else

then if LEFT(I(v)) E I then INFO(v)[2] :=

Insert (I,vl) fi;

if I(v) n I =j 0
r

true fi; -.--

then if RIGHT(I(v)) EI then INFO(v)[3] := true fi;

fi;

Insert (I,v) fi
r -

<j: Upward phase <J:

if INFO(vl)[1] ~ 1 and INFO(vr)[1] ~ 1

then INFO(v)[4] := 0

else

fi

if INFO(vl)[1] ~ 1

then INFO (v) [4] : = INFO (v)[4]
r

else

fi

if INFO(v)[1] ~ 1
r

then INFO(v)[4] := INFO(vl)[4]

else

fi

if INFO(vl)[3] ~ INFO(vr)[2]

then INFO(v)[4] := INFO(vl)[4] + INFO(vr)[4] + 1

else INFO(v)[4] := INFO(vl)[4] + INFO(vr)[4]

fi

end of insertion.

11

Note that during the upward phase of the insertion algorithm INFO(v)[4]

is re-computed for all nodes of Ton the insertion paths. During the down­

ward phase INFO(v)[l:3] is updated for all nodes of Ton the insertion paths.

For deletion we have a similar algorithm, which we now give:

Delete (I,v); I is the interval to be deleted; vis the root of the con­

nected interval tree;

12

begin i Downward phase i

if I(v) ~ I then INFO(v)[l] := INFO(v)[l] - 1

else if I(V.e_) n I -:/ 0 then Delete (I,V.e_) fi; ----
if I(v) n I -:/ 0 then Delete (I,v) fi

r r
fi;

i Upward phase i
INFO(v)[2] := INFO(V.e_)[2] or (INFO(V.e_)[l] z 1);

INFO(v)[3] := INFO(V)[3] or (INFO(v)[1] z 1);
r - r

if INFO(V.e_)[l] z 1 and INFO(vr)[l] z 1

then INFO(v)[4] := 0

else i:~ INFO (v .e_) [1] z 1

fi

end delete.

then INFO(v)[4] := INFO(v)[4]
r

else if INFO(v)[1] z 1
--- r

fi.

then INFO(v)[4] := INFO(V.e_)[4]

else if INFO(V.e_)[3] or INFO(vr)[2]

then INFO(v)[4] := INFO(V.e_)[4] +

else INFO(v)[4] := INFO(V.e_)[4] +

fi

fi

INFO(v)[4] + 1
r

INFO(v)[4]
r

Here during the downward phase INFO(v)[1] is updated and during the up­

ward phase INFO(v)[2:4].

For both insertion and deletion the number of nodes visited is O(log n).

The number of maximal connected intervals at a scan lines. is contain-
1.

ed in INFO(root) subsequent to the insertion or deletion at this scan line.

To obtain this number we do a query:

Query(T) := if INFO(root)[1]-:/ 0

then 1

else INFO(root)[4] + INFO(root)[3] +

INFO(root)[2]

fi i we take true= 1 and false - 0 i

13

The algorithm is,correct if subsequent to each insertion or deletion

the INFO(v) for each node v in Tis correct. This is easily ascertained to

be so.

3. THE MEASURE PROBLEM

To determine the measure is easier than to determine the perimeter.

We use the same connected interval tree skeleton with different additional

information at each node v: INFO(v)[1:3].

INFO(v)[1]: as before.

INFO(v)[2]: a real equal to the length of the v-interval.

INFO(v)[3]: a real equal to the sum of the lengths of the maximal connected

intervals, covered by inserted and not yet deleted line segments,

contained in the v-interval.

INFO(v)[2] is determined at the time of setting up the connected in­

terval tree. INFO(v)[1] and INFO(v)[3] are computed during insertion and

deletion, quite similar to INFO(v)[1] and INFO(v)[4] in the algorithm for

the perimeter problem. INFO(v)[3] can be determined by the following piece

of program (in an upward phase):

if INFO(vl)[1] ~ 1 and INFO(vr)[1] ~ 1

then INFO(v)[3] := INFO(vl)[2] + INFO(vr)[2]

e~se if INFO(vl)[1] ~ 1

fi

then INFO(v)[3] := INFO(vl)[2] + INFO(vr)[3]

else if INFO(v)[1] ~ 1
--- r

fi

then INFO(v)[3] := INFO(vl)[3] + INFO(vr)[2]

else INFO(v)[3] := INFO(vl)[3] + INFO(vr)[3]

fi

Note that INFO(leaf)[3] = 0. Finally, for the measure we have

QUERY(T) := if INFO(root)[1] > 0 then INFO(root)[2]

else INFO(root)[3]

fi

14

4. TIME AND SPACE REQUIREMENTS

Using the connected interval tree and its associated updating algorithms

we can compute the perimeter of a set of rectangles based on formula (1) and

the measure of a set of rectangles based on formula (2). Thus, in both cases

the time taken for n rectangles can be expressed as

(3) TIME(n) = O(nlogn + n + UPDATE(n) + QUERY(n)).

The endpoints of the rectangles need to be sorted (in both the x- and the

y-directions for the perimeter problem) , taking 0 (n log n) time; the skeletal

connected interval tree can be constructed in 0(n) time; and at each scan

line there is a deletion or insertion taking a total of UPDATE(n) time and

a query taking a total of QUERY(n) time. Similarly, the space needed for n

rectangles can be expressed as:

(4) SPACE (n) = 0 (n + INF (n)),

since then rectangles and the skeletal connected interval tree, that is

without INFO(v) at each node v, require 0(n) space. INF(n) denotes the

space required to store the INFO(v) 's for n rectangles.

Thus we see that the actual space/time costs depend to a large extend

on the costs required to update and store INFO(V) or, more precisely, on

how much we charge for reals, boolean and integers and the manipulations

performed on them as far as relevant in this setting.

Booleans: we may clearly charge a constant amount in space for storage and

in time for manipulation.

Reals Obviously here everything depends on the precision we require.

However, it seems reasonable to charge a constant amount in space

for storage and in time for manipulation by keeping reals in 0(1)

words.

Integers: we will consider three measures:

(I) Constant cost for storage and time for manipulation.

(II) Logarithmic cost for storage and time for manipulation;

we can for example keep an m-bit integer a 1a 2 ..• am as a

linked list of length m/r:

(III) The cost resulting of storing integers in unary notation,

for example as a linked list or counter:

ITI ~-4 ITI - --- or

15

In the following we shall analyze the costs, resulting from the assumed

constant costs for booleans and reals together with each of the costs (I),

(II) and (III) for integers, in time and space for both the perimeter - and

the measure algorithm. Unless stated otherwise, all estimates for running

time and storage cost are tacitly assumed to be for the worst case.

I. Constant cost criterion

Each update requires 0(logn), viz. the number of visited nodes, and

each query requires 0 (1) • Hence we immediately have UPDATE (n) = 0 (n log n) ,

QUERY(n) = 0(n); and furthermore INF(n) = 0(n); for both the perimeter and

measure algorithms. Hence for both algorithms we have under the constant

cost criterion that

(5) TIME t (n) = 0(n log n) cons .

and

(6) SPACE t (n) = 0(n). cons •

II. Logarithmic cost criterion

First note that the contribution of INFO(v)[2] and INFO(v)[3] is 0(1)

for each v in T for both the perimeter and the measure connected interval

trees.

16

There are at most n insertions in the connected interval tree. There­

fore, for each node v in T, INFO(v)[l] needs to count up ton, which costs

O(log n) space under the logarithmic cost. Since there are 0(n) nodes in the

tree, all in al..l it seems to take O (n log n) space to maintain INFO (.) [1 J for

the total tree. However, this estimate is much to crude as we now show.

Since the connected interval tree T has at most 2n-1 leaves, each in­

sertion visits at most 2 log 2n nodes. (I.e. , twice the height of the tree.)

At each of these visited nodes v, INFO(v)[l] might be incremented with 1

during an insertion. Hence the total count of the 4n nodes in the tree, with

respect to INF0(.)[1] satisfies

(7) L INFO(v)[l] ~ 2n log 2n
VET

since there are n insertions. If all insertions visit exactly the same nodes

in T, then T must consist of only the root and the space used by INFO(root)[l]

is O(log n). We obtain an upper bound on the space used by the INFO(.)[l]'s

as follows. The amount of space used by the combined INFO(v)[l]'s is maxi­

mized if they all count to the same maximum,, i.e. (log 2n)/2. This takes

0(1og log n) space for each INFO(v)[l]. Hence

(8) I length(INFO(v)[l]) ~ 0(n log log n).
VET

Secondly, we need to bound the space used by the INF0(.)[4]'s. Clearly

this is maximized when the number of connected intervals is maximized. This

occurs when the leaf-intervals 1,3,5, ... ,2n-1 are covered and 2,4, ... ,2n-2

are not. Consider a node vat level i in the tree T. Then INFO(v)[4] is ap­

proximately equal to 2logn-i_ (Hence, e.g·. INFO(root)[4]=n, INFO(leaf)[4]= 0

and INFO(father of leaf)[4] = 1).

Now since there are 2i nodes vat level i in T, and there are log n

levels in T, we obtain:

(9) L length(INFO(v)[4])
VET

= 'i"log n 'i'
li=O l

v in level
i of T

length(INFO(v)[4])

0 (2 log n llog n -j = j.2),
j=O

= 0(n ,log n j.2-j).
lj=O

by j = log n -i,

. f 2j . 3 f . Since or > J e.g. or J 2 10, we have that j.2-j < j-2

00 .-2
I:. 1 J converges, we obtain
]=

(10)
•,log n -J·
r j.2 < •~j=O

,"" . 2-j
lj=O J.

,9 . 2-j ,"" .-2
< lj=O J. + lj=10 J

= c,

for some constant c. Hence from (9) and (10) we find that

(11) I length (INFO (-v) [4 J) 0 (n) •

v,c:T

17

and since

From (8) and (11) and the previous remarks we find that the worst case

space requirements under the logarithmic cost for both the perimeter and

measure algorithm are

(12) SPACE1 (n) = 0(n log log n).
og.

Time requirements

we now analyze TIME(n), that is, UPDATE(n) and QUERY(n). First consider

the contribution from INF0(.)[1]. We saw above, that the space used is maxi­

mized when ea.ch node contains a count of 0(1og n). However, time taken is

maximized when 0(1og n) nodes contain a count of 0(n), that is, when 0(n)

identical line segments I are inserted which occasion the visit of 0(1og n)

nodes. In this case a further insertion or deletion of I takes 0(1og2n) time,
2

yielding a total contribution of 0(n log n) for the manipulation time of

INF0(.)[1], as opposed to 0(n log log n) time in the former case. By

18

merging ~n rectangles consuming maximal space and ½n rectangles consuming

maximal time, as indicated above, we reach simultaneously the worst-case

space and time requireme~ts. The time bound given is indeed worst-case since

there are at most 0(n) insertions/deletions and each insertion/deletion nec­

cessitates the visiting of O(log n) nodes, each of which requires at most

O(log n) time for the updating of INFO(.)[1]. Hence, to maintain INFO(.)[1]

during n insertions/deletions might take a worst-case time of order

(13)
2

0(n log n).

Now consider the contribution of INFO(.)[4]. Based on the space anal­

ysis of INFO(.)[4] we observe that the worst situation which can occur is

when we need to add two values of INFO(.)[4] one of which is maximal. Since

there are at most four nodes visited on each level during an insertion or

deletion, and length (INFO(v)[4]) ~ log n -i for a node vat level i of the

tree, we obtain a contribution of

(14) O(\~og
li=O

n
(log n -i))

O(I l_og n ~ 2 = j) = U(log n).
J=O

Therefore, to maintain INFO(.)[4],during n insertions or deletions might

take time of order

(!5)
2

0(n log n).

Hence, by (13) and (15), we obtain that for both the perimeter and measure

algorithm we have a worst-case UPDATE(n) = 0(n log2n). Since each query for

the perimeter algorithm takes O(log n) time (0(log n) time in the worst-case)

we have QUERY(n) = 0(n log n) for the perimeter algorithm. Because of the

constant cost for reals we have QUERY(n) = 0(n) for the measure algorithm.

Therefore, under the logarithmic cost criterion, we have for both the peri­

meter and the measure algorithms a worst-case running time of:

(16)
2

TIME1 (n) = 0(n log n).
og.

19

III. Unary cost criterion

Space requirements

By (7) we need all in all 0(n log n) space to store all the INFO(.)[1]'s.

From (9) we compute the space needed for the INFO(.)[4]'s, namely:

(17) l INFO(v)[4]
VET

= 0(n log n).

Hence INF(n) = 0(n log n) for both perimeter and measure algorithms and

therefore, for both,

(18) SPACE (n) = 0(n log n).
unary

Time requirements

Incrementing and decrementing an integer in unary notation is a con­

stant cost operation, and so is checking for 0. Hence INFO(.)[1]'s contri­

bution to UPDATE(n} is 0(n log n) for n insertion/deletions which visit

0(1og n) nodes apiece. The contribution of the INFO(.)[4]'s is simply the

cost in time of catenating two integers in unary notation. Clearly this can

be carried out in constant time, say in time equal c. Hence the total of the

contribution of the INFO(.)[4]'s is given by

0(n l~~6 n c) = 0(n log n)

for n insertions/deletions. Thus, for both the perimeter and the measure

algorithm we find under the unary cost criterion:

UPDATE(n) = 0(n log n).

A difference between the measure and the perimeter algorithm comes in

20

with the query. Whereas a query in the measure algorithm extracts a real

from INFO(root), at constant cost 8(1), a query in the perimeter algorithm

extracts an integer written in unary from INFO(root) at cost O(n). There­

fore we have for the measure algorithm that

QUERY(n) = 8(n)

while for the perimeter algorithm

2
QUERY(n) = 8(n),

since there may be 8(n) connected intervals in the worst case.

Combining the above we obtain:

(19) TIME (n) = 8(n log n) for the measure problem
unary

and

(20) TIME (n) = 8(n2) for the perimeter problem.
unary

5. CONCLUDING REMARKS

We have presented an algorithm for the perimeter problem and analyzed

its time-space requirements (for the worst-case) under three different cost

measures for storing and manipulating integers. These are summarized in the

following table together with a similar analysis of the related algorithm

for the measure problem.

PERIMETER MEASURE

space time space time

Constant cost 8(n) 8(n log n) 8 (n) 8(n logn)

8 (n log log n)
2

8 (n log log n)
2

Logarithmic cost 8 (n log n) 8(n log n)

Unary cost 8 (n log n) 2 8(n) 8 (n log n) 8(n logn)

Figure 4. Table

21

An analysis of the solution for the measure problem as in BENTLEY [1977]

or VAN LEEUWEN and WOOD [1979] yields the same results.

The only distinction between the performances of the algorithms for the

perimeter and for the measure problem occurs when using unary notation for

the integers. This reflects the fact that the one-dimensional measure of the

connected intervals is stored as a real, while their number is stored as an

integer.

The results strengthen the conjecture that 0(n) space and 0(n log n)

time are unattainable as the worst-case performance of algorithms, for both

the perimeter and measure problems, under realistic cost assumptions.

Note that it is realistic to assume a constant cost for storage and

manipulation of reals, but that it is unrealistic to assume a constant cost

for the storage and manipulation of integers in the discussed algorithms.

This is so, because in many applications (like the ones sketched in the in­

troduction) we may deal with a very great number of rectangles in a very

limited area. A computation of the perimeter or the measure according to

our algorithms requires exact bookkeeping of integers: it is easy to con­

struct examples which give completely different answers otherwise. The algo­

rithms in question approximate the values of the perimeter and measure in­

sofar as the real values of the rectangle coordinates in the plane are pre­

cise.

The d-dimensional perimeter problems can be solved by a divide-and-

h · · 0 (d d-l) . d 2 conquer tee nique in n log n time, ~ , under the constant cost

an O(dnd-l) . 1 "thm f criterion. This can probably be improved to time a gori or

d ~ 3 by techniques similar to those in VAN LEEUWEN and WOOD [1979].

It is

changed so

puting the

easy to see that the algorithm as presented in section 2 can be
.n

as to output the boundary of U A. too. This algorithm for com­
i=l i

boundary of a set of intersecting rectangles may be of use to

computer graphics and would have the same time/storage requirements as the

perimeter algorithm under the unary cost criterion. Hint: maintain the real

end points of the m.c.i.'s concerned in INFO(v)[2:4] in the perimeter algo­

rithm, instead of their presence and/or number.

22

REFERENCES

BENTLEY, J.L., [1977], Algorithms for Klee's rectangle problems, unpublished

notes, Carnegie-Mellon Univ., 1977.

BENTLEY, J.L., & D. WOOD, [1979], An optimal worst-case algorithm for report­

ing intersections of rectangles, Techn. Rept. 79-CS-13, McMaster

University, Unit for Computer Science, 1979.

FINKEL, R.A. & J.L. BENTLEY, [1974], Quad trees, A data structure for retriev­

al on composite keys, Acta Informatica_! (1974) 1-9.

KLEE, v., [1977], Can the measure of u~=l [ai,bi] be computed in less than

O(n log n) steps?, American Mathematical Monthly 84 (1977) 284-

285.

VAN LEEUWEN, J. & D. WOOD, [1979], The measure problem for intersecting

ranges in a-space, manuscript in preparation, Univ. of Utrecht,

Vakgroep Informatica.

