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How inefficient are stack-oriented abstract machines?*) 

by 

Paul Klint 

AB S'I'RAC'I' 

'I'he discussion on instruction-set forms [1], [2], [3], [4]) has re­

vealed that stack-oriented instruction sets are less efficient than 
storage-to-storage instruction sets. What are the implications of this 
observation for the efficiency of stack machines which are frequently 
used as abstract machine in implementations of high level programming 

languages? 

KEY WORDS & PHRASES: Computer architecture, instruction sets, 

stack machines, storage-to-storage machines, 
abstract machine code, portability. 

*) This paper is not for review; it is meant for publication elsewhere. 
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1 • INTRODUC'11ION 

In many portable software systems some form of abstract machine code 
is used as an interface between machine-dependent and machine­
independent parts of the system. A well-known example is the PASCAL-P 
(5] compiler which generates code for an abstract stack machine. How 
does the instruction-set form of such an abstract machine affect the 
overall efficiency of that system? This question wili be answered by 
comparing abstract machines with: 

Stack-oriented architecture (S-machines). 

Storage-to-storage architecture with two operands per instruction 
(2A-machines). For example ADD A,B with meaning A:= A+ B. 

Storage-to-storage architecture with three operands per instruction 
(3A-machines). For example ADD A,B,C with meaning A:= B + c. We 
allow the omission of unused operands in instructions; this is useful 
for monadic operators and assignment: For example MOVE A,B with mean­
ing A:= B. 

2. AN ASSESSMENT OF THREE ARCHITECTURES 

The performance of an implementation of some high level language 
depends (for the sake of this discussion) on: 

The frequency distribution of statements in the high level language. 

The number of abstract machine instructions needed for the transla­
tion of each statement form in the high level language. 

The efficiency of operand addressing for each abstract machine code 
instruction. 

The frequency of statements in the high level language is fixed for 
each language and does not depend on a particular implementation. (It 
has even been observed that this distribution is highly independent of 
the high level language itself [6].) In the sequel we will use the same 
distribution as used in [7], which is based on the complexity of assign­
ment statements: 



2 

statement form estimated frequency 

S1 A ·= B 72.1% 

S2 A ·= A + B 14.4% 

S3 A := B + C 6. 1% 

S4 A := (B + C) * (D - E) 2. 7% 

S5 A ·= B + C + D - E 4. 7% 

This distribution covers circa 50% of all expressions in programs. 

'Ihe five statement forms are represented in an S-machine, 2A-machine 

and 3A-machine as shown in the following table. Instructions gives the 

number of instructions required for the translation of each statement 

form. Size gives the total number of bits required for the instruction 

fields (I) and for the address fields (A) in the translation. Elements 

gives the total number of instruction elements (i.e. instruction fields 

and address: fields) in each translation. 

S 1: A :=B 

instructions 

size 

elements 

S2: A:=A+B 

instructions 

size 

elements 

S-machine 

PUSH B 
STORE A 

2 

2*I+2*A 

4 

PUSH A 
PUSH B 
ADD 

STORE A 

4 

4*I+3*A 

7 

2A-machine 

MOVE A,B 

1 

1*I+2*A 

3 

ADD A,B 

1 

1*I+2*A 

3 

3A-machine 

MOVE A,B 

1*I+2*A 

3 

ADD A,A,B 

1 

1*I+3*A 

4 



S3: A :=B+c PUSH B 

PUSH C 
ADD 

STORE A 

instructions 4 

size 4*I+3*A 

elements 7 

S4: A:=(B+C)*(D-E) PUSH B 

PUSH C 

ADD 
PUSH D 

PUSH E 

SUB 

MUL 
STORE A 

instructions 8 

size 8*I+5*A 

elements 13 

S5: A :=B+C+D-E PUSH B 
PUSH C 
ADD 
PUSH D 

ADD 

PUSH E 
SUB 

STORE A 

instructions 8 
size 8*I+5*A 

elements 13 

MOVE A,B 

ADD A,C 

2 
2*I+4*A 

6 

MOVE A,B 
ADD A,C 

MOVE T1 ,D 

SUB T1, E 

MUL A,'11 1 

5 
5*1+1 0*A 
15 

MOVE A,B 
ADD A,C 
ADD A,D 

SUB A,E 

ADD A,B,C 

1 
1*I+3*A 

4 

ADD T1 ,B,C 

SUB T2,D,E 
MUL A,T1 ,T2 

3 
3*I+9*A 

12 

ADD T1 ,B,C 
ADD T2,T1,D 

SUB A,T2,E 

4 3 

4*I+8*A 

12 

3*I+9*A 

12 

Note that in the code for 2A-machines it is assumed that all operands 

are different in forms S3, S4 and SS. This assumption favours 2A­
machines. 

The average instruction size (AIS) and the average number of elements 

(ANE) can be computed if one takes into account the frequency distribu­
tion of statement forms. 'I'he result is shown in figure 2.1. 
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Average instruction size Average number of elements 

(AIS) (ANE) 

s-machine 2.85*I+2.43*A 5.28 

2A-machine 1. 31 *I+2. 62*A 3.93 

3A-machine 1.15*1+2. 72*A 3.87 

Figure 2. 1. Average instruction size (AIS) and average 
number of elements (ANE) per instruction. 

AIS5 , AIS2A and AIS 3A are plotted in figure 2.2 as functions of the ra­

tio between A and I (i.e. A/I) and are expressed relative to the in­

struction field size (i.e. AIS/I). This figure illustrates that s­

machines are worse than both 2A-machines and 3A-machines in all practi­

cal situations. 3A-machines are slightly better than 2A-machines when A 

and I are of the same order of magnitude. The following equalities 

hold: 

AIS2A = AIS 3A for A/I = 1. 5 

AISS = AIS 2A for A/I = 5.9 

AISS = AIS 3A for A/I = 8.1 

AIS 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1 .0 
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0.0 1.0 2.0 3.0 4.0 A/I 

Figure 2.2. Average instruction size (AIS). 

AIS2A 

AISS 

AIS 3A 
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For smaller values of A, s-machines become less and less efficient with 

regard to average instruction size. Figure 2.3 gives an impression of 
this phenomenon. In high level language architectures addresses tend to 
be short ( say A ~ 8) since all variables are accessed relative to some 
base address (i.e. globals, locals, formals) and the number of different 
variables in each class tends to be small. This makes s-machines less 
attractive for this particular application. 

AIS 3A 

4.0 

3.0 

2 . 0 

1 . 0 

0.0 

0 , 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 A/I 

Figure 2.3. Ratio average instruction size (AIS) 
for s-machine and 3A-machine. 

3. MEASUREMENTS 

To compare the run-time efficiency of the S-machine, 2A-machine and 
3A-machine, one can realize these architectures in two ways: 

EXP: Expand each abstract machine instruction to executable machine 
code. With regard to execution time this is the most efficient way 
to implement each abstract machine. 

INT: Represent each instruction by an opcode followed by zero or more 
operands and let a (software) interpreter execute these instructions. 

Implementation of this scheme on a PDP11/45 (with cache memory) gives 
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the following results: 

S-machine 

2A-machi.ne 

3A-machine 

EXP 

12.5 

7.2 

7.5 

INT 

36.5 

21.2 

19.3 

EXP:INT 

0.3 

0.3 

0.4 

These figures show the execution time in seconds for the execution of 

one million statements distributed over the five statement types as 

described above. These figures can also be interpreted as average in­

struction execution time (AIT) in micro-seconds. 

Finally, we give measured relative execution times: 

EXP INT 

AITS AITzA 1. 7 1. 7 

AITS AIT3A 1. 7 1. 9 

AIT2A AIT3A 1. 0 1 • 1 

4. CONCLUSIONS 

2A-machines and 3A-machines are at least 1.7 times as fast as S­

machines. 

The average instruction size on S-machines is greater then on 2A­

machines and 3A-machines. 3A-machines are slightly better than 2A­

machines when the sizes of instruction fields and address fields are 

of the same order of magnitude. 
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