
AFDE LI NG 'INFORMATICA

stichting

mathematisch

centrum ·

(DEPARTMENT OF COMPUTER SCIENCE)

P. KLINT

IW 123/79 NOVEMBER

HOW INEFFICIENT ARE STACK-ORIENTED ABSTRACT MACHINES ?

Preprint

~
MC

2e boerhaavestraat 49 amsterdam

P,unted a,t .the Ma.thema..t.i.c.al Cen:t/Le, 49, 2e BoeJLhaa.ve6.tJr.a.a.t, Am-6.telldam.

The Ma.thema..t.i.c.al CentJr.e, 6ou.nded .the 11-.th 06 FebJtuaJLy 1946, -l6 a. non­
p1to6U .i.n6:tU!Ltion a,im,i.ng a,t .the pltomoU.on 06 pUILe ma.themlLtleli a.nd U:6
a.ppUc.a..t.i.oru,. 1.t -l6 .tipon601ted by .the NetheJtta.nd.6 GoveJtnment .th/tough .the
NetheJtta.nd.6 01tga.n.i.za..t.i.on 601t .the Adva.nc.ement 06 Pu/Le Re6ea.Jtc.h (2 .W.O) •

1980 Mathematics subject classification: 68B10

ACM-Computing Reviews-category: 4.22, 4.6, 6.21

How inefficient are stack-oriented abstract machines?*)

by

Paul Klint

AB S'I'RAC'I'

'I'he discussion on instruction-set forms [1], [2], [3], [4]) has re­

vealed that stack-oriented instruction sets are less efficient than
storage-to-storage instruction sets. What are the implications of this
observation for the efficiency of stack machines which are frequently
used as abstract machine in implementations of high level programming

languages?

KEY WORDS & PHRASES: Computer architecture, instruction sets,

stack machines, storage-to-storage machines,
abstract machine code, portability.

*) This paper is not for review; it is meant for publication elsewhere.

1

1 • INTRODUC'11ION

In many portable software systems some form of abstract machine code
is used as an interface between machine-dependent and machine­
independent parts of the system. A well-known example is the PASCAL-P
(5] compiler which generates code for an abstract stack machine. How
does the instruction-set form of such an abstract machine affect the
overall efficiency of that system? This question wili be answered by
comparing abstract machines with:

Stack-oriented architecture (S-machines).

Storage-to-storage architecture with two operands per instruction
(2A-machines). For example ADD A,B with meaning A:= A+ B.

Storage-to-storage architecture with three operands per instruction
(3A-machines). For example ADD A,B,C with meaning A:= B + c. We
allow the omission of unused operands in instructions; this is useful
for monadic operators and assignment: For example MOVE A,B with mean­
ing A:= B.

2. AN ASSESSMENT OF THREE ARCHITECTURES

The performance of an implementation of some high level language
depends (for the sake of this discussion) on:

The frequency distribution of statements in the high level language.

The number of abstract machine instructions needed for the transla­
tion of each statement form in the high level language.

The efficiency of operand addressing for each abstract machine code
instruction.

The frequency of statements in the high level language is fixed for
each language and does not depend on a particular implementation. (It
has even been observed that this distribution is highly independent of
the high level language itself [6].) In the sequel we will use the same
distribution as used in [7], which is based on the complexity of assign­
ment statements:

2

statement form estimated frequency

S1 A ·= B 72.1%

S2 A ·= A + B 14.4%

S3 A := B + C 6. 1%

S4 A := (B + C) * (D - E) 2. 7%

S5 A ·= B + C + D - E 4. 7%

This distribution covers circa 50% of all expressions in programs.

'Ihe five statement forms are represented in an S-machine, 2A-machine

and 3A-machine as shown in the following table. Instructions gives the

number of instructions required for the translation of each statement

form. Size gives the total number of bits required for the instruction

fields (I) and for the address fields (A) in the translation. Elements

gives the total number of instruction elements (i.e. instruction fields

and address: fields) in each translation.

S 1: A :=B

instructions

size

elements

S2: A:=A+B

instructions

size

elements

S-machine

PUSH B
STORE A

2

2*I+2*A

4

PUSH A
PUSH B
ADD

STORE A

4

4*I+3*A

7

2A-machine

MOVE A,B

1

1*I+2*A

3

ADD A,B

1

1*I+2*A

3

3A-machine

MOVE A,B

1*I+2*A

3

ADD A,A,B

1

1*I+3*A

4

S3: A :=B+c PUSH B

PUSH C
ADD

STORE A

instructions 4

size 4*I+3*A

elements 7

S4: A:=(B+C)*(D-E) PUSH B

PUSH C

ADD
PUSH D

PUSH E

SUB

MUL
STORE A

instructions 8

size 8*I+5*A

elements 13

S5: A :=B+C+D-E PUSH B
PUSH C
ADD
PUSH D

ADD

PUSH E
SUB

STORE A

instructions 8
size 8*I+5*A

elements 13

MOVE A,B

ADD A,C

2
2*I+4*A

6

MOVE A,B
ADD A,C

MOVE T1 ,D

SUB T1, E

MUL A,'11 1

5
5*1+1 0*A
15

MOVE A,B
ADD A,C
ADD A,D

SUB A,E

ADD A,B,C

1
1*I+3*A

4

ADD T1 ,B,C

SUB T2,D,E
MUL A,T1 ,T2

3
3*I+9*A

12

ADD T1 ,B,C
ADD T2,T1,D

SUB A,T2,E

4 3

4*I+8*A

12

3*I+9*A

12

Note that in the code for 2A-machines it is assumed that all operands

are different in forms S3, S4 and SS. This assumption favours 2A­
machines.

The average instruction size (AIS) and the average number of elements

(ANE) can be computed if one takes into account the frequency distribu­
tion of statement forms. 'I'he result is shown in figure 2.1.

3

Average instruction size Average number of elements

(AIS) (ANE)

s-machine 2.85*I+2.43*A 5.28

2A-machine 1. 31 *I+2. 62*A 3.93

3A-machine 1.15*1+2. 72*A 3.87

Figure 2. 1. Average instruction size (AIS) and average
number of elements (ANE) per instruction.

AIS5 , AIS2A and AIS 3A are plotted in figure 2.2 as functions of the ra­

tio between A and I (i.e. A/I) and are expressed relative to the in­

struction field size (i.e. AIS/I). This figure illustrates that s­

machines are worse than both 2A-machines and 3A-machines in all practi­

cal situations. 3A-machines are slightly better than 2A-machines when A

and I are of the same order of magnitude. The following equalities

hold:

AIS2A = AIS 3A for A/I = 1. 5

AISS = AIS 2A for A/I = 5.9

AISS = AIS 3A for A/I = 8.1

AIS

7.0

6.0

5.0

4.0

3.0

2.0

1 .0

0.0

0.0 1.0 2.0 3.0 4.0 A/I

Figure 2.2. Average instruction size (AIS).

AIS2A

AISS

AIS 3A

4

For smaller values of A, s-machines become less and less efficient with

regard to average instruction size. Figure 2.3 gives an impression of
this phenomenon. In high level language architectures addresses tend to
be short (say A ~ 8) since all variables are accessed relative to some
base address (i.e. globals, locals, formals) and the number of different
variables in each class tends to be small. This makes s-machines less
attractive for this particular application.

AIS 3A

4.0

3.0

2 . 0

1 . 0

0.0

0 , 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 A/I

Figure 2.3. Ratio average instruction size (AIS)
for s-machine and 3A-machine.

3. MEASUREMENTS

To compare the run-time efficiency of the S-machine, 2A-machine and
3A-machine, one can realize these architectures in two ways:

EXP: Expand each abstract machine instruction to executable machine
code. With regard to execution time this is the most efficient way
to implement each abstract machine.

INT: Represent each instruction by an opcode followed by zero or more
operands and let a (software) interpreter execute these instructions.

Implementation of this scheme on a PDP11/45 (with cache memory) gives

5

the following results:

S-machine

2A-machi.ne

3A-machine

EXP

12.5

7.2

7.5

INT

36.5

21.2

19.3

EXP:INT

0.3

0.3

0.4

These figures show the execution time in seconds for the execution of

one million statements distributed over the five statement types as

described above. These figures can also be interpreted as average in­

struction execution time (AIT) in micro-seconds.

Finally, we give measured relative execution times:

EXP INT

AITS AITzA 1. 7 1. 7

AITS AIT3A 1. 7 1. 9

AIT2A AIT3A 1. 0 1 • 1

4. CONCLUSIONS

2A-machines and 3A-machines are at least 1.7 times as fast as S­

machines.

The average instruction size on S-machines is greater then on 2A­

machines and 3A-machines. 3A-machines are slightly better than 2A­

machines when the sizes of instruction fields and address fields are

of the same order of magnitude.

5. ACKNOWLEDGEMENTS

Jan Heering and Arthur Veen commented on drafts of this paper.

6

6 • REFERENCES

[1] Myers, G.J., The case against stack-oriented instruction sets, Com­

puter Architecture News, ~(1977)3, 7-10.

[2] Doran, R.w., Letter to the Editor, Computer Architecture News,

2,(1978) 1, 25-28.

[3] Keedy, ,J.L., On the evaluation of expressions using accumulators,

stacks and store-to-store instructions, Computer Architecture News

2,(1978) 4, 24-27.

[4] Keedy, J.L., More on the use of stacks in the evaluation of expres­

sions, Computer Architecture News, 2,(1979) 8, 18-21.

[5] Nori, K .. V., Amman, U., Jensen, K. & Naegeli, H.H., The PASCAL (P)

compiler: implementation notes, ETH Zuerich, report 10, 1974.

[6] Halstead, M.H., Elements of Software Science, American Elsevier, New

York, '1977.

[7] Myers, G.J., The evaluation of expressions in a storage-to-storage

architecture, Computer Architecture News ~(1978) 9, 20-23.

7

