
stichting

mathematisch

centrum·

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.V. TUCKER

IW 124/79

A CHARACTERISATION OF COMPUTABLE DATA TYPES BY MEANS OF
A FINITE, EQUATIONAL SPECIFICATION METHOD

Preprint

~
MC

NOVEMBER

2e boerhaavestraat 49 amsterdam

EfC:_iC/Ti IE:~:~ 1/ '~1-r: •·.-. ,·\•\-;-··-:c:•t CEtrtnUf:1
--,l,:,,1:, i L;,;),\ 1 .~ ----

llll llllll llll llll lllli'lilillf J~ili~ llll 11111111111111111
3 0054 00060 5494

P,'lJ..nted a;t .the Ma:the.ma.:ti.c.ai. C e.n:tJc.e, 4 9 , 2 e Bo eJLha.a.v <l6.:tJr.a.a;:t, Am.6-t:eJLdam.

The Ma.the.ma.:ti.c.ai. Centlte, 6ou.nded .the 11-t:h 06 FebJtu.aJty 1946, -lli a. non­
pJto6U -i..YL6.tltr.Ltlon cumlng a;t .the p1tomo:Uon 06 pUlle ma.the.ma.:ti.C6 and li,6
a.ppUc.a.:ti.onl>. It: -lli .6pon6oJted by .the Net:helli.a.nd6 GoveJtnment: .:thJtou.gh .:the
Net:hw.a.n.d6 0Jtga.niza.:ti.on 6olL t:he Adva.nc.e.ment 06 Pu/le R<l6ea.Jtc.h (Z.W.O).

1980 Mathematics subject classification: 03D45 03D80 68B15

ACM-Computing Reviews-category 4.34

A characterisation of computable data types by means of a finite,

~quational specification method*)

by

**) J.A. Bergstra & J.V. Tucker

ABSTRACT

Within the framework of the ADJ Group's algebraic theory of data types,

we are able to give a characterisation of those data types and data struc­

tures whose semantics are constructive in terms of the structural proper­

ties of algebraically styled "proof systems" available for their definition.

It is proved that the computable data types are precisely those which may

be defined by deductive systems, equationally specified in a finite way,

and which satisfy two simple conditions on the deductions which may take

place within them.

KEY WORDS & PHRASES: algebraic data types, equational specifications with

hidden functions, algebraic replacement systems, weak

and strongly normalised Church-Rosser sytems, comput­

able algebras

This report will be submitted for publication elsewhere.

Department of Computer Science, University of Leiden, Wassenaarseweg
80, Postbus 9512, 2300 RA LEIDEN, The Netherlands.

1

INTRODUCTION

By refining the construction of finite, equational hidden function

specifications of data types, as these are made in the initial algebra

methodology of the ADJ Group, we are able to give an algebraic characteri­

sation of the computable data types and data structures. Our technical moti­

vation are the simple notions of strong and weakly normalised Church-Rosser

replacement systems studied in the A-Calculus, and in plain mathematical

terms the theorem we prove is thi. s.

THEOREM. Let A be a many-sorted algebra finitely generated by elements

named in its signature. Then the following statements are equivalent:

1. A is computable.

2. A possesses a finite, equational hidden enrichment replacement system

specification which is Church-Rosser and strongly normalising.

3. A possesses a finite, equational hidden enrichment replacement system

specification which is Church-Rosser and weakly normalising.

The unexplained concepts are carefully defined in section two, on replace­

ment system specifications, and in section three, on computable algebras.

In sections four and five we prove the theorem. Section one explains in

detail the theoretical issues to do with data types which the theorem at­

tempts to resolve.

This paper continues our studies on the adequacy and power of defini­

tion of algebraic specification methods for data types which we began in

[1], see also [2]. Here the reader is assumed well versed in the initial

algebra specification methods of the ADJ GROUP [3], see also KAMIN [4];

knowledge of our [1] is desirable but not, strictly speaking, essential.

Prior exposure to the A-Calculus is not required, of course.

1. INITIAL ALGEBRA SEMANTICS AND DATA TYPES

A data structure is defined to be a many-sorted algebra A finitely

generated from initial values a 1 , ••• ,an EA named in its signature E. A

data type is defined to be any class K of such data structures of common

2

signature. At the heart of the ADJ Group's theory of data types is the idea

that the semantics which characterise a data type K should be invested in

the construction of an initial algebra I- for K with the result that every
K

data structure A.EK is uniquely definable, up to isomorphism, as an epi-

morphic image of IK. In its turn, this initial algebra IK is uniquely defin­

able, again up to isomorphism, as a factor algebra of the syntactic algebra

T(E) of all terms over E because T(E) is initial for the class ALG(E) of all

E-algebras. Let IK ~ T(E)/=K where =K is a congruence for which t -Kt'

means that the terms t and t' are identical syntactic expressions as far as

the semantics of K is concerned. Observe that in these circumstances we may

plausibly call a data type (semantics for) K computable when =K is decidable

on T(E). And that the problem of syntactically specifying the data type K

can be investigated through the problem of specifying the congruence =K·

The preferred method of prescribing =Kisto use a finite set of equa­

tions or conditional equations E over T(E) to establish a basic set of

identifications DE c T(E) x T(E) and to take =K as the smallest congruence

=Eon T(E) containing DE. With reference to our [1], it is known that this

method will not define all computable data types, but that it is able to define

many non-computable ones. Enriching the method to allow the use of a finite

number of hidden functions does enable it to specify any computable data

type, but, of course, greatly expands the number of non-computable data

types it defines.

Our proposal here is to determine the congruences for initial algebras

by means of replacement systems. A replacement system is intended to for­

malize a system of deductions, governed by simple algebraic substitution

rules, within which a deduction t + t' says that the role oft can be play­

ed by t' as far as the semantics of K is concerned, meaning t + t' implies

t =Kt', but not conversely. What we do is to make an analysis of the con­

gruence =K through the structural behaviour of algebraically styled-· "proof

systems"for it and from this and an appropriate specification machinery

we are able to guess the classification theorem for computable data types.

That this is precisely the theorem stated in the introduction comes from

the reflection that the semantics of a type K is supposed to be uniquely

determined up to isomorphism with an initial algebra IK, and not by a

3

particular syntactical construction. Since the computability of =K means

the computability of the algebra T(L)/= under our definition and, in par-. K
ticular, since this notion of an algebra's computability is an isomorphism

invariant, we can erase all mention of syntax in the semantical concept of

a computable data type and identify these with the computable algebras.

So with regard to the content of our theorem, the reader may care to

consider the ease with which statement (3) implies (1) is proved as evi­

dence for the natural significance of strong and weakly normalised Church­

Rosser replacement system specifications while the implication (1) implies

(2) may be considered as the hard won answer to the question about ade­

quacy: Do these specifications define all the data types one wants?

Because of the novelty of the specification technique and the involved

proof of the theorem we shall work out most of the material in the case of

a single sorted algebra after which it becomes much easier for us to ex­

plain, and the reader to understand, the proof of the theorem in the many­

sorted case.

In what follows w denotes the set of natural numbers.

2. REPLACEMENT SYSTEMS AND THEIR SPECIFICATION

The technical point of departure is the idea of a traversal for an

equivalence relation. Let A be a set and= an equivalence relation on A.

A traversal for - is a set J = {t. : i EI} c A wherein
].

(i) for each a EA there is some t E J such that t - a; and

(ii) if i,j EI and i ~ j then t. it.
]. J

Consider an initial algebra specificatiqn (L,E) for a data type K where

r gives the signature of Kand Eis some formula or other for axiomatizing

its properties so the defining congruence =K is =E· The choice of a travers­

al J for =E fixes an operational view of the type as it is specified: given

t,t' E T(L), to decide t =Et' one imagines having to use E to calculate

their prescribed "normal forms" n,n' E J and on completing these deductions

t + n, t' + n' one checks n = n'.
E E

The following bit of theory about al-

gebraic replacement systems is made up with this in mind and is meant to

abstract the bare essentials of such an operational view of data type

4

specification.

Let A be a set and let R be a reflexive, transitive binary relation on

A. We write R as +R so to display membership (a,b) •E R by a +R b and say

a reduces (under R or +R) to b or that bis a reduct (under R or +R) of a;

and we shall call Rand +Ra reduction system or a replacement system on

the set A. Following the terminology of the A-Calculus we make these dis­

tinctions:

An element a EA is a normal form for +R if there is nob EA so that

a~ band a+ b; the set of all normal forms for+ is denoted NF(R).
R R

The reduction system+ is Church-Rosser if for any a EA if there
R

are b 1 ,b2 EA so that a +R bl and a +R b 2 then there is c EA so that

c and b + c.
2 R

The reduction system+ is weakly normalising if for each a EA there
R

is some normal form b EA so that a +Rb.

The reduction system+ is strongly normalising if there does not
R

exist an infinite chain

+
R

+ a +
R n R

wherein for i E w, ai ~ ai+l"

A reduction system is Church-Rosser and weakly normalising if, and on­

ly if, every element reduces to a unique normal form. Clearly strong nor-·

malisation entails weak normalisation.

Let =R denote the smallest equivalence relation on A containing +R.

It is an easy exercise to show that for a,a' EA

a =Ra'~ there is a sequence a= b 1 , .•. ,bR = a' such that for each

pair b.,b. 1 there exists a common reduct c., 1 ~ i ~ k-1.
i i+ i

Schematically:

V
I

= a

Using this characterisation of= it is straight-forward to prove this fact:
R

5

2.1. LEMMA. The replacement system +Ron A is Church-Rosser if, and only if,

for any a,a' EA if a =Ra' then there is c EA so that a ➔R c and a' + c·
R

2.2. LEMMA. Let ➔R be a Church-Rosser weakly normalising replacement system

on A. Then the set of normal forms NF(R) is a traversal for =R·

PROOF. Since every element a EA reduces to some normal form n E NF(R), the

set NF(R) contains representatives for each equivalence class of =R· To

check uniqueness, let n,m E NF(R) and assume n =Rm. By Lemma 2.1, there is

c EA so that n +R c and m ➔R c, but since n,m are normal forms n = c,

m = c and son= m. Q.E.D.

Suppose now that A is an algebra then by an algebraic replacement

system ➔Ron the algebra A we mean a replacement system ➔Ron the domain

of A which is closed under its operations in the sense that for each k-ary

operation cr of A,

This next fact is easily proven.

2.3. BASIC LEMMA. If ➔R is an algebraic replacement system on an algebra

A then =Risa congruence on A. If ➔R is, in addition, Chruch-Rosser and

weakly normalising then the set of normal forms of ➔Risa traversal for

To achieve our goal of constructing algebraic replacement systems on

the algebra T(E) we need to explain how _a replacement system is generated

by a set of one-step reductions and, furthermore, how these sets of one­

step reductions can be determined from quite arbitrary sets. We must built

up this equipment for both set-theoretic and algebraic replacement systems.

Let ➔R be a replacement system on a set A. Sc Ax A is said to gener­

ate ➔Ras a set of one-step reductions if Sis reflexive and ➔R is the

smallest transitive set containing S, the so called transitive closure of

s.
Let +R be an algebraic replacement system on an algebra A.Sc Ax A

6

is said to generate ➔Ras a set of algebraic one-step reductions if Sis

reflexive, Sis closed under unit substitutions in the following sense:

writing (a,b) ES as a ➔8 b, for any k-ary operation cr of A, for any

1::,; i::,; k and a 1 , ..•. ,a. 1 ,a. 1 , ... ,a EA, and a ➔Sb it follows that
i- i+ k

cr(a1 , ... ,ai_1 ,a,ai+l'"""'ak) ➔S cr(a1 , .•. ,ai_1 ,b,ai+l'"""'ak). And ➔R is the

transitive closure of S.

In the set-theoretic case any reflexive set determines a replacement

system in its transitive closure. In the algebraic case any reflexive set,

closed under unit substitutions, can be shown to determine an algebraic re­

placement system in its transitive closure. Thus, in either case, starting

with an arbitrary set D c Ax A one can close it up to the smallest one­

step reduction relation containing it, which we write ➔D(1), and hence to

the set-theoretic or algebraic replacement system ➔D which is its transi­

tive closure.

Let us now apply these ideas to specify algebraic replacement systems

on T(I:). Let TI:[x1 , .•. ,xn] be the set of all polynomials over I: in indeter­

minates x 1 , ... ,xn. Let TI[x] = UnEw TI[x1 , ... ,xn].

Given a set E c TI[X] x TI[X] first notice that if (t,t') EE then

without loss of generality we can assume t,t' E TI[x1 , ... ,Xn] for suffi­

ciently large n.

Then we can define a set DE c T(I) x T(I) by

(t,t') EE&s 1 , ..• ,s ET(I)} n -

and so obtain the smallest set of algebraic one-step reductions containing

DE, which we write ➔E(l), and from it the algebraic replacement relation

it generates, denoted ➔E. In these circumstances we denote by NF(I,E) the

set of all normal forms of ➔E and by =Ethe congruence associated to ➔E.

Let T(I:,E) T(I)/.i::. Finally, if (t(X1 , ... ,X),t'(X1 , ... ,X)) EE then
E n n

we prefer to write t(X1 , ... ,Xn) ~ t' (x1 , ... ,Xn) EE, which we refer to as

a reduction equation.

From these definitions we see how to equationally specify algebraic

replacement systems which in turn specify algebras. Combining these ideas

in a particular case we can proceed to the basic concept of the paper.

7

An algebra A of signature I:A is said to have a finite, equational re­

placement system specification (I:,E) if I:= I: and Eis a finite set of re­
A

duction equations over T(I:) such that the reduction system ➔ on T(I:) de­
E

fines a congruence =E which specifies A by T(I:,E) == A.

Recall that if A is an algebra of signatur0 I: and r: 0 c I: then

AII: 0 is the algebra obtained from A by deleting the operations of A

not named in I: 0 •

<A> is smallest r: 0-algebra contained in A.
Io

An algebra A of signature I:A is said to have a finite, equational

hidden enrichment replacement specification (I:,E) if I: c I: and Eis a
A

finite set of reduction equations over T(I:) such that the reduction system

➔Eon T(I:) determines the algebra T(I:,E) and

T (I: , E) I I: = <T (I: , E) > I: == A .
A A

Notice that the algebras which model data structures and the initial al­

gebras of data types are finitely generated by elements named in their

signatures. 'Therefore any such algebra A is automatically minimal or prime

in the sense that Air; = <A>I: .
A A

The structural properties of a specification (I:,E), such as the Church-

Rosser and normalisation properties, are taken from those of its replace­

ment relation ➔E. To gain acquaintance with the specification method, we

leave to the reader the proof of this proposition.

2-.4. LEMMA. If A is a finite algebra then A possesses a finite, equational

replacement system specification which is Church-Rosser and strongly nor­

malising.

And we conclude with a technical fact about set-theoretic replacement

systems of use later on. Let A be a set. A set of one-step reductions

➔R(l) which generates a reduction system ➔Ron A is said to be finitely

branching if for each a EA the set {b EA: a ➔R(l)b} is finite.

step

if a

The reduction system ➔Ron A together with its generating set of one-

reductions ➔R(l) is said to be weakly

➔R(l)bl and a ➔R(l)b2 then there is c

Church-Rosser if for any a EA,

EA such that bl ➔ c and
R

8

2.5. LEMMA. Let +R be a strongly normalising reduction system on A gener­

ated by a finitely branching set of one-step reductions +R(l). If +R is

weakly Church-Rosser with respect to +R(l) then +R is Church-Rosser.

PROOF. By a chain of non-trivial one-step reductions from a EA of length

k we mean a sequence a= a 0 +R(l) a 1 +R(l) ••• +R(l)ak wherein ai f aj

0 ~ i,j ~ k. Define llall = maximum length of any such chain from a. This

II • II : A ➔ w is a total function thanks to Konig' s Infinity Lemma and the

hypothesis of strong normalisation. We prove the proposition by induction

on the value of llall. Figure one may be helpful in this.

The basis case is automatic because llall = 0 iff a is a normal form.

As induction hypothesis assume the Church-Rosser property true of all

reducts of b EA such that llbll < II all. Let a +R bl and a+ b • We take the
R 2

non-trivial case where a,b1 ,b2 are mutually distinct.

Since + generates +R choose a 1 ,a2 such that, for i = 1,2
R(l)

and notice that llaill ~ llall. Let c0 be a common reduct of a 1 ,a2 supplied by

the weak Church-Rosser property. By the induction hypothesis applied to

a 1 ,a2 we can choose c 1 ,c2 as common reducts of c0 ,b1 and c0 ,b2 respective­

ly. Moreover since llc0 11 < Dall we can apply the induction hypothesis again

t~ obtain c as a common reduct of c 1 ,c2 • Clearly c is also a common reduct

Q.E.D.

/

V
C

9

3. COMPUTABLE ALGEBRAS

Our definition of a computable algebra is taken from M.O. RABIN [7]

and A.I. MAL'CEV [6], independent papers devoted to founding a general

theory of computable algebraic systems and their computable morphisms. Here

we will mention only those ideas and facts which contribute to the under­

standing orto the proof of the theorem; for further information about this

powerful theoretical machinery we recommend the interested reader to con­

sult the articles of Rabin and Mal'cev, and our earlier [1] where the sub­

ject is treated in the many-sorted case.

A (single sorted!) algebra A is said to be computable if there exists

a recursive set of natural numbers n and a surjection a: n + A such that

to each k-ary operation a of A there corresponds a recursive tracking func­

tion a: wk+ w which commutes the following diagram,

wherein

defined

k
a (x1 , ... ,xk) = (ax1 , .•• ,axk).

on n by x = y iff a(x) = a(y)
a

And, furthermore, the relation= ,
a

in A, is recursive. In case this

relation= is recursively enumerable we say A is semicomputable.
a

Both notions, in these formal definitions, become so called finite-

ness conditions of Algebra: isomorphism invariants possessed of a-1 finite

structures. And also noteworthy is this other invariance property:

If A is a finitely generated algebra computable or semicomputable under

both a: na + A and 8: n8 +Athena and Bare recursively equivalent in

the sense that there exists recursive funtions f,g which commute the dia­

gram:

A

I \
f \

n--+ n a--- B
g

10

See MAL'CEV [6].

Given A computable under a then combining the associating tracking

functions on the domain Q makes up a recursive algebra of numbers from which

a is an epimorphism to A. Applying the recursiveness of - to this oberva-
a

tion it is easy to prove this useful fact.

3.1. LEMMA. Bvery computable algebra A is isomorphic to a recursive number

algebra Q whose domain is the set of natural numbers, w, if A is infinite,

or else is the set of the first m natural numbers, wm, if A is finite of

cardinality m.

We proved this in its many-sorted version in [1]. Obviously, no such

isomorphic representation is possible for the semicomputable algebras for

otherwise they would be computable.

If A is computable under a then a

semicomputable accordingly as a- 1 (S)

is recursive or r.e.

set Sc.An is (a-)computable or (a-)

{(x1 , •.. ,xn) E Qn: (ax1 , ... ,axn) Es}

3.2. LEMMA. Let A be a computable algebra and= a congruence A. If= is

computable or semicomputable then the factor algebra A/= is computable or

semicomputabJe accordingly.

The algebras T(I) are always computable under any of their standard

g6del numberings. Of course, it was this fact we had implicity in mind when

we spoke of a data type K being computable when its defining congruence -
K

is decidable. Wherever =K is syntactically determined by some specification

mechanism o:.,E) it is customary to speak of the word or term problem for

o:: ,E) and mean the decidability of = . In any case, through Lemma 3. 2 and K .

isomorphism invariance, we can now redefine a data type to be computable

when its initial algebra is computable.

Relying on the reader's experience in constructively manipulating

syntax, we SE~t him or her the proof of this lemma as an easy, though in­

strmctive, exercise.

3.3. LEMMA. Let (I,E) be a finite, equational replacement system specifi­

cation. Then the basis set DE, the one-step reduction relation ➔E(l), the

11

replacement system ➔E' the set of normal forms NF(E,E), and the congruence

_ are all semicomputable. In particular, T(E,E) is a semicomputable alge­
E

bra.

We may now trivially prove

3.4. PROPOSITION. Let (E,E) be a finite, equational replacement system spe­

cification which is Church-Rosser and weakly normalising. Then T(E,E) is a

computable algebra.

PROOF. Given t E T(E) we can interleave the algorithms enumerating NF(E,E)

and= to seek its normal form which is guaranteed to exist from the weak
E

normalisation hypothesis. Given t,t' E T(E), to decide t =Et' we calcula~e

their normal forms n,n' and using the uniqueness property of Church-Rosser

systems we have only to check whether or not n = n'. Q.E.D.

The argument of Proposition 3.4 is also that of this companion lemma

to Lemma 3.2.

3.5. LEMMA. Let A be a semicomputable algebra with semicomputable congruen­

ce=· If there exists a semicomputable traversal for= then the factor al­

gebra A/= is a computable algebra.

4. PROOF OF THE THEOREM

A strongly normalising reduction system specification is at the same time

a weakly normalising reduction system specification so statement (2) auto­

matically implies statement (3). Since computability is an isomorphism in­

variant, Proposition 3.4 proves (3) implies (1). Thus this section is de­

voted to proving statement (3) implie~ statement (1). The case where A is

finite the reader has proved as Lemma 2.4 and so we assume A to be infinite.

By Lemma 3.1, we can take A isomorphic to a recursive number algebra

R = (w;f1 , ••• ,f ,c., ••• ,c) and concentrate on building a replacement
p i q

system specification for R. First we shall build a complicated recursive

number algebra R0 by adding to Ra variety of recursive functions.

12

k
Given a total recursive function f: w ➔ w then, by the Kleene Normal

Form Theorem, this may be written

f(x) = U(µz.T(e,x,z))

where U and Tare the so called Kleene computation function and T-predicate,

respectively, and e is some index for f. Since U and Tare primitive recur­

sive so are the functions

h(z,x) = U(µz' ~ z.[z' = z v T(e,x,z')])

g(z,x) if 3z' ~ z. T(e,x,z)

otherwise.

From these functions we can define a recursive function

t(z,x,0) = h(z,x)

t(z,x,y+l) = t(z+l,x,g(z+l,x))

so that f is factorised into t,h,g in the sense that f(x) = t(0,x,1). (The

uninitiated reader should consult M. MACHTEY & P. YOUNG [5].)

R0 is constructed by adding 0 and the successor function x+l on w to

Rand, for each recursive operation f of R, adding the corresponding fac­

torising functions h,g,t along with the list~of all primitive recursive

functions used in the primitive recursive definitions of hand g.

Clearly, Rolr = <RO>E =Rand so it is sufficient to show Ro has a

finite, equational replacement system specification which is Church-Rosser

and strongly normalising. Let r 0 be the ·signature of R0 • The specifying

reduction equations E0 in mind are defined as follows. For each operation

f,t,h,g of R0 , of the kind last mentioned, if !_,.:!:_,E_,Q. are their correspond­

ing function symbols in r 0 , then we take

(-1) !_Cx) ~ t(Q_,x,s(.Q_))

(0) t(z,x,.Q_) ~ E_(z,x)

t(z,x,s (y)) ~ .:!:_(s (z) ,X,Q.(S (z) ,x))

13

where X = (X 1 , ... ,Xk) ·

For each function symbol~ E LO corresponding to a primitive recursive

function A in the list~ u {h,g} we add equations determined by these case

distinctions.

(1)

(2)

(3)

(4)

If A(x1 , ••. ,~) = xi then add l(X1 , ••. ,Xk) ~ Xi

If A(y) = y+l then add ~(Y) ~ S(Y).

If A(x) = µ(µ 1 (x), .•• ,µn(x)) then add l(X) ~ _H.(~1 (X) , •.• ,Hn(X))

where here x = (x1 , •.. ,xk) and X = (X 1 , ... ,Xk).

If A(O,x) = µl (x)

A(y+l,x) = µ2 (y,x,A(y,x))

then a,dd

l (_Q_, X) ~ ~1 (X)

l(S(Y),X) ~ µ2(Y,X,~(Y,X))

where, again, x and X are possibly vectors.

Finally, we must take care of the constants of Lin L0 • If c names the

numerical constant c then add£~ Sc(_Q_). We number this as equation (5).

Thus (L0 ,E0) is a finite, equational replacement system specification

and it remains to verify the Church-Rosser property and strong normalisa­

tion, and to show T(L0 ,E0) ~ R0 .

Call a term t E T(L) strongly normalising (with respect to E0) if there

does not exist an infinite chain t = t 0 ➔ t 1 ➔ ••• ➔ tn ➔ ••• where for

i,1j E w ti f= tj and ➔ is the reduction relation determined by E0 • Most of

the theorem is proved on showing.

4.1. LEMMA. If tis strongly normalising then it possesses a unique normal

form of the kind Sn(O) for some n E w.

4.2. LEMMA. Every term in T(L) is strongly normalising.

The proof of Lemma 4.1 verifies the Church-Rosser property and combined

with Lemma 4.2 shows our specification (LO,EO) to be of the required type.

Given these lemmas, we know from Basic Lemma 2.3 that {Sn(O): n E w} is a

14

traversal for T(L0 ,E0), and to prove this algebra isomorphic to R0 we can
n

use the map <j>(n) = [s (.Q_)]. Since <I> is known to be a bijection R0 + T(L0 ,E0),

all that must be verified is that <I> is a homomorphism. This requires an in­

ductive argument on the complexity of terms along the lines of the proof of

Lemma 4.2. Because the reasoning is much simpler than that for Lemma 4.2,

and routine for any reader with a little algebraic experience, we take the

liberty of omitting it. Thus, to complete the theorem it remains for us to

prove Lemmas 4.1 and 4.2.

PROOF OF LEMMA 4.1. Fort E T(L0) the restriction of+ defines a replace­

ment system on the set

Red(t) = {s E T(L0): t + s}

which is generated by any set of one-step reductions +1 for+ also restrict­

ed to Red(t). If tis strongly normalising with respect to+ then

(Red(t),+) is a strongly normalising set-theoretic replacement system. It

is a routine matter to check that+ is weakly Church-Rosser with respect

to +1 by considering term complexity and to see that +1 is finitely branch­

ing. So we may apply Lemma 2.4 to deduce that (Red(t),+) is Church-Rosser

as well as strongly normalising. (This together with Lemma 4.1 proves our

specification Church-Rosser!) A corollary of this is the fact that t has

a normal form with respect to+ and it is unique.

Now we argue that NF(L0 ,E0) = {sn(Q_): n E w}. It is easy to see that

{Sn(Q): n E w} c NF(L0 ,E0) because a term Sn(Q) cannot be further reduced

by equations from E0 • On the other hand we can rule out all other terms

as normal forms by these case distinctions. Lett E T(L0).

If t = c E L0 , a constant naming c ~ O, then equation (5) permits a

reduction to Sc(O) and so since c can be reduced it is not a normal form.

If t = ~(s1 , .•• ,sk) where~ is any function symbol of LO excepts then,

again, there is a reduction to a distinct term to be had from the equations

written down for A in the construction of E0 •

Finally, if t = Sn(r), where r is a term of the first two kinds, then

since r has been seen to possess some non-trivial reduction so doest (as

+ is an algebraic replacement system). Q.E.D.

PROOF OF LEMMA 4.2. We prove that each t E T(E0) is strongly normalising

by induction on the complexity oft.

15

As basis consider all constants. Let£ E r0 name the numerical con­

stant c. By inspection of E0 , there is at most one reduction possible from

t and this leads to a normal form, viz. £ ;=:: Sc (0).

The induction step is precisely this lemma.

4.3. LEMMA. Let s 1 , ••• ,sk E T(E0) be strongly normalising and let l be a

k-ary function symbol of r0 • Then l(s1 , .•• ,sk) is strongly normalising.

PROOF. First we order the signature r0 . For each operation fi of R let hi,

g.,t. be the functions factoring f. and let A. be the list of primitive
i i i i

recursive functions used in the definitions of the h. and g., those of h.
i i i

preceeding those of g. and each of these two lists ordered by the complexi­
i

ty of the primitive recursive definitions of the h. and g, respectively.
i i

Thus we order the constants and operations of R0 into the list

and let the signature r0 of R0 be ordered in this way. We shall now prove

the lemma by induction on the position of A in the ordering of r0 • One

general remark, for any term t = ~(s1 , ••• ,sk), is that an infinite reduc­

tion sequence from t which does not involve a reduction from E0 determined

by~ would require an infinite reduction sequence from one of its subterms

ip contradiction to the assumption that they are strongly normalising. Thus

in the argument we need only consider reduction sequences from

t = ~(s1 , ••• ,sk) which apply the reduction equations in E0 written down

for \.

For this reason the basis A= Sis obvious. If t = S(r) then inspection

of E0 confirms no reduction from t determined bys to be possible since r

is irreducible.

So assume as induction hypothesis that .H.(s1 , ••• ,sk) is strongly nor­

malising for all function symbols .H_preceeding ~ in r0 • The proof of the

induction step divides into 6 cases conveniently distinguished by A (rather

than \)

16

CASE 1. A(x1 , ... ,xk) = Xi

Lett= ~(s1 , .•• ,sk). Let A(si,··-,sk) be the stage in a reduction

sequence from tat which equation (1) is applied, wheres.+ s., 1 < j < k.
1 J -

Then the next element in the sequence is s' and since this is strongly
i

normalising the sequence must terminate.

CASE 2. A(y) = y + 1.

This is easy, for the first application of equation (2) in a reduction

sequence from t = A(s) introduces a term of the kind considered in the

basis of the induction.

CASE 3. A(x) = µ(µ 1 (x) , ••• ,µn(x)) •

Lett= A(s) wheres= (s 1 , ••. ,sk) corresponding to x = (x1 , ... ,xk).

Let A(s') be the stage in a reduction sequence from tat which equation

(3) is first applied, wheres'= (si,···,sk) and si + si, 1 < i < k. Then

the next element in the sequence is ~(~1 (s') , •.• ,.l;-i(s')). By the induction

hypothesis, for each 1 < i < n, µ, (s') is strongly normalising sinceµ.
- - -1 -1

preceeds ~ in r 0 • And since~ also preceeds ~ in r0 another appeal to

the induction hypothesis shows the term to be strongly normalising.

Hence the sequence must terminate.

CASE 4. A(O,x) = µl (x)

A(y+l,x) = µ2 (y,x,A(y,x))

Lett= ~(r,s) wheres= (s 1 , ••• ,sk) corresponding to x = (x 1, •.. ,xk).

Now by Lemma 4.1 any strongly normalising term T reduces to a unique normal
n

form S (0) from which we can define the value of T to be val(T) = n.

We do this case by an induction argument on the value of r.

First of all observe that at the st.age in a reduction from t

at which (4) is applied r must have been reduced to O or so some S(T). In

the former case we are in the basis of the induction for val(r) = 0. The

next term in the sequence has leading function symbol !:l which preceeds

A and so we are done by the main induction hypothesis.

Consider val(r) = n > 0 and assume as induction hypothesis that for

all strongly normalising terms T with val(T) < n then ~(T,s) is strongly

normalising. Since val(r) ~ 0 we know that on the first application of

equation (4) in a reduction sequence from t that r has been reduced to

some S(,). And that the next element in the sequence is __!: 2 (,,s',.\(,,s'))

wheres'= (s1, ... ,sk) and si + s 1, 1 :::._ i :::._ k. Now since sand rare

strongly normalising so ares' and,. Moreover, since val(,) < n by our

latest induction.hypothesis 2:_(,,s') is strongly normalising. Since

~ 2 preceeds 2:_ in L0 , the main induction hypothesis shows the reduct

strongly normalising and the sequence to terminate.

17

Remember this case covers function symbols corresponding to h. ,g, as
l l

well as those functions int ..
l

CASE 5 . .\(z,x,0) = h(z,x)

A(z,x,y+l) = A(z+l,x,g(z+l,x))

Lett= 2:_(r,s,u) wheres= (s 1 , ... ,sk) corresponding to x =(x 1 , ... ,xk).

As before, observe that at the first stage in a reduction sequence from t

at which equation (0) is applied it must have been reduced to O or to

some S(T). The first possibility does not permit an infinite continuation

of the sequence because the next element is some h(r' ,s') where r' ands'

are strongly normalised reducts of rands and this term is strongly

normalising by the induction hypothesis since~ preceeds A in L0 • Therefore

only sequences of the second kind need careful consideration.

Let val(,), for Ta strongly normalising term, be just as in Case

4. Define for any term of the kind t = 2:_(r,s,u) the number

x(r,s) (µz)[g(z,val(s)) = O] - val(r)

~herein val(s) abbreviates (val.(s 1) , ... ,val.(sk)).

we do this case by a concise induction on the value x(r,s). As

basis we have t with x(r,s) = 0. Consid~r a reduction sequence from tin

which the first application of equation (0) produces 2:_(S(r') ,s' ,5L(S(r) ,s'))

from .\(r' ,s' ,S(,)). Since r + r', s + s' we have x(r' ,s') = 0 and

val(r') > (µz)[g(z,val(s)) O].

And, thanks to the main induction hypothesis, we know that all the subterms

of 2:_(S(r') ,s' ,5L(S(r') ,s')) are strongly normalising. From this information

we can dedcue val(5L(S(r') ,s')) = 0 so if a second application of equation

18

(0) is made in the sequence then we will have a sequence of the kind

considered, and proved finite, at the opening of this case; whereas

if no second application of (0) is made in the sequence then the

reductions must be made to the known strongly normalising subterms and so

it must terminate as observed in the opening of the induction argument

of lemma 4.3. The calculation required is this

val (SI_(S (r), S')) g(val(r')+l,val(s'))

g(µz) ([g(z,val(s')) = 0],val(s'))

= 0.

Consider t = ~(r,s,u) with x(r,s) = n > 0 and assume as induction

hypothesis that if r 1 ,s 1 ,u1 are strongly normalising and x(r1 ,s1) < n

then ~(r 1 ,s1 ,u1) is strongly normalising. Consider a reduction sequence

from tin which the first application of equation (0) produces

~(s(r') ,s' ,SI_(S(r') ,s')) from ~(r' ,s' ,S(T)). By our assumptions and the

main induction hypothesis all subterms of the new reduct are strongly

normalising. Moreover, x(s(r') ,s') < x{r' ,s') = x(r,s) = n and therefore

by the latest induction hypothesis ~ (S (r') , s' ,_s:[(S(r') , s')) is strongly

normalising and the reduction sequence must terminate.

CASE 6. A(x) = f(x).

This is, by now, obvious.

Having concluded the proof of Lemma 4.3 we have also concluded the

argument for Lemma 4.2. Q.E.D.

5. THE MANY SORTED CASE

(It may well go without saying, but) we assume the reader thoroughly

acquainted with the technical foundations of the algebra of many-sorted

structures for which no reference can better substitute for the ADJ's basic

paper [3].

In notation consistent with our [1], we assume A to be a many-sorted

algebra with domains A1 , ..• ,A and operations of the form
n+m

19

where A.,µ E {1, •.• ,n+m}, 1 < i < k.
]. -

The concepts and machinery of section two must be reformulated, but

this is not difficult: An algebraic replacement system Ron A consists of

a collection of set-theoretic replacement systems R1 , ••• ,Rn on its domains

which satisfy the property that for each operation aA,µ of A, with arguments

aA1, .•• ,aAk

Rk bAk then

replacement

step reductions and so on as families of single sorted relations proceed

along the lines established for generalising algebraic ideas from single

sorted to many-sorted algebras. As do their properties and the

mechanisms for specifying replacement systems. Notice that if Eis a set

of many sorted reduction equations then each t(X) > t' (X) EE hast and

t' of the same sort.

To lift section three to computable many-sorted algebras is also

quite straight-forward and, in fact, has been virtually written out

already in our [1] where Lemma 3.1 appears many-sorted, for example.

Those lemmas pertaining to replacement system specifications require only

the appropriate introduction of sort indices into their proofs.

Up to and including the proofs that (2) implies (3), and (3) implies

(1), for the full theorem in its many-sorted case, it may be truely said

that no new ideas or techniques are required.

Consider the proof that (1) implies (2). With the help of a trick

(the real subject of this section) we are able to construct this proof

with the toolkit of section four. Dispensing with an easy case where all

the domains of A are finite, we assume A to be a many-sorted computable

algebra with at least one domain infinite.

Without loss of generality we can take these domains to be A1 , ••• ,An'

B1 , ••• ,B where the A. are infinite and the B. are finite of cardinality
m i i

b. + 1. The generalised Lemma 3.1 provides us with a recursive many-sorted
].

algebra of numbers R with domains n1 , •.• ,nn and

for 1 < i < m, r. = {0,1, ... ,b,} for 1 < i < m, -].]. - -

r 1 , ••• ,rm where ni = w

and R is isomorphic to

A. When not interested in the cardinality of a domain of R we refer to it

20

as R., 1 < i < n+m. The aim is to give Ra finite equational hidden
i

function replacement system specification.

The first task is to build a recursive number algebra RO by adding

to R new constants and functions. The main idea is to code the many-sorted

algebra R into its first infinite sort Ql by means of functions Ri ➔ Q1

and Ql ➔ Ri and recursive tracking functions on Ql associated to the

multisorted operations of R. At the same time we shall dissolve the finite

sorts by adding them as sets of constants. Here is the formal construction.

For each infinite sort i we add as a new constant of sort i the

number OE Q. and the successor function x+l. For each finite sort i we
i

add all the elements of r. as new constants.
i

Each domain Riis coded into Ql by
i

adding the function fold (x) = x,
i

and is recovered by adding the function unfold: Ql ➔ R., defined for
i i

infinite sorts i by unfold (x) = x, and for finite sorts i by

i
unfold (x) = if X < b,

- i

otherwise

f h · f fA' µ f . k. Next we add or eac operation = o Ra recursive tracing

function f: Q~ ➔ Ql which commutes the following diagram:

\ Ak
fold x ••• xfold

And, just as in the single sorted case, we factorise f into functions

t,h,g and add these along with all the primitive recursive functions

arising from the primitive recursive definitions of hand g. That is all.

Observe R0 JL = <R0>L = R, so it remains to give a finite, equational

replacement system specification for R0 which is Church-Rosser and strongly

normalising. Let LO be the signature of R0 in which io, is, FOLDi, UNFOLDi

name the zero, successor function, and coding maps associated to sort i;

for convenience we drop the sort superscript on zero and successor in

case i = 1. We will give the requisite set of equations E0 beginning with

the operations of R.

21

Let f =
-and let f be

f;\.,µ be an operation of R named by function_symbol !_EL c LO

its associated tracking map on n1 named by !_ E L0 • F'irst,

following the procedure of section four write out all the equations assign­

ed to f and its factorisation. Secondly, add to this equation to "eliminate"

f

where XAi is a variable of sort Ai. Do this for every operation of R.

Turning to the coding machinery, consider first the folding functions.

For each infinite sort i add the equations,

0 FOLDi (\~_> >

FOLDi(iS(X.)) >
].

S (FOLDi (X.))
].

where X. is a variable of sort i.
].

For each finite sort i, if ic E LO - Lis a new constant of sort i

denoting number c Er. then add
].

Secondly consider the unfolding functions. For each infinite sort i

add the equations,

UNFOLDi(O) > iO

UNFOLDi (S (X)) ~ is (UNFOLDi (X})

where Xis a variable of sort 1.
i

For each finite sort i, if c is as before then add the equations

i C i
UNFOLD (S (Q_)) > c

UNFOLDi(Sc(X)) > b.
- =1.

if c < b
i

if c ~ b. -].

where bi is the last element of r i and is named in LO - L by g i ; and X is

a variable of sort 1.

22

And finally we consider the equations for the constants. For each
i

infinite sort i, if c EE denotes the number c E Q, then add
1

i i
For each finite sort, i, if c EE denotes the number c Er. and £ E r0 - E

1 - i i
is its new constant symbol then we remove the duplication by adding c ~ c.

This completes the construction of E0 •

What remains of the proof follows closely the arguments of section four.

Here the sets of normal forms are, of course, {isc(i.Q_) :cEw} when i is an

infinite sort, and {ic:cEf.} when i is a finite sort. And the arguments
- 1

which lift Lemmas 4.1 and 4.2 are in all essential respects the same. (So,

· for instance, to lift Lemma 4.3 one reads the ordering of r0 off the

replacement equations in E0 and finds the bulk of one's proof a fair copy

of Lemma 4.3 modulo a sort index.) Given, then, that (E0 ,E0) is Church­

Rosser and strongly normalising, the normal forms being a traversal for

=E, we can prove Ro= T(E0 ,E0) by using the mappings ~i defined

~i~c) = [iSc(iO)] for i an infinite sort and ~i(c} = ic for i a finite

sort.

REFERENCES

[1] BERGSTRA, J.A. & J.V. TUCKER, Algebraic specifications of computable

and semicomputable data structures, Mathematical Centre, Depart­

ment of Computer Science Research Report IW 115/79, Amsterdam,

1979.

[2] ----, On the adequacy of finite equational methods for data type

specification, SIGPLAN Notices, to appear.

[3] GOGUEN, J.A., J.W. THATCHER & E.G. WAGNER, An initial algebra approach

to the specification, correctness and implementation of abstract

data types, in R.T. YEH (ed.) Current trends in programming

methodology IV, Data structuring, Prentice-Hall, Engelwood

Cliffs, New Jersey, 1978.

[4] KAMIN, s, Some definitions for algebraic data type specifications,

SIGPLAN Notices 14 (3) (1979) 28-37.

[5] MACHTEY, M & P. YOUNG, An introduction to the general theory of

algorithms, North-Holland, New York, 1978.

23

[6] MAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys,

.!.§_ (1961) 77-129.

[7] RABIN, M.O., Computable algebra, general theory and the theory of

computable fields, Transactions American Mathematical Society,

95(1960) 341-360.

