
AFDELING INFORMATICA

stichting

mathematisch

centrum

IW 125/79
(DEPARTMENT OF COMPUTER SCIENCE)

R.J .Ft. BACK

EXCEPTION HANDLING WITH MULTI-EXIT STATEMENTS

Prepr· int

~
MC

NOVEMBER

2e boerhaavestraat 49 amsterdam

P,unte.d a;t .the. Ma.thematic.al Ce.ntJte., 49, 2e. BoeJ1.haave1.,.:tJr..cw;t, Am-0.te.Jtda.m.

The. Ma.thematic.al Ce.ntJte., 6ounde.d .the. 11-.th 06 Fe.b~u~ty 1946, ,i.-6 a non
p~o oil ,i,,n1.,.t,i,;t,U,t,i,o n cum,i,,ng a;t .the. p~omotio n o 6 pWte. ma.thematic.1., and -lt6
apptic.ation1., .. I.:t ,i.-6 -0pon1.,o~e.d by .the. Ne.:theJLta.ndJ., Gove.Jtnme.nt .tMough :the.
Ne.:theJLta.ndJ., O~ganization 60~ .the. Advanc.eme.nt 06 PUite Re6e.Mc.h (Z. W. 0) •

1980 Mathematics subject classification: 68B05, 68B10

ACM-Computing Reviews-category: 5.24, 4.2

Exception handling with multi-exit statements*)

by

R.J.R. Back

ABSTRACT

A new language construct, the multi-exit statement, is proposed. This

provides a clean way of handling exceptional situations in programs, and

makes the programs easy to prove correct. The multi-exit statement is in

tended to support the program construction technique recently proposed by

John Reynolds and Martin van Emden which is based on considering programs

as state transition diagrams. Proof rules for showing the total correctness

of multi-exit statements will be given which provide a new axiomatisation

of goto-statements. This axiomatisation is based on the symbolic execution

technique. It conforms closely to the intuition of the programmer making

manual proofs of the program correctness easy to perform.

KEY WORDS & PHRASES: exception handling, multiple exits, goto-statements,

partial correctness, total correctness, axiomatisation,

symbolic execution, program construction.

*) This report will be submitted for publication elsewhere.

1

1. INTRODUCTION

A large part of the code in programs actually meant to be used is devoted to

the detection and handling of exceptional situations, with the aim of making the

program more robust. These exceptional situations may result from errors in the

input data, special cases of the algorithm requiring different treatment from the

normal cases, and things like that. The code concerned with the exceptional situat

ions is typically added late in the development of the program. Partly, this is

because the programmer first wants to concentrate on designing the main computation

of his program, before he starts to think about the exceptions. Partly the reason

is that the need for considering certain exceptional situations only becomes

evident as the design proceeds, sometimes only in the testing and maintenance of his

program.

The present emphasis on using structured control structures in programs

is not very favourable to exception handling. Adding code for a new exceptional

situation often requires a restructuring of the control structure of the program,

making the program more difficult to understand. The main computation is easily

hidden in a web of exception handling computations. One possible solution to this

problem is to add to the structured control structures a special mechanism for

handling exceptions. Proposals along this line are given in GOODENOUGH [8] , LEVIN

[13] and are incorporated in the design of the language ADA [11], just to mention a

few.

Another approach is to design the set of control structures in a way which

permits a more flexible way of handling exceptions. The simplest way is, of

course, to add go to-statements to the set of control structures allowed. This,

however, is not a very good idea, as it is known to lead again to programs which

are difficult to understand. On the other hand, the basic idea behind using goto's

for exception handling, i.e. separating the handling of exceptions from the handling

of the normal cases, is sound. What is needed ther€fore is a more restricted way of

using goto's, which allows flexible exception handling but does not lead to

programs unduly difficult to understand.

One example of this approach is the construct proposed by ZAHN [17]. This

allows one to separate the detection of an exception from the handling of it in the

framework of ordinary structured programs, by tntroducing the concept of an event

Exits from blocks and loops are made to depend on the occurrence of certain events.

Another example is provided by the tail recursion construct, proposed by HERNER

[10]. Here flexibility of exception handling is achieved by replacing the iteration

construct of structured programs by a less restrictive recursion construct.

In this article we propose a new construct for exception handling, the multi

exit statement, which is also based on a restricted use of goto-statements. This

has some similarity with Zahns and Hehners constructs, but is based on an

2

essentially different idea. The multi-exit statement is actually designed to

make the construction of programs and the verification of their correctness easier.

That it also permits a flexible way of handling exceptions in programs is a

pleasant by-product of the design.

The multi-exit statement is intended to support the program construction

technique recently proposed by REYNOLDS [17] and by VAN EMDEN [7]. There, programs

are viewed as state transition diagrams, and program construction starts by identi

fying and describing the basic invariants of the program under design. These invar

iants correspond to the states of the diagram. The states are connected by

transitions, which show how one moves from one state to another, by testing the

program variables and assigning new values to them. The values of the program

variables after a transition must satisfy the invariant corresponding to the

target state, whenever the values of the program variables before the transition

satisfy the invariant corresponding to the source state.

This approach to program construction has some important consequences.

First, it is easy to prove the correctness of the programs constructed, as the

invariants needed for the proof already are there, and need not be deduced from

the program text. Secondly it becomes easy to separate the exceptional cases

from the normal cases in the program. Exc~ptions are handled by simply adding new

states to the diagram, i.e. by giving new invariants that describe the exceptional

situations. The code for handling the exceptions will not interfere with the code

for handling the normal cases. A third consequence is that there is no need to put

restrictions on the flow of control in the program. In fact, restricting oneself to,

say, structured control only would do more harm than good, as that might prevent

one from finding the simplest possible invariants for the program. In any case,

such a restriction will not make proving the program correct any easier, so the

basic argument for this restriction does not apply.

The use of multi-exit statements in program construction has been discussed in

BACK [2] and will not be further considered here. We will mainly be concerned with

the correctness of programs constructed with multi-exit statements. First, we

define the syntax of multi-exit statements and explain their meaning informally with

an example. A more formal definition of their meaning is provided by a Hoare-

like axiomatisation of their partial correctness. After this we present another

axiomatisation, of the total correctness of multi-exit statements, based on the

symbolic execution technique. This latter axiomatisation is much more natural to

use, and gives the programmes a method for checking ~he correctness of his program

in a straightforward way.

2. MULTI-EXIT STATEMENTS

The syntax of simple multi-exit statements is as follows.

s : : = L

x 1 , ... ,xm: = e 1 , .•. ,em;s 1

if b 1 + s 1 □ ... □ bm + Sm fi

(label)

(assignment)

(conditional)

Herem~ 1, s,s1 , ..• ,sm stand for simple multi-exit statements, Lis a label,

x 1, ... xm are variables, e 1 , ... ,em are expressions and b 1 , •.. ,bm are boolean

expressions.

3

The syntax of simple multi-exit statements is essentially the same as that_ of

the statements given in BEHNER [10]. The interpretation of labels is, however,

different. Behner interprets labels as standing for actions, while we interpret

them as standing for invariants, i.e. assertions about the values of the program

variables. When programs are considered as state transition diagrams, then a label

identifies a state and a simple multi-exit statement defines a transition from an

initial state to the final states identified by the labels in the statement.

As an example, consider the simple multi-exit statement

xl el; if bl + x2:= e2; Ll

□ b2 + L2

fi

Execution of this statement starts by performing the assignment x 1 := e 1 . Then the

conditional is executed. If b 1 holds, then x2 :=e2 is performed, and execution

ends in final state L1 . If b2 holds, then execution ends in final state L2 . If both

b 1 and b 2 hold, then either alternative is choosen (nondeterministically).

Finally, if neither b 1 nor b2 hold, then exectuion is aborted, meaning it stops

without having reached a final state. Abortion can also occur as a result of

trying to evaluate an undefined expression in an assignment statement or in a

conditional statement.

The multi-exit statements are now defined by adding a fourth production to

the syntax definition above:

(block)

s,s0 , ... ,sn now stand for multi-exit statements, L1 , ... ,Ln are labels and

R1, ... ,Rn are assertions.Dis a list of local variable declarations.

The labels L1 , ... ,Ln are internal (local) labels of the block, and are

associated with cOrresponding assertions R1 , '. .. ,Rn. "The statement s 0 is executed on

entry to the block. If s 0 ends in some internal lable Li, 1 ~ i ~ k, then execution

continues with the corresponding statement S .. If this again ends in an internal
l

label, the statement associated with that label is executed and so on. As soon as

the execution reaches an external (global) label, that is, a label not declared in

4

the block, the block is exited. The execution then continues in the outer block

in which this label is declared, provided it is declared in some outer block,

otherwise the execution stops.

As is evident. from this description, the semantics of multi-exit statements

is the ordinary one, which we get by replacing each label L, at the end of a branch

in a simple multi-exit statement, by the statement goto L. Our programs are really

goto-programs, although in a slightly disguised form. The syntax given does,

however, enforce a certain discipline in the use of goto's. The execution is not

allowed to fall through to the next statement (i.e. serial execution is not the

default), because each branch in a multi-exit statement must end in a label,

signalling an explicit jump to that label. Even more important, each label must be

associated with an assertion, describing the situation which always holds when the

label is reached.

The block construct attains a number of different, but related goals. It

provides a way in which multi-exit statements can be compounded. It also provides

a way of achieving iteration. The statement s0 makes the initial preparations

needed for the iteration, and the declaration D provides the local variables needed

in the iteration.

As an example of using multi-exit statements, we will show how to program the

binary search algorithm. Let A,x and h be variables declared in some outer block by

~ x., h: integer;

A: array [1 .. N] of integer;

N is some integer constant. We will give a multi-exit statement which searches for

the value x in the array A, setting h to indicate the position of x in A. We may

assume that N ~ 1 and that the values in A are strictly increasing, i.e. that

A[i] < A [i+l], for i 1,2, .. ·.,N-1.

The multi-exit statement has two exits. Either the element x occurs in A, in

which case the exit

element found (A[h] x, 1 S h S N)

is taken, or x does not occur in A, in which case the exit

element not in the array (A[h] < x < A[h+1], Os h s N)

is taken. Here we have also given the assertions associated with the exits, the

association being defined in some outer block in which these labels would be

declared. In the latter assertion, we have used the convention that A[0]= - oo and

5

A[N+l] = + 00 'I'he variable h is used here to indicate the position where x should be.

Either one of the two exits may be considered as exceptional, depending on the

application at hand. It is also possible to consider both exits as normal, in which

case the statement functions as a test with a side-effect (setting h to the

location of x in A).

The multi-exit statement performing the binary search is as follows:

begiE_ var m,n,i: integer;

m,n: = 0,N+l; element not found yet

I element not found yet (A[m] < x < A[n], 0 Sm< n S N+l):

if rn+l n ➔ h:=m, element not in the array

□ m+l < n ➔ i:=(m+n) div 2 · I --
if X < A[i] ➔ n:=i; element not found yet

□ X A[iJ ➔ h:=i; element found

□ X > [i] ➔ m:=i; element not found yet

fi

fi

end.

This program is a very simple one, containing just one internal label. More

realistic examples, with several internal labels, are given in BACK[2].

3. PARTIAL CORF~CTNESS OF MULTI-EXIT STATEMENTS

Proof rules for goto-statements were first presented by CLINT and HOARE [6].

They used Hoare's axiomatic approach extending it with special proof rules for

goto-statements and labels. Other axiomatisations along these lines have been

presented by KOWALTOWSKI [12], ARBIB and ALAGIC [1] and DE BRUIN 15]. They all

consider the partial correctness of programs with ·goto-statement while WANG [15]

gives an axiomatisation of total correctness of programs with goto-statements,

based on the intermittent assertion method.

The multi-·exit statement can be very simply axiomatised in a Hoare-like system,

by changing the correctness formulas. Instead of using the Hoare notation

P{S}Q, we use correctness formulae of the form

E I- P:S.

Here Eis a liE;t L 1 (R 1) , ... ,Lk(~) of labels with associated assertions, which is

referred to as the environment.Pis a precondition and Sis a multi-exit state

ment. The correctness formula states that if P holds initially for the program

variables, and if execution of S terminates in label L in E, then the assertion

6

R., associated with L. in E, must hold for the final values of the program
i i

variables. Thus the formula expresses partial correctness of S with respect to

the precondition Rand the environment E.

The following_proof rules are sufficient for establishing the partial correct

ness of multi-exit statements (no axioms are needed).

1 . Consequence

2. Label

3. Assignment

4. Conditional

5. Block

E t R:S, R1 ~ R

E ~ R' :S

R ~ E(L)

E I- R:L

E I- R:S

E 1-R[e/x]: x:= es

E 1-RAb,:S., for i=l, ..• ,m
i i

E ~ R: if bl-+sl□ ... [J b -+s fi - m m

E L1 (R1), ... ,L (R) 1-R.:S., for i=0,1, ... ,n
' n n i i

Here E(L) denotes the assertion associated with Lin E and R[e/x] denotes the

formula we get by substituting e for all free occurrences of x in R. For simplicity

we have only considered single variable assignments and blocks without local

variable declarations. We also assume for simplicity, that redeclaration of labels

in inner blocks is not allowed.

This axiomatisation is considerably simpler than those of the references

mentioned above, partly because of the introduction of the environment and partly

because we do not have to consider the possibility of exiting through the end of

a statement, i.e. all exits in multi-exit ~tatements are by explicit jumps to labels

in the environment (de Bruin uses environments in a similar way).

This axiomatisation, however, is not very useful in practice. It forces one to

construct the verification conditions by backward substitution, which is not very

natural, and it only formalises partial correctness of programs, whereas in

practice one is interested in total correctness. We therefore proceed to a more

useful axiomatisation, in which total correctness of multi-exit statements is

formalised.

4. TOTAL CORRECTNESS OF MULTI-EXIT STATEMENTS

The proof rules for total correctness of multi-exit statements are based on

the symbolic execution technique (see e.g. HANTLER & KING [9]). The correctness

formulae will be of the form

7

EII-Rllx f: s'

where Eis an environment as before, R is an assertion, xis a list of program

variables, f is a list of terms and Sis a multi-exit statement. We require that

no program variables occur free in Rand also that no program variables occur in

any term inf. The equality x = f stands for x 1 = f 1 II x 2 = f 111 ••• llxn = fn' where

x = x 1 , ... ,xn and f = f 1 , ... ,fn.

The correctness formula E 11- R II x = f: S states that if R II x = f holds

initially, then execution of S terminates in an external label L of S, and

E(L) will then hold for the final values of the program variables. Thus the correct

ness formula expresses total correctness of the multi-exit statement S with respect

to the precondition R II x = f and the environment E (i.e. neither nontermination

nor abnormal termination of the execution is allowed).

The proof rules are as follows:

1. Label R /\ X f => E(L)

Err- R /\ X = f: L

2. Assignment R I\ X f => deaeJ

E 11- R II X f': s

E 11- R I, X f: x. := e;S
l

Here f' = £ 1 , ... ,f. 1 , e[f/x], f. 1 , ... ,f, where e[f/x] denotes the result of
l- l+ n

substituting f. for each free occurrence of x. in e, i = 1, ... ,n. In the first
l · l

assumption, def[e] is some condition on the program variables which guarantees

that e is well-defined.

3. Conditional f => def[b.], for i
l

1,.,.,m

E 11- R II b.[f/x] 11 x = f: S., for i = 1, ... ,m
l l

E \ I- R II x = f : if b 1 -+S 1 D ... u b m -+

Here def[b.] serves the same purpose as def[e] above.
l

s
m

fi

4. Block R.[z'/z]II z = z' => t ~ 0, for i 1, ... , n
l

' I I- R II f /\ y': s E,E X = y
0

E,E I I 11- R.[z'/z] /I z = z '": s., for i = 1, ... ,n
l l

E 11- R " X = f: begin D; s I L1 (R1):S 1 ... I L (R
0 n

) :S end
n n

8

Here E'

E" = L (R At< t [z'/z]) , ... ,L (R A t < t [z'/z]),
1 1 n n

z is the list x,y (i.e. the variables in x followed by the variables in y), where

y is the list of new variables declared in D, tis a term describing the termination

function, i.e. an integer function on the program variables in z, and z' and y' are

lists of fresh variables, not used elsewhere in the assumptions. For simplicity we

assume in this proof rule that redeclaration of variables and labels is not

allowed.

Abnormal termination is ruled out by the rules for assignment and conditional.

The first assumption of the assignment rule requires that the expression e in

the assignment statement statement is well-defined when evaluated. The first

assumption of the conditional rule again requires all the guards to be well-defined

when evaluated, while the second assumption requires some guard to be true when

the conditional is to executed. Nontermination is ruled out by the block rule. The

termination function is required to have a non-negative value in each internal

state, by the first assumption. By the third assumption, each internal transition

must decrease the value oft. This guarantees termination of the block in the usual

way.

The proof rule for blocks given here is unnecessarily strict with

respect to termination. It requires that the function tis decreased by every

internal transition of the block. Actually, it is sufficient to assume that

execution cannot return to an internal label from which it has started, without

decreasing the value oft. Blocks that satisfy this weaker requirement can be hand

led by the following rule:

5. Unfolding E II- R/\x

EII-R/\X

f: ~ D; s 0 ... Ill Li (Ri): S/Sk/Lk] ... end

f: begin D; _s0 ... I_Li(Ri): Si··· end

Here 1 $ i,k $ n, and si[sk/Lk] denotes the result of substituting the multi-exit

statement Sk for some label Lk in Si. This is the same as unfolding the iteration

one step. Any block which can be shown (informally) to terminate according to the

weaker requirement, can be transformed with a finite number of unfoldings to an

equivalent block which can be shown to terminate according to the requirements of

proof rule 4.

5. CHECKING THE CORRECTNESS OF MULTI-EXIT STATEMENTS

The proof rules given in the preceeding chapter enable the programmer to

check the correctness of his program in a straightforward way. As the program

already contains all the invariants needed for the proof, establishing the

9

correctness of the program does not require any real ingenuity on the part of the

programmer.

we illustrate this by considering the binary search algorithm presented above.

We wish to prove that

E 11-· true /1. h h': S

holds, where Sis the binary search program, and Eis the environment

element found (A[h] = x, 1 sh s N),

element not in the array (A[h] < x < A[h+l], 0 s h s N).

For simplicity, we treat N,A and x all as constants, satisfying the properties

N 2 1 and A[i] < A[i+l], i = 1, ... , N-1. We choose t = n-m as our termination

function.

With the proof rules we construct a checklist for the program, stating all the

facts which need to be proved, together with the assumptions which may be used

in proving them. The checklist for the binary search algorithm looks as follows,

where the proof rules used are indicated in parenthesis (e.g. 3.2 stands for the

second assumption of proof rule no. 3).

{assume true (4.2)}

begin var m,n,i: integer;

m,n:,= 0,N+l;

{prove that O and N+l are well-defined expressions (2.1)}

element not found yet

{prove that A[m] < x < A[m] /1. 0 s m < n s N+l, when m=O,n=N+l (1.1)}

I element not found yet (A[m] < x < A[n], 0 s m < n s N+l):

{assume that A[m'] <x <A[n'] /1. 0 s mi <n's N+l (4.3)}

{prove that n'-m' 2 0 (4.1)}

if {prove that m+l

{prove that m+l

n and m+l < n are well-defined, when m=m',n=n'(3.l)}

n V m+ 1 < n , when m = m' , n= n' (3 . 2) }

m+l = n ➔ {assume that m'+l = n' (3.3)}

h:= m;

{prove that mis well-defined, when m m' (2.1)}

element not in the array

{prove that A[h]<x < [h+1 J /\ J sh s N, when h

D m+l < n ➔ {assume that m' + 1 < n' (3.3)}

i:= (m+n) div 2;

m' (1. 1)}

10

fi

end

{prove that (m+n)div 2 is well defined, when m=m',n=n'X2.1)}

if {prove that x<A[i],x=A[i],x>A[i] are well-defined,

fi

when i = (m'+n') div 2 (3.1)}

{prove that x<A[i] v x = A[IJ v x > A[i], when

i = (m'+n') div 2 (3.2)}

x < A[i] -+ {assume that x < A[(m'+n') div 2] (3. 3)}

n:= i;

{prove that i is well-defined, when

i = (m'+n')div 2, (2.1)}

element not found yet

{prove that A[m] · < x < A[n] /\ 0 :$ m < n :$ N+l

/\ n-m < n'-m', when m=m', n=(m'+n')div 2 (1.1)}

6. PRACTICAL EXPERIENCES OF TESTING MULTI-EXIT STATEMENTS

The multi-exit statements have been used in two programming projects at the

Computing Centre of the University of Helsinki. The experiences of these projects

indicate that concentrating on the program invariants does make the program

construction task easier. The program invariants are not too difficult to find,

once one knows what one is looking for. The flexibility in handling exceptions also

contributes significantly to the ease of constructing programs, by allowing the

programmer to work at the different cases independently. The possible danger of

using the multi-exit statement lies in not being precise enough in describing the

program invariants. Sloppy description of invariants leads to all the well-known

problems of the undisciplined use of goto-statements. Luckily, there is a quite

effective cure: the programmer should be asked to hand check the correctness of

his program, in the mapner shown in the preceeding section. This will immediately

reveal most of the errors and omissions in the invariants.

The multi-exit statement has not yet been properly implemented. However, it is

relatively easy to give a preprocessor, which translates the multi-exit statements

into, say, Algol-code. Such a preprocessor was used ~none of the programming

projects mentioned above, while in the other project the multi-exit statements were

hand translated into FORTRAN code. In a forthcoming report, BACK and KOSKENNIEMI

[3], a modification of the language Modula-2 by WIRTH [16] is proposed, which

incorporates the multi-exit statement. Experience in using multi-exit statements

on a larger programming project will be reported in BACK and KOSKENNIEMI [4].

11

This joint work with Koskenniemi is essentially concerned with showing how to use

multi-exit statements in programs with procedures and uses defined data structures,

in a way which makes the programs easy to understand and to prove correct and also

allows possible ex_ception handling.

REFERENCES

1. ARBIB, M.A. & ALAGIC, S., Proof rules for goto's, Acta Informatica.!.!_, 139-148,
1979.

2. BACK, R.J.R, Program construction by situation analysis, Computing Centre of
University of Helsinki, Research report 6, 1978.

3. BACK, R.J.R, & KOSKENNIEMI,K, Constructing verifiable programs: a language
proposal, in preparation.

4. BACK, R.J .R, & KOSKENNIEMI, K., Constructing verifiable programs: a case study,
in preparation ..

5. de BRUIN, A., Goto statements: semantics and deduction systems (preprint).
Report IW 74/79, Mathematisch Centrum, 1979.

6. CLINT, M. & HOARE, C.A.R., Program proving: jumps and functions. Acta Informatica
.!_, 214-224, 1972.

7. van EMDEN, M.H., Programming with verification conditions, IEEE Transactions on
Software Engineering, SE-5,2, 1979.

8. GOODENOUGH, J.B., Exception handling: issues and a proposed notation. Comm. of
ACM, 18,12,683-696, 1975.

9. HANTLER, S.L. & KING, J.C., An introduction to proving the correctness of pro
grams·, Computing Surveys_§_, 3, 331-353, 1976.

10.HEHNER, E., Do considered od: a contribution to the programming calculus,
Acta Information.!.!_, 287-304, 1979.

11.ICHBIAH, J.D & al, Rationale for the design of the ADA programming language,
Sigplan Notices 14, 6, 1979.

12.KOWALTOWSKI, T.,Axiomatic approach to side effects and general jumps, Acta
Informatica 7, 357-360, 1977.

13.LEVIN, R ., Program structures for exceptional condition handling, Dept. of
Computer Science, Carnegie-Mellon University, 1977.

14.REYNOLDS, J.C, Programming with transition diagrams, In Gries, D. (ed.)
Programming Methodology, Springer Verlag, Berlin, 1978.

15.WANG, A., An axiomatic basis for proving total correctness of goto-programs,
BIT.!..§_, 88-102, 1976.

16.WIRTH, N., Modula-2, Institut fur Informatik, ETH, Zurich, 1979.
17.ZAHN, C.T., A control structure for natural top-down structured programming,

Symposium on Programming Languages, Pari_s 1974:

