
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

F'. KLINT

IW 126/79

AN OVERVIEW OF THE SUMMER PROGRAMMING LANGUAGE

Preprint

~
MC

DECEMBER

2e boerhaavestraat 49 amsterdam

P,un.te.d a.t .the. Ma.thematic.al Ce.n:tJr.e., 49, 2e. BoeJz,haave..6,t/c.,aat, AJn6.teJr..da.m.

The. Ma.thematic.al Ce.n:tJr.e., 6ounde.d .the. 11-.th 06 Fe.b1tua,1iy 1946, ,l6 a non­
p1to6,i,,t in6U.tu.tion cwn,lng a.t .the. pltomo.tion 06 pu.Jte. ma.thematie6 and Lt6
app.U.c..ation6 .. I.t ,l6 .6pon601te.d by .the. Ne..theJr.1.and.6 GoveJr..nme.n.t .th/tough .the.
Ne..theJr.1.and.6 01tganization 601t .the. Advanc..eme.n.t a 6 Pulte. Re..6 e.Mc..h (Z. W. 0) •

1980 Mathematics subject classification: 68B05, 68G10

ACM-Computing Reviews-categories: 3.63, 4.22

An Overview of the SUMMER Programming Language*

by

Paul Klint

ABSTRACT

The language SUMMER is intended for the solution of problems in text pro­

cessing and string manipulation. The language consists of a small kernel
which supports success-directed evaluation, control structures, recovery

caches and a data abstraction mechanism. It is shown how this kernel can be

extended to support simultaneous pattern matching in arbitrary domains.

KEY WJRDS & PHRASES: string manipulation, generalized pattern matching,

recovery caches, success-directed evaluation

* This report is intended for publication elsewhere.

1

1. INTRODUCTION

The language SUMMER has been designed for the solution of problems in

text processing and string manipulation. SUMMER consists of a relatively

small kernel which has been extended in several directions. The kernel sup­

ports:

integers

reals

strings

classes

files

procedure and operator definitions

success-directed evaluation

control structures

recovery caches

and has been extended with

arrays (sequences of values)

tables (associative memories)

pattern matching

string synthesis

Pattern matching has been completely integrated with the success-directed

expression evaluation mechanism. It will be shown that the operations in

the kernel are sufficient to allow generalization of pattern matching in two

directions:

- Simultaneous pattern matches can be expressed, which mutually affect each

other.

- Pattern matching needs no longer be restricted to the string domain.

An attempt is made to describe most (novel) features of SUMMER and

motivate their inclusion in the language. A simplified version of the pat­

tern matching extension is discussed in some detail. Sections are included

on related work and irnplementational issues.

2

2. SUCCESS-DIRECI'ED EVALUATION AND CONTROL STRUCTURES

The expression evaluation mechanism of SUMMER is somewhat unusual and

needs special attention. Expressions consist of a juxtaposition of opera­

tors (like addition: "+" or string concatenation: "I I") and operands (like

the numeric constant "10", the string constant "'abc'", the identifier "x"

or the procedure call "p(l0,x)"). Some operations can only deliver a value,

but others can potentially fail. If an expression fails, the evaluation of

the expression in which that operation occurs is aborted immediately and

failure is signalled to the construct in which the failing expression oc­

curs. Such a failure is a transient entity and must be captured at the mo­

ment it occurs. Three cases arise:

a. The syntactically enclosing construct is capable of handling the failure

itself. This is the case if the failing expression "E" occurs in con­

texts like:

if Ethen ••• else ••• fi

while E do ••• od

E I • • • (logical "or" operator)

b. The syntactically enclosing construct is not capable of handling the

failure itself, but is (perhaps dynamically) enclosed in a construct with

that capability, like:

E & •••

return(E)

(logical "and" operator)

(value from a procedure)

In this way failure can be passed to the caller of the procedure in which

the failing expression occurs (see below).

c. Neither of the above two cases applies. This results in abnormal program

termination with the error message "Undetected failure". In

x := read(input); print(x);

the call to the read procedure may fail (on end of file). This failure

will not be detected by the program itself and hence execution of the

program will be aborted.

3

This expression evaluation scheme was designed to be concise and power­

ful, but at the same time an attempt was made to protect the prograrmner

against undetected or unwanted failure.

Conciseness is obtained in two ways. First, by computing a value and a

failure signal in the same expression. This allows, for example

while line := read (input) do ••• od

instead of

while not eof(input)

do line:= read(input);

if io __ errors (input) then ••• fi;

od;

Second, by disregarding the source of failure and focussing attention on

the absence of failure (i.e. success) during the evaluation of the expres­

sion. Consider:

if (read (input) 11 read (input) -:/- expected

then

error ('Bad input')

fi

where "expected" has the expected input string as value. Three sources of

failure can be identified here: the two read operations and the inequality

test.

that

The prograrmner, however, is in most cases only interested in the fact

the input file does not conform to.his expectations. The above forrnu-

lation make:s this more clear than

4

Ll := read(input);

if eof(input) then error('Bad input')

else

fi

L2 := read(input);

if eof(input) I (Ll I I L2, expected)
then

error ('Bad input')

fi

In principle, this argtnnent works in two directions: since the source of

failure may be lost, the programmer may be misled about the actual source of

failure. It is our experience that this seldom happens and in all cases

where the distinction is important it can be expressed easily.

Protection is achieved by prohibiting undetected failure. This turns out

to be a frequent source of run-time errors, which always corresponds to

"forgotten" or "impossible" failure conditions. A direct consequence of

this protection scheme is that one can write assertions (i.e. expressions

which should never fail) in a program. A run-time error occurs if such an

assertion is violated.

Another noteworthy consequence of this evaluation mechanism is its abili­

ty to let a procedure report failure to any procedure which called it
(in)directly. This effect is obtained by adhering to the programming con­

vention that procedures have the form E1 & ••• & En. If one of the expres­

sions Ei fails, this failure is passed to the caller of the current pro­

cedure. If that calling procedure has tI?e same form, it will not handle the

failure itself but will pass it on to its caller. In this way, low-level

procedures need not be aware of failure at all and high-level procedures can

detect the failure and take appropriate measures. Some programming

languages have special facilities for handling exceptions of this kind; in

SUMMER they can be handled by the standard expression evaluation mechanism.

5

3. RECOVERY CACHES

For the solution of problems such as parsing languages with context­

sensitive or non-LL(l) grammars and heuristic searching, it is often neces­

sary to attempt a potential solution and to undo the effects of that attempt

if it is not successful. Many schemes have been proposed for the formula­

tion of such backtracking algorithms, but most involve either opaque control

structures or provide unsatisfactory control over modifications of the pro­

gram environment (i.e. global variables).

The recovery cache [1], which was invented to increase software reliabil­

ity has been adapted to act as a device for monitoring environment modifica­

tions in backtrack-liable situations. Recovery caches are used both at the

conceptual and at the implementational level. A cache consists of (name,

value) pairs. The name part may refer to simple variables, array elements

and class components (see section 4). When backtracking may be necessary a

new cache is created and from that moment on all assignments to variables

and input/output operations are monitored. Whenever an assignment is about

to be made to a variable whose name does not yet occur in the cache, its

name and value before the assignment are entered in the cache. Modifica­

tions of input/output streams are registered similarly. If the attempt is

successful and no backtracking is necessary, the information in the cache is

discarded but in case of failure, the information in the cache is used to

restore the environment to the state as it was at the moment that the cache

was created. Since recovery caches may be nested, "discarding" may mean:

merging the information in the current cache with that in the previous

cache. In this manner, the information in the previous cache is still suf­

ficient to describe all modifications which were made since that cache was

created. There are two exceptions to these rules:

- Input/output operations on the standard input/output stream are not

recovered. In many situations it is not desired to recover these streams

and in some cases the meaning of such a recovery may be non-obvious or

confusing. In SUMMER these streams can be used to control and monitor

the backtracking process interactively.

6

- The local variables of the procedure in which the cache was created are
not recovered. In this way information about the reason of failure can

survive the failure itself.

At the progranuning language level, caches are introduced by the construct

In a first approximation this expression is equivalent to

Before the evaluation of each (Ei & E0) starts, a new cache is created. If

the evaluation of this subexpression succeeds, the cache is discarded and

the whole expression succeeds. If the evaluation fails, the environment is

restored from the cache and evaluation of (Ei+l & E0) is attempted in the
same manner. The whole expression fails if none of the subexpressions

succeeds. Completely automatic backtracking is achieved by nested try con­
structs. This simple scheme is very well suited for the formulation of

problems occurring in pattern matching as will be seen in section 5.

4. PRCX::EDURES, OPERA'IORS AND CLASSES

The remaining features of the SUMMER kernel are now stnnmarized.

Procedures have a fixed number of parameters, which are passed by value.
Pr.ocedures may either fail or return zero or more values. Hence it is pos­

sible to return more then one result value.

An operator is defined by associating·a user-defined operator symbol with

a procedure with one or two parameters.

Classes are the only available data structuring mechanism and are a gen­

eralization of the SIMULA [2] class. A class declaration consists of:

- A class name and formal parameters. The class name is used as name for

the creation procedure for objects belonging to this class. The formal
parameters are used to provide initial values for that object.

- Fields, which are either used to store information related to the object

(e.g. the real and imaginary parts of a "complex number" class object),

7

or information local to the class object (the stack pointer in a "stack"

class object). Fetch and store access to fields can be controlled com­

pletely by associating fetch and store procedures with each field.

- Access procedures and operators defining the operations that can be per-

formed on objects of this class.

The components of a class are accessed by means of the "dot" notation. The

operators which are defined in a class can be used in infix notation. The

type of the left operand of an operator is used to disambiguate overloaded

operators, i.e. operators which are defined in more than one class.

One, final, concept must be introduced before we can turn our attention
to some pattern matching applications. One of the advantages of string pat­

tern matching languages is that they liberate programmers from the necessity

to repeat a current subject string and cursor position in each pattern

matching operation. In SUMMER an attempt is made to provide such a facility

in general.

In sequences of the form:

a:= S.x; b := S.y; c := s.z(l0)

the prefix "S. 11 could be factored out. Pascal uses the construct

with S do begin ••• end

for this purpose. All field references that occur inside begin ••• end are

automatically prefixed with 11S. 11 • In this notation the example would read:

withs do begin a:= x; b := y; c := z(l0) end

But this is not sufficient for the applications we have in mind, where it is

not unusual that many procedures operate on the same class object. This is

illustrated by a set of parsing procedures that operate on one subject

string. The Pascal approach has the disadvantage that this common class ob­

ject must be passed as argument to all procedures (or must be assigned to a

global variable) and that all procedure bodies must be surrounded by a with

construct. This problem can be circumvented as follows. The construct (1)

(1) Inspired by the "scan S using E" construct in Icon [3].

8

scan S for E rof

declares a completely new variable each time the construct is encountered at

run-time and assigns the class object s to that new variable. All oc­

currences of fields from the class to which S belongs are now prefixed with

this new global variable in the same way as is done in Pascal. The scan

construct is more general since it affects all expressions and procedures

which can be evaluated directly or indirectly from the body of the scan con­

struct. In Pascal this effect is restricted to the expressions which are
statically enclosed in the body of the with construct. If the scan con­

struct is used in a nested fashion, then the previous value of the new glo­

bal variable is saved and restored properly on exit from the current scan

construct. This also applies to the case that the scan construct is left

prematurely by means of a return statement.

5. A PA'ITERN MATCHING EXTENSION

5.1. String Pattern Matching

Now we will show how a string pattern matching system can be build on top

of the SUMMER kernel. Pattern matching is done on a string subject which is

indexed by an integer cursor. For the sake of this discussion a very simple

system will be defined, which only supports the following three functions:

lit(S): literally recognize the string S. If S occurs as substring in the

subject at the current cursor position, then deliver Sas value and move
the cursor beyond S. Otherwise report failure.

break(S): recognize a string of characters not occurring in S followed by

one terminating character which does occur in S. If such a string can be

found starting at the current cursor position then deliver that string

(without the terminating character) as value and move the cursor to the

terminating character. Otherwise report failure.

span(S): recognize a non-empty string of characters all of which must occur

ins. If such a string occurs as substring in the subject at the current

cursor position, then deliver that string as value and move the cursor

9

beyond it. Otherwise report failure. (Span is added to allow more in­

teresting examples, its implementation will not be shown here.)

The followini~ class definition implements this pattern matcher:

class scan_string(subject)

begin var cursor := 0;

proc lit(s)

(if cursor+ size(s) > size(subject) I

s i substr(subject,cursor,cursor+size(s))

then

fret.urn

else

failure return#

cursor :=cursor+ size(s);

return(s)

fi

) ;

proc break(s)

) ;

var newcursor := cursor, result;

for newcursor in [cursor: size(subject)]

do

for c ins do

if c = subject[newcursor] then

fi

od

od;

freturn

result:= substr(subject,cursor,newcursor);

cursor:= newcursor;

return(result)

proc span(s) (# similar to break#);

end class scan_string;

10

The following example illustrates how identifiers starting with the letter

"X" can be recognized:

proc x_identifier(s)

(var t := scan_string(s);

t.lit('X') & (t.span(letgit) It.lit("))

(In all examples we assume that "letter", "digit" and "letgit" have ap­

propriate values.) Note that the normal logical operators"&" and "I" are

used for combination. Hence there will be no backtracking, reversal of ef­

fects or whatsoever.

This example can be written in a more concise form if we use the scan

construct:

proc X_identifier(s)

scan scan_string(s)

for
lit ('X') & (span (letgit)

rof

lit("))

A final example may illustrate the use of the value delivered by the pat­

tern matching procedures. The problem is to extract all letters from a

given string. For example "a,b,c" gives "abc":

proc extract_letter(s)

(var result:='';

scan scan_string(s) for

while break(letter) & (result:= result I I span(letter))

do# empty statement# od

rof;

return (result)

In SUMMER pattern matching and backtracking have been separated complete­

ly. It came as a shock to us that the vast majority of pattern matching

problems, ~ had previously solved !?Y means of implicit backtracking, could
be solved without any backtracking at all! This suggests that the close in­

teraction between pattern matching and backtracking, as can be found in many
languages, should be reconsidered.

11

Now we will address the question how pattern matching with automatic

backtracking can be obtained. Consider the expression:

(lit('ab') I lit('a')) & lit('bc')

In the pattern matcher developed above, the alternative lit('a') is discard­

ed as soon as a subject string starting with "ab" is encountered. The

string 11abc 11 can not be recognized in this way. But if we rewrite this ex­

pression as

try lit('ab'), lit('a')

until

lit('bc')

endtry

then the recovery cache mechanism restores the initial cursor value automat­

ically and tries the second alternative if lit('bc') fails. No special at­

tention needs to be given to the cursor: it is an ordinary variable which is

saved and restored by the recovery cache mechanism!

5.2. Generalized Pattern Matching

In most pattern matching systems there is only one subject string in­

volved in the pattern match. This restriction can be removed without intro­

ducing any new concepts as an example will show. The following (rather ar­

tificial) problem is to ensure that two strings Sl and S2 conform to the

following rules:

a. Sl is of the form c1;c2; ••• ;cn; where_ci is a (perhaps empty) sequence of

arbitrary characters other than the character ';'. Some examples are:

'a;b; ', 1 21! ;7a;' and 'ab;cde;f; 1 •

b. For a given Sl, S2 has the form d1d2 ••• dn, and either di= ci or

di = rev1=rse (ci) holds. Acceptable values for S2 with Sl equal to

'ab;cde;f;' are 'a.bcdef', 'abedcf', 'bacdef' and 'baedcf'.

The following program performs this check:

12

sl := scan_string(Sl);

s2 := scan_string(S2);

scan sl for

while (c := break(';')) & lit(';')

do

od

rof;

if not scan s2 for lit(c) I lit(reverse(c))

rof

then

error('check fails')

fi

if sl.cursor r size(Sl) I s2.cursor r size(S2)

then

error('check fails')

fi

Each scan_string object maintains its own cursor. Note how the cursor

value of s2 survives each evaluation of the innermost scan construct. This

allows the innermost pattern match to continue where it left of the previous

time.

From the preceding paragraphs it will be clear that pattern matching as

presented here, does not depend on the fact that strings are used as the

basic unit of recognition. One can, for example, easily imagine pattern

matching in an array of strings. The "cursor" must then be replaced by a

pair of values to maintain the current position and basic scanning pro­

cedures like xlit, ylit, xspan and yspan must be defined. It may be expect­

ed that a system for the recognition of two-dimensional line-drawings, like

ESP3 [4], can be defined in a straightforward manner using the primitives

from the SUMMER kernel.

13

6. IMPLEMENTATION

An implementation of SUMMER is near completion and runs under the UNIX

(1) operating system [5]. This implementation consists of a two pass can­

piler (written in SUMMER) which transforms source programs into a rather

high-level abstract machine code. This abstract machine code is then exe­

cuted by an interpreter written in C [6]. Extensive facilities are provided

for program profiling and symbolic debugging.

7. REIATED ¾ORK

SUMMER is the successor of SPRING [7], a language which had the same

design goals, but lacked the simplicity and generality achieved in SUMMER.

Both languages were inspired by and profited from ideas in SNOBOL4 [8] and

SLS [9]. SUMMER was also influenced by Icon [3]. We had already formulated

several ideas for the integration of pattern matching and expression evalua­

tion, but the solution finally adopted in SUMMER was influenced by Icon.

There are important differences too. For example, in Icon most pattern

matching procedures deliver integer values corresponding to the position to

which they~ move the cursor. Next the cursor has to be moved explicitly.

This operation delivers the substring between successive cursor positions as

value. In SUMMER all pattern matching procedures deliver the recognized

substring as value and move the cursor. In this way the cursor needs hardly

ever be manipulated by the prograrrmer. The pattern matching model in SUMMER

is more general, since it allows simultaneous pattern matches and pattern

matching in domains other than strings.

The evaluation-model which prohibits undetected failure, the use of

recovery caches and the separation of pattern matching and backtracking are

new.

(1) UNIX is a Trademark of Bell Laboratories.

14

ACKNOWLEDGEMENT

Design and implementation of SUMMER were realized in close cooperation

with Marleen Sint.-

REFERENCES

[1] Randell, B., System structure for software fault tolerance, in Proceed­

ings of an International conference on reliable software, SIGPLAN no­

tices, 10(1975)6, 437-449.

[2] Dahl, o-J, Myhrhaug, B. & Nygaard, K., SIMULA Information, Conmon Base

Language, Norwegian Computing Centre, S-22, 1970.

[3] Griswold, R.E. & Hanson, D.R., Reference Manual for the Icon Programming

Language, TR 79-1, The University of Arizona, Tucson, Arizona, 1979.

[4] Shapiro, L.G., ESP3: a language for the generation, recognition and

manipulation of line drawings, {thesis), TR 74-04, University of Iowa,

1974.

[5] Ritchie, D.M. & Thompson, K., The UNIX time-sharing system, Conmunica­

tions of the ACM, 17(1974)7, 365-375.

[6] Kernighan, B.R. & Ritchie, D.M., The C Programming Language, Prentice­

Hall, 1978.

[7] Klint, P., Pattern Matching in SPRING, in Van Vliet, J.C. {ed), Collo­

quium Capita Datastructuren, MC syllabus 37, 1978, 65-83.

[8] Griswold, R.E., Poage, J.F. & Polonsky, I.P., The SNOBOL4 programming

language, Second edition, Prentice~Hall, Englewood Cliffs, N.J., 1971.

[9] Griswold, R.E. & Hanson, D.R., An overview of the SL5 programming

language, SL5 project document S5LDlb, The University of Arizona, Tuc­

son, Arizona, October 9, 1976.

7

