
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J .A. BERGSTRA & J. V. TUCKER

IW 127/79

ON THE ADEQUACY OF FINITE EQUATIONAL METHODS
FOR DATA TYPE SPECIFICATION

Preprint

~
MC

DECEMBER

2e boerhaavestraat 49 amsterdam

P,un:ted at :the Ma;thema.t.i.c.ai. Cen:tlLe, 49, 2e BoeJthaave6.tJt.aa;t, Arn.6:teJLdam.

The Mathema.t.i.c.ai. Cen:tlLe, 6ounded :the 11-:th 06 FeblLwvr,y 1946, -U a non
p1Lo6U ,i.Ju.tUu:Uon a.-i.m,lng at :the plLomo.ti.on 06 pUILe mathema.t.i.C6 and .l:t6
applie,a,.ti.on6. I:t -U ~pon601Led by :the NetheJlia.nd6 GoveJLnmen:t :thlLou.gh :the
NetheJcia.nd6 OJr.gan.lza.t.i.on 601L :the Advancemen:t 06 PU/Le Re6ea1Lc,h (Z.W.O).

1980 Mathematics subject classification: 03D45, 03D80, 68B15

ACM-Computing Reviews-category: 4.34

*)
On the adequacy of finite equational methods for data type specification

by

**) J.A. Bergstra & J.V. Tucker

ABSTRACT

We report on theoretical investigations into the adequacy of equational

techniques for writing data type specification code pioneered in the litera

ture of Programming Methodology.

KEY WORDS & PHRASES: algebraic data types and data structures, equational

specifications with hidden functions and with hidden

sorts, computable and semicomputable algebras

*) This report reprints notes which appeared in ACM-SIGPLAN Notices 14 (11)
19791 13-18. It is not review.

**) Department of Computer Science, University of Leiden, Wassenaarseweg 80,
Postbus 9512, 2300 RA LEIDEN, The Netherlands.

1

INTRODUCTION

The algebraic theory of data type specification, associated with the names
J.V. GUTTAG, J.J. HORNING, S. ZILLES, B. LISK.CV, M. MAJSTER and the ADJ
GROUP, studies algebraic prescriptions (E,E) which are intended to explicit
ly define the operations E of a data type T, by means of algebriac proper
ties E, in any programming system or particular program in which T might
appear. A sound theoretical basis for this enterprise was provided in the
initial algebra formalism of the ADJ GROUP [2] although the actual speci
fication of even seemingly innocuous memory structures has proved problem
atical and occupied many of these pages since, for example, MAJSTER point
ed out that a natural kind of traversable stack failed to possess a finite,
equational specification [6] (see the most recent contribution of KAPUR [5]
and the references there cited; also MAJSTER [7]). One result of these and
other complications is a profusion of specification methods some apparent
ly ad hoc, specific to particular examples.

Recently, in SIGPLAN Notices, March '79, s. KAMIN introduced a useful
classification scheme to organise many of the methods so far applied and
summarised what was known about their comparative powers, asking the question:
Given two methods M,M' is M more generally applicable than M'? and, implicit
ly, the question: Does a given method M define all the data types one wants?
~ere we report on some investigations, [1], prompted by KAMIN's [4], speci
fically the theoretical and semantical problem of adequacy. This we carefully
formulate and settle the fact that everything one could imagine wanting to
specify can be done so by finite algeb~aic specifications. After recalling
a little algebra, in section one, we describe our technical approach to the
problem of adequacy, in sections two and three, and precisely state the re
sults obtained in section four.

1 • BACKGROUND MATERIAL

We address particularly those readers acquainted with the initial alge
bra methodology of the ADJ GROUP [2], and the useful survey KAMIN [4] though
we recall most of what we need of his classification scheme. We consider data
structures modelled as heterogeneous algebras in this way: a data structure
A can be thought to consist of a finite family A1, ••• ,An of component data
domains together with a finite family of operations of the form

A,µ X1, ••• ,Ak,µ
o = CJ : AA x ••• xAA -r All

1 k .
for some k E w, the natural numbers and Ai,µ E {1, ••. ,n}, 1 sis k; we use
the terms data .structure and algebra interchangably. The signature EA of a

2

data structure A consists of a name, called a sort, for each of its domains
and a standardised notation for each of its operations which names the sorts
on which they are defined.

Data structures are to be specified by means of a signature E and a
finite set of equations E over E where these equations are of two kinds.
Let TE be the E term algebra and TL[X1, ... ,Xn] the E polynomial algebra in
the variables X1,---,Xn- An identity t=t' is a simple equation over E if
t,t' E TE and is called a (polynomial) equation over E if t,t' E Tr[x1 , ••• ,Xn].
Given a pair (E,E) one proceeds to construct a certain initial algebra TEE
as a factor algebra of Tr by the smallest congruence on TE identifying ali
terms in Tr identified by E.

A has finite, simple equational specification (E,E) if Eis a finite
set of simple equations over E and Tr,E ~A.Similarly, A has finite, equa
tional spcification {E,E) if Eis a finite set of polynomial equations over
E and Tr,E ~ A. KAMIN abbreviates thes:e (F,S,N) and {F,V,N) specifications
respectively, where N stands for no hidden operations or hidden sorts, that
is, E = EA.

The {F,S,N) specifications are rather weak {see 4.1) while the (F,V,N)
specifications are very powerful, admitting all kinds of complicated, non
constructive structures, still they, nor the (F,C,N) specifications of
ADJ[10], are adequate, so to consider hidden operators and structures is
quite natural and, in any case, cannot be avoided; we leave these defini
tions until section four.

2. DATA TYPES AND DATA STRUCTURES

My own pet notion is that in the world of human thought generally, and
in physical science particularly, the most important and most fruit
ful concepts are those to which it is impossible to attach a well-de
fined meaning.

H.A. KRAMERS (1947)

Whatever a data type• is, we shall assume it is given a syntactical defi
nition in any programming language or system, or particular program in which
it appears. Moreover we assume it is structured in that it possesses various
operations E, explicitly defined by a piece of program E, with the result
that if a data type. appears in a program P then the computations of Pon
various inputs will generate a class K,(P) of (in general, infinite) data
structures A of type• which compl~tely·aetermines the semantics of the type
T as it is defined in P by (E,,E,)*. The problem of algebraic specification
is to design pairs (E,E) which put (ET,E,) into an algebraic normal form so
that Kr E(P) represents sufficiently well the desired semantics K (P). Ob
viously: the requirement that Ebe finite is highly desirable**.•

A discussion of the adequacy of any method of data type specification
.rests inevitably on a sound delimitation of the semantical limitations of
., and to present a convining theoretical statement on the adequacy of the

*

**

We use data structure in the third sense of data type appearing in the
list of D. GRIES [3,p.267].

If Eis not finite then it will contain a piece of program to generate
sufficiently much of E as required.

3

finite, equational methods we shall choose an extremely general measure
(fro~ the practical point of view) of the acceptability of a data structure
A, and address the hardest question of specifying its type when KT= {A}:
the semantics of Tis arbitrary but must be uniquely characterised. First
we must remark on a basic algebraic property of data structures which may
be a little confused in some of the literature.

Let A be a data structure. It is reasonable to suppose it is finitely
generated in any computation in which it appears by initial values
a 1 , .•• ,an which are either fixed by the type or are presented to the (speci
fication of the) type as input. In either case the signature of any speci
fication (E,E) for A, via its type, should carry names x 1 , ••• ,xn for other
wise programming with the specification would not allow access to all of A.
(Note that running a program scheme over an algebra A computes solely with
in the subalgebra of A finitely generated by its input from A.) This means
that if a structure A finitely generated by a 1 , •.• ,an is considered accept
able as a data structure then one should ask for a specification for it in
the form (A,a1,••·,an): specifying an algebra prime in the sense that it has
no proper subalgebras or, equivalently, that it is generated by the con
stants named in its signature. This is implicit in the direct specifications
of section one but unclear in the case of hidden function and hidden sort
specifications, see section four.

3. COMPUTABLE AND SEMICOMPUTABLE DATA STRUCTURES

Our semantic measures of adequacy are invested in the concepts of
finite, computable and semicomputable algebras. We define these latter two
categories in a moment. Their formulations are based upon work of M.O. RABIN
[9] and A.I. MAL'CEV [8] devoted to inventing a theory of computable alge
braic systems and they represent a distinct improvement on other definitions,
such as MAJSTER's definition of a computable data type in [7], because they
are completely formal and give concepts which are isomorphism invariant:
the hall-mark of genuine algebraic properties and indispensible in our
treatment of the adequacy problem.

A data structure A is said to be effectively presented when correspond
ing to its family of component data domains A1, ••. ,An there are mutually
disjoint recursive sets n1 , •.• ,Qn, Qi cw for 1 $ i $ n, and surjections
ai: Qi ➔ Ai, 1 $ i $ n, such that for each operation aA,µ of A there is a
recursive tracking function at,µ which commutes the following diagram:

---Q
µ

Now, A is a computable data structure if for each 1 $ i $ n the rela
tion -ai' defined on Qi by x = a-Y iff ai(y) in Ai, is recursive. And A

J.

is a semi computable data structure if each of these =a· is recursively
J.

enumerable.

4

Three facts are worthy of mention here: (i) every countable data struc
ture possesses an effective coordinatisation, (ii) if A is computable, or
semicomputabl,e, and B is isomorphic to A, then B is computable, or semi
computable, and (iii) if A is :i. finitely genera tee. data Gtructure, computable
or semicomputable, under coordinatisations a = (QC;,a..) 1 . and

B i i 1n
S = (Q. ,S.)l<"< then a and Bare recursively equivalent in the sense that

l. l. -.L-n

for each 1 $ i $ n there exist recursive functions fi,gi which cormnute the
diagram A.

l.

a.I fi1/
ri,~ < >o~ l. l.

gi
See I,L,U, 'CEV [8].

4. ADEQUACY

4 .1. F'inite data structures

It is not difficult to show that if A is a finite algebra, finitely
generated by a 1 , ... ,an, then (A,a1 , ... ,an) has a (F,S,N) specification.
And obviously some infinite structures have too: for example, w = (w;0,+1)
where +l(n) = n+l is specified by ({Q_,~},0) where .Q_ is a const~nt and~ a
unary function symbol. We offer this characterisation of those algebras
possessing (F,S,N) specifications which, although slightly clumsy, does
make the point that if a data structure has a (F,S,N) specification then
it is necessarily computable and is almost isomorphic to a term algebra
and so is essentially a tree structure.

i i
Let I be a signature containing n sorts and let c 1 , ••• ,cm· be the mi

constants of sort i in r, 1 $ i $ n. Let A be any algebra withl.signature
I:. The signature diagram of A is the set D(A) of all simple equations and
inequalities of the following forms which are valid in A:

,/',µ(/1, ..• ,/k) = c~
1 1 l.k l.

A,µ A1 Ak Jcµ a (c. , ... ,c.) , .
1 1 1.k 1.

for 1 $ Aj,µ s n, 1

Let K(D(A)) be
in D (A) •

$ ij $ mA., 1 $ j $ k and each k-ary operation of I.
J

the class of all I algebras satisfying all the formulae

THEOREM. Let A be an algebra finitely generated by a1, ••• ,an. Then the fol
lo,ving are equivalent:
(i) (A,a1 , ••• ,an) has a (F,S,N) specification;
(ii) there ex.ist b 1 , ... ,bm E: A such that B = (A,a1, •.• ,an,bt, ••• ,bm} is

initial in K(D(B}).

4.2. Computab_Ie data structures

Since (F,V,N}, and (F,C,N), specifications are inadequate for the de
finition of all computable data structures, in order to preserve the finite
ness of specifications one is lead to consider specifications involving

5

hidden operators and even hidden sorts. The idea here is that the construc
tion of the data structure A involves the construction of a data structure
B having a (F,V,N) specification and which "contains" the data structure A
and from which A is easily "removed". KAMIN identifies two distinct inter
pretations of containment/removal, to explain them we introduce these con
structions: let A be an algebra and EA Jr, then AIE denotes the algebra
with domains those of A named by the sorts of rand operations only those
of A named in E;

<A>r denotes the prime subalgebra of Air•

KAMIN [4,p.37] defines a data structure A to have a finite, equational
hidden function specification (i) under the usual interpretation or (ii)
under the subalgebra interpretation if there is a r J EA, containing exact
ly the sorts of rA, and a finite set of equations E over r such that (i)
Tr,EjEA ~ A or (ii) <TE,E>EA ~ A respectively. His notation (F,V,HF) refers

to hidden function specifications in the first sense.

In view of our discussion concerning primeness in section two, we might
be expected to rely on the subalgebra interpretation, observe, however, that
if A is prime then a specification of the usual kind is at the same time one
of the subalgebra kind hence we design this concept:

A data structure A has a finite, equational hidqen enrichment specifi
cation if there is a r ~ rA, containing exactly the sorts of EA, and a finite
set of equations E over r such that Tr,ElrA = <TE,r>rA ~ A; this we abbre-

viate a (F,V,HE) specification.

This theorem shows that (F,V,HE) specifications are adequate for all
data structures arising in Computer Science.

THEOREM. Let A be a computable algebra finitely generated by a 1 , ••• ,an. Then
(A,a1,·••1an) has a (F,V,HE) specification.

4.3. Semicomputable data structures

Let A be a finitely generated algebra. Then A is said to possess a
finite, equational hidden enrichment by sorts specification if there is a
r ~ EA and a finite set of equations E over Tr such that

T I = <T > ~ A;
E,E EA E,E EA

this we abbreviate by saying A has a (F,V,HES) specification.

THEOREM. Let A be a semicomputable algebra finitely generated by a1, ••• ,an.
Then (A,a1, ••• ,an) has a (F,V,HES) specification.

An open question is: Does every finitely generated semicomputable al
gebra have a (F,V,HE) specification?

REFERENCES

[1] J.A. BERGSTRA & J.V. TUCKER, Algebraic specifications of computable and
semicomputable data structures, Mathematical Centre, Computer
Science Report, Amsterdam, July 1979. (IW'l'l5).

6

[2] J.A. GOGUEN, J.W. THATCHER, E.G. WAGNER, An initial algebra approach
to the specification, correctness and implementation of abstract
data types, in R.T. Yeh (ed.) Current trends in programming
methodology. IV, Data structuring, Prentice Hall, Englewood Cliffs,
New Jersey, 1978.

[3] o: GRIE5 {ed~) Programming methodology, Springer-Verlag, New York, 1978.

[4] S. KAMIN, Some definitions for algebraic data type specifications,
SIGPLAN Notices .!.!(3) (1979) 28-37.

[SJ D. KAPUR, Specifications of Majster's Traversable Stack and Veloso's
Traversable Stack, SIGPLAN Notices .!.±(5) (1979) 46-53.

[6] M.E. MAJSTER, Limits of the "algebraic" specification of abstract data
types, SIGPLAN Notices _!l.(10) (1977) 37-42.

[7] ______ , Data types, abstract data types and their specification
problem, Theoretical Computer Science.§_ (1979) 89-127.

[8] A.I. MAL'CEV, Constructive algebras, I., Russian Mathematical Surveys
.!.§. (1961) 77-129.

[9] M.O. RABIN, Computable algebra, general theory and the theory of com
putable fields, Transactions American Mathematical Society 95
(1960) 341-360.

[10] J.W. THATCHER, E.G. WAGNER, J.B. WRIGHT, Specification of abstract data
types using conditional axioms, TBM Research Report, RC 6214,
Yorktown Heights, 1976.

