
AFDELING INFORMATICA 

stichting 

mathematisch 

centrum 

(DEPARTMENT OF COMPUTER SCIENCE) 

J .A. BERGSTRA & J. V. TUCKER 

IW 127/79 

ON THE ADEQUACY OF FINITE EQUATIONAL METHODS 
FOR DATA TYPE SPECIFICATION 

Preprint 

~ 
MC 

DECEMBER 

2e boerhaavestraat 49 amsterdam 



P,un:ted at :the Ma;thema.t.i.c.ai. Cen:tlLe, 49, 2e BoeJthaave6.tJt.aa;t, Arn.6:teJLdam. 

The Mathema.t.i.c.ai. Cen:tlLe, 6ounded :the 11-:th 06 FeblLwvr,y 1946, -U a non­
p1Lo6U ,i.Ju.tUu:Uon a.-i.m,lng at :the plLomo.ti.on 06 pUILe mathema.t.i.C6 and .l:t6 
applie,a,.ti.on6. I:t -U ~pon601Led by :the NetheJlia.nd6 GoveJLnmen:t :thlLou.gh :the 
NetheJcia.nd6 OJr.gan.lza.t.i.on 601L :the Advancemen:t 06 PU/Le Re6ea1Lc,h (Z.W.O). 

1980 Mathematics subject classification: 03D45, 03D80, 68B15 

ACM-Computing Reviews-category: 4.34 



* ) 
On the adequacy of finite equational methods for data type specification 

by 

**) J.A. Bergstra & J.V. Tucker 

ABSTRACT 

We report on theoretical investigations into the adequacy of equational 

techniques for writing data type specification code pioneered in the litera­

ture of Programming Methodology. 

KEY WORDS & PHRASES: algebraic data types and data structures, equational 

specifications with hidden functions and with hidden 

sorts, computable and semicomputable algebras 

* ) This report reprints notes which appeared in ACM-SIGPLAN Notices 14 (11) 
19791 13-18. It is not review. 

**) Department of Computer Science, University of Leiden, Wassenaarseweg 80, 
Postbus 9512, 2300 RA LEIDEN, The Netherlands. 



1 

INTRODUCTION 

The algebraic theory of data type specification, associated with the names 
J.V. GUTTAG, J.J. HORNING, S. ZILLES, B. LISK.CV, M. MAJSTER and the ADJ 
GROUP, studies algebraic prescriptions (E,E) which are intended to explicit­
ly define the operations E of a data type T, by means of algebriac proper­
ties E, in any programming system or particular program in which T might 
appear. A sound theoretical basis for this enterprise was provided in the 
initial algebra formalism of the ADJ GROUP [2] although the actual speci­
fication of even seemingly innocuous memory structures has proved problem­
atical and occupied many of these pages since, for example, MAJSTER point­
ed out that a natural kind of traversable stack failed to possess a finite, 
equational specification [6] (see the most recent contribution of KAPUR [5] 
and the references there cited; also MAJSTER [7]). One result of these and 
other complications is a profusion of specification methods some apparent­
ly ad hoc, specific to particular examples. 

Recently, in SIGPLAN Notices, March '79, s. KAMIN introduced a useful 
classification scheme to organise many of the methods so far applied and 
summarised what was known about their comparative powers, asking the question: 
Given two methods M,M' is M more generally applicable than M'? and, implicit­
ly, the question: Does a given method M define all the data types one wants? 
~ere we report on some investigations, [1], prompted by KAMIN's [4], speci­
fically the theoretical and semantical problem of adequacy. This we carefully 
formulate and settle the fact that everything one could imagine wanting to 
specify can be done so by finite algeb~aic specifications. After recalling 
a little algebra, in section one, we describe our technical approach to the 
problem of adequacy, in sections two and three, and precisely state the re­
sults obtained in section four. 

1 • BACKGROUND MATERIAL 

We address particularly those readers acquainted with the initial alge­
bra methodology of the ADJ GROUP [2], and the useful survey KAMIN [4] though 
we recall most of what we need of his classification scheme. We consider data 
structures modelled as heterogeneous algebras in this way: a data structure 
A can be thought to consist of a finite family A1, ••• ,An of component data 
domains together with a finite family of operations of the form 

A,µ X1, ••• ,Ak,µ 
o = CJ : AA x ••• xAA -r All 

1 k . 
for some k E w, the natural numbers and Ai,µ E {1, ••. ,n}, 1 sis k; we use 
the terms data .structure and algebra interchangably. The signature EA of a 
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data structure A consists of a name, called a sort, for each of its domains 
and a standardised notation for each of its operations which names the sorts 
on which they are defined. 

Data structures are to be specified by means of a signature E and a 
finite set of equations E over E where these equations are of two kinds. 
Let TE be the E term algebra and TL[X1, ... ,Xn] the E polynomial algebra in 
the variables X1,---,Xn- An identity t=t' is a simple equation over E if 
t,t' E TE and is called a (polynomial) equation over E if t,t' E Tr[x1 , ••• ,Xn]. 
Given a pair (E,E) one proceeds to construct a certain initial algebra TEE 
as a factor algebra of Tr by the smallest congruence on TE identifying ali 
terms in Tr identified by E. 

A has finite, simple equational specification (E,E) if Eis a finite 
set of simple equations over E and Tr,E ~A.Similarly, A has finite, equa­
tional spcification {E,E) if Eis a finite set of polynomial equations over 
E and Tr,E ~ A. KAMIN abbreviates thes:e (F,S,N) and {F,V,N) specifications 
respectively, where N stands for no hidden operations or hidden sorts, that 
is, E = EA. 

The {F,S,N) specifications are rather weak {see 4.1) while the (F,V,N) 
specifications are very powerful, admitting all kinds of complicated, non 
constructive structures, still they, nor the (F,C,N) specifications of 
ADJ[10], are adequate, so to consider hidden operators and structures is 
quite natural and, in any case, cannot be avoided; we leave these defini­
tions until section four. 

2. DATA TYPES AND DATA STRUCTURES 

My own pet notion is that in the world of human thought generally, and 
in physical science particularly, the most important and most fruit­
ful concepts are those to which it is impossible to attach a well-de­
fined meaning. 

H.A. KRAMERS (1947) 

Whatever a data type• is, we shall assume it is given a syntactical defi­
nition in any programming language or system, or particular program in which 
it appears. Moreover we assume it is structured in that it possesses various 
operations E, explicitly defined by a piece of program E, with the result 
that if a data type. appears in a program P then the computations of Pon 
various inputs will generate a class K,(P) of (in general, infinite) data 
structures A of type• which compl~tely·aetermines the semantics of the type 
T as it is defined in P by (E,,E,)*. The problem of algebraic specification 
is to design pairs (E,E) which put (ET,E,) into an algebraic normal form so 
that Kr E(P) represents sufficiently well the desired semantics K (P). Ob­
viously: the requirement that Ebe finite is highly desirable**.• 

A discussion of the adequacy of any method of data type specification 
.rests inevitably on a sound delimitation of the semantical limitations of 
., and to present a convining theoretical statement on the adequacy of the 

* 

** 

We use data structure in the third sense of data type appearing in the 
list of D. GRIES [3,p.267]. 

If Eis not finite then it will contain a piece of program to generate 
sufficiently much of E as required. 
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finite, equational methods we shall choose an extremely general measure 
(fro~ the practical point of view) of the acceptability of a data structure 
A, and address the hardest question of specifying its type when KT= {A}: 
the semantics of Tis arbitrary but must be uniquely characterised. First 
we must remark on a basic algebraic property of data structures which may 
be a little confused in some of the literature. 

Let A be a data structure. It is reasonable to suppose it is finitely 
generated in any computation in which it appears by initial values 
a 1 , .•• ,an which are either fixed by the type or are presented to the (speci­
fication of the) type as input. In either case the signature of any speci­
fication (E,E) for A, via its type, should carry names x 1 , ••• ,xn for other­
wise programming with the specification would not allow access to all of A. 
(Note that running a program scheme over an algebra A computes solely with­
in the subalgebra of A finitely generated by its input from A.) This means 
that if a structure A finitely generated by a 1 , •.• ,an is considered accept­
able as a data structure then one should ask for a specification for it in 
the form (A,a1,••·,an): specifying an algebra prime in the sense that it has 
no proper subalgebras or, equivalently, that it is generated by the con­
stants named in its signature. This is implicit in the direct specifications 
of section one but unclear in the case of hidden function and hidden sort 
specifications, see section four. 

3. COMPUTABLE AND SEMICOMPUTABLE DATA STRUCTURES 

Our semantic measures of adequacy are invested in the concepts of 
finite, computable and semicomputable algebras. We define these latter two 
categories in a moment. Their formulations are based upon work of M.O. RABIN 
[9] and A.I. MAL'CEV [8] devoted to inventing a theory of computable alge­
braic systems and they represent a distinct improvement on other definitions, 
such as MAJSTER's definition of a computable data type in [7], because they 
are completely formal and give concepts which are isomorphism invariant: 
the hall-mark of genuine algebraic properties and indispensible in our 
treatment of the adequacy problem. 

A data structure A is said to be effectively presented when correspond­
ing to its family of component data domains A1, ••. ,An there are mutually 
disjoint recursive sets n1 , •.• ,Qn, Qi cw for 1 $ i $ n, and surjections 
ai: Qi ➔ Ai, 1 $ i $ n, such that for each operation aA,µ of A there is a 
recursive tracking function at,µ which commutes the following diagram: 

---Q 
µ 

Now, A is a computable data structure if for each 1 $ i $ n the rela­
tion -ai' defined on Qi by x = a-Y iff ai(y) in Ai, is recursive. And A 

J. 

is a semi computable data structure if each of these =a· is recursively 
J. 

enumerable. 
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Three facts are worthy of mention here: (i) every countable data struc­
ture possesses an effective coordinatisation, (ii) if A is computable, or 
semicomputabl,e, and B is isomorphic to A, then B is computable, or semi­
computable, and (iii) if A is :i. finitely genera tee. data Gtructure, computable 
or semicomputable, under coordinatisations a = (QC;,a..) 1 . and 

B i i $1$n 
S = (Q. ,S.)l<"< then a and Bare recursively equivalent in the sense that 

l. l. -.L-n 

for each 1 $ i $ n there exist recursive functions fi,gi which cormnute the 
diagram A. 

l. 

a.I fi1/ 
ri,~ < >o~ l. l. 

gi 
See I,L,U, 'CEV [ 8]. 

4. ADEQUACY 

4 .1. F'inite data structures 

It is not difficult to show that if A is a finite algebra, finitely 
generated by a 1 , ... ,an, then (A,a1 , ... ,an) has a (F,S,N) specification. 
And obviously some infinite structures have too: for example, w = (w;0,+1) 
where +l(n) = n+l is specified by ({Q_,~},0) where .Q_ is a const~nt and~ a 
unary function symbol. We offer this characterisation of those algebras 
possessing (F,S,N) specifications which, although slightly clumsy, does 
make the point that if a data structure has a (F,S,N) specification then 
it is necessarily computable and is almost isomorphic to a term algebra 
and so is essentially a tree structure. 

i i 
Let I be a signature containing n sorts and let c 1 , ••• ,cm· be the mi 

constants of sort i in r, 1 $ i $ n. Let A be any algebra withl.signature 
I:. The signature diagram of A is the set D(A) of all simple equations and 
inequalities of the following forms which are valid in A: 

,/',µ(/1, ..• ,/k) = c~ 
1 1 l.k l. 

A,µ A1 Ak Jcµ a (c. , ... ,c. ) , . 
1 1 1.k 1. 

for 1 $ Aj,µ s n, 1 

Let K(D(A)) be 
in D (A) • 

$ ij $ mA., 1 $ j $ k and each k-ary operation of I. 
J 

the class of all I algebras satisfying all the formulae 

THEOREM. Let A be an algebra finitely generated by a1, ••• ,an. Then the fol­
lo,ving are equivalent: 
(i) (A,a1 , ••• ,an) has a (F,S,N) specification; 
(ii) there ex.ist b 1 , ... ,bm E: A such that B = (A,a1, •.• ,an,bt, ••• ,bm} is 

initial in K(D(B}). 

4.2. Computab_Ie data structures 

Since (F,V,N}, and (F,C,N), specifications are inadequate for the de­
finition of all computable data structures, in order to preserve the finite­
ness of specifications one is lead to consider specifications involving 
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hidden operators and even hidden sorts. The idea here is that the construc­
tion of the data structure A involves the construction of a data structure 
B having a (F,V,N) specification and which "contains" the data structure A 
and from which A is easily "removed". KAMIN identifies two distinct inter­
pretations of containment/removal, to explain them we introduce these con­
structions: let A be an algebra and EA Jr, then AIE denotes the algebra 
with domains those of A named by the sorts of rand operations only those 
of A named in E; 

<A>r denotes the prime subalgebra of Air• 

KAMIN [4,p.37] defines a data structure A to have a finite, equational 
hidden function specification (i) under the usual interpretation or (ii) 
under the subalgebra interpretation if there is a r J EA, containing exact­
ly the sorts of rA, and a finite set of equations E over r such that (i) 
Tr,EjEA ~ A or (ii) <TE,E>EA ~ A respectively. His notation (F,V,HF) refers 

to hidden function specifications in the first sense. 

In view of our discussion concerning primeness in section two, we might 
be expected to rely on the subalgebra interpretation, observe, however, that 
if A is prime then a specification of the usual kind is at the same time one 
of the subalgebra kind hence we design this concept: 

A data structure A has a finite, equational hidqen enrichment specifi­
cation if there is a r ~ rA, containing exactly the sorts of EA, and a finite 
set of equations E over r such that Tr,ElrA = <TE,r>rA ~ A; this we abbre-

viate a (F,V,HE) specification. 

This theorem shows that (F,V,HE) specifications are adequate for all 
data structures arising in Computer Science. 

THEOREM. Let A be a computable algebra finitely generated by a 1 , ••• ,an. Then 
(A,a1,·••1an) has a (F,V,HE) specification. 

4.3. Semicomputable data structures 

Let A be a finitely generated algebra. Then A is said to possess a 
finite, equational hidden enrichment by sorts specification if there is a 
r ~ EA and a finite set of equations E over Tr such that 

T I = <T > ~ A; 
E,E EA E,E EA 

this we abbreviate by saying A has a (F,V,HES) specification. 

THEOREM. Let A be a semicomputable algebra finitely generated by a1, ••• ,an. 
Then (A,a1, ••• ,an) has a (F,V,HES) specification. 

An open question is: Does every finitely generated semicomputable al­
gebra have a (F,V,HE) specification? 
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