
AFDELJ NG INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE_)

J.A. BERGSTRA & J.V. TUCKER

IW 128/80

EQUATtONAL SPECIFICATIONS FOR COMPUTABLE DATA
TYPES: SIX HIDDEN FUNCTIONS SUFFICE AND OTHER
SUFFICIENCY BOUNDS

Preprint

~
MC

JANUARI

2e boerhaavestraat 49 amsterdam

P,un.:te.d at ~'.he. Mathema.:tic.a.f.. Ce.n:tJr.e., 49, Ze. BoeJc.haaveJ.,.:tJr.aa;t, Am-6.tell.dam.

The. Mathema,tic.a£ Ce.n:tJr.e., 6ounde.d .the. 11-.th 06 Fe.bJz.ua/1.y 1946, ,L6 a. non
pJz.o6U ,i,n;.,,tLtU-ti..on aim.lng at .the. pll.omo.tion oo pull.e. mathema.:tiC6 a.nd Lt6
a.pplic.a.:tion6,. 1.t ,L6 .t:iponJ.ioll.e.d by .the. Ne..theJrl.a.nd-6 Govell.nme.n.:t .thll.ough .the.
Ne..theJrl.a.nd-6 0Jz.ga.n-i.za.:tion 6oJz. .the. Adva.nc.eme.n.:t 06 PuJz.e. ReJ.,e.a.Jz.c.h (Z.W.O).

1980 Mathematics subject classification: 03D45, 03D80, 68B15

ACM-Computing Reviews-category: 4.34

Equational specifications for computable data types: six hidden functions

suffice and other sufficiency bounds*

by

** J.A. Bergstra & J.V. Tucker

ABSTRACT

The ADJ Group's algebraic theory of data types identifies, semantical

ly, each data type with a many-sorted algebra. In this technical paper, we

prove that if A is a computable, infinite but finitely generated, many

sorted algebra with n sorts then A possesses a finite equational specifi

cation which involves at most n hidden constants and at most 3n+3 hidden

functions. Thus in case A is single-sorted we have the bound of 6 mentioned

in our title. Simple bounds on the number of equations used in the specifi

cations are also included.

KEY WORDS & PHRASES: algebraic data types, equational specifications with

hidden functions, computable many-sorted algebras

*

**

This report is not for review: it will be submitted for publication
elsewhere.

Department of Computer Science, University of Leiden,
Wassenaarseweg 80, Postbus 9512, 2300 RA LEIDEN, The Netherlands

1

INTRODUCTION

In the ADJ Group's algebraic theory of data types the intended semantics

of a data type is faithfully represented by a many-sorted algebra and to

syntactically specify a data type by a particular method Mis to use that

technique to define some desired many-sorted algebra uniquely up to iso

morphism. The question of adequacy for a specification method Mis the in

formal question Does the method M define all the data types one wants? In

principle, any algebra serves to model some aspect of data type semantics,

but in theoretically testing the adequacy of method M it is more reasonable

to ask M to specify only those algebras which are.effectively computable

in some precise sense. On establishing a rigorous definition of such comput

able semantics we are able to prove this rather striking adequacy theorem

about equational techniques for data type specification:

THEOREM. Let A be an infinite many-sorted algebra finitely generated by

elements na1ned in its signature E. If A is computable then A possesses a

finite equational hidden functions specification (E0 ,E0), which is a hidden

enrichment, and such that the number of hidden functions and the number of

equations depend only on the signature Z: of A and not on any other proper

ties of A.

In precise terms, if Z: names n sorts, nF of which name finite domains

p constants and q operations then z: 0-z: contains n constants and 3n+3 func

tion symbols, and E0 contains 17+p+q+4(n-1)+nF equations.

COROLLARY. Let A be a single-sorted infinite computable algebra finitely

generated by p constants and having q operations. Then A possesses a finite

equational hidden enrichment specification with 1 hidden constant, 6 hidden

operations and 17+p+q equations.

To mak«:! clear what formal assumptions about data types are required

to interpret the theorem stated, in section one we describe in more detail

how the semantics and syntactic definitions of data types are depicted in

the ADJ Group 1.s theory. Section two defines the notion of a computable many

sorted algebra and states a deep result we use, but do not prove here:
V

Matijacevic"s Diophantine Theorem.

2

Iri section three we prove our theorem in the single-sorted case as

this makes it easy for us to explain, and the reader to understand, the

proof for the many-sorted case in section four.

This paper is the third in our series of mathematical studies of the

comparative power and adequacy of algebraic specification methods for data

types [1,2]; see also [3]. It is assumed the reader is cognisant with the

work of the ADJ Group, at least with their paper [4] and has some experi

ence of algebraic arguments. Knowledge of our previous work, although de

sirable, is not assumed.

We wish to thank H.C.J. Kleijn for her suggestions for improving the

manuscript.

1. DATA TYPE SEMANTICS AND SPECIFICATION

The algebraic theory of data types acts on the assumption that a data

type T should be characterised in any programming system Lor particular

program Pin which it occurs by defining it as a collection of operators E,

with explicitly defined properties E, on different kinds of data obtained

from a finite number of initial values. One intention, from the point of

view of Programming Methodology, is that assignment and control structures

intrinsic to the type become immediately visible as input/output format and

extrinsic features of implementation fall away.

A semantic realisation of the type T specified by (E,E) one imagines

to be any many-sorted algebra A of signature E, satisfying the properties

of E, and being finitely generated by elements named as constants in E:

for the want of a better term, a data structure of type T as specified by

(E,E). Automatically, the complete semantics of the type T defined by (E,E)

* is the class ALG (E,E) of all such data structures. (We carry the* in our

notation to emphasise that we are exclusively concerned with algebras not

only satisfying the conditions in E but which are finitely generated by

constants named in E.) In the context of the .WJ Group's initial algebra

semantics, the situation is further structured by first taking the sharpest

notion of semantic identity to be the algebraic isomorphism of two data

structures and, secondly, by identifying the intended semantics of a type

* (E,E) with an initial algebra IK for K = ALG (E,E), necessarily unique up

to isomorphism whenever it exists. So to syntactically specify a type by

(E,E) is to specify only an initial algebra IK, those algebras A EK not

isomorphic to IK being considered as non-standard or, possibly, deviant

semantical realisations of the type.
* If A E ALG (E,E) then A is uniquely definable as an epimorphic image

3

of IK. And this IK is in turn uniquely definable as an epimorphic image of

T(E), ~he algebra of all terms over E, since T(E) is initial for the class

of all E-algebras. Thus IK ~ T(E)/=K where =K is a congruence on T(E) unique~

ly determined by the isomorphism type of IK; in concrete terms, (E,E) speci

fies IK in the sense that E defines =Eon T(E) and this =Eis =K·

In theory and practice, the problem of specifying a data type is this

discussion in reverse. Some finitely generated algebra A is given as model

ling some data type whose complete semantics lies within the class HOM(A)

of all homomorphic images of A. And one has to find an appropriate specifi

cation (E,E) which defines T(E,E) = T(E)/=E so that the demonstration of

correctness for the specification is the proof that T(E,E) ~A.Or, equiv

alently, if A~ T(E)/=A then =Eis =A· One favoured method, pioneered in

the literature of Programming Methodology, is to take E as a finite set of

equations over E and to define =E as the smallest congruence on T(E) con

taining the identifications made by E. This natural technique is by no

means the only algebraically styled method to win practical approval, but

it is the most widely understood and, theoretically, it circumvents inumer

able algebraic problems introduced on tampering with the type of axioms

allowed in E or with how =Eis constructed. For example, when E contains

* only equations ALG (E,E) has an initial object and this is T(E,E); moreover,

* HOM(T(E,E)) = ALG (E,E).

However, in MAJSTER [7] appeared a stack-like memory structure along

with a plausible argument that it failed to have a finite equational speci

fication. This initiated interest in related methods of specification:

allowing conditional equations into E and using auxiliary or hidden opera

tions. A clear account can be found in ADJ [11] where the authors formally

prove that a simple data type odd has no finite equational specification

but admits a neat finite conditional specification, as well as a finite

equational specification involving hidden operators. Independently, in [1],

4

we reported that the algebra

2 ({0,1, ••• }; 0, x+1, X)

has neither a finite equational specification nor a finite conditional

equation specification. (For information on other methods see ADJ [11],

BERGSTRA & TUCKER [1,2], KAMIN [S], MAJSTER [8] and the references there

cited.)

While for many theoretical purposes it is wise to allow any finitely

generated algebra A to represent some data type semantic·s, in seeking gen

eral theorems which assert a specification technique is powerful enough to

characterise broad classes of algebras it is sensible to hypothesise these

algebras are at least constructive. We choose to look only at those A which

are finite, computable, semicomputable or cosemicomputable; these latter

three categories putting on a proper semantical/algebraic foundation the

(quasi-syntactic) ideas that =A is a decidable, recursively enumerable, or

co-r.e. relation on T(E) respectively.

Here we are concerned exclusively with what we think the most important

condition: computability. To complete the backcloth for the theorem we prove,

we have only to mention that in our [1] it was shown that every computable

data type possessed a finite, equational hidden enrichment specification

but the methods we used give no hint that such specifications could be

chosen either simply or uniformly.

(The finite algebras, incidentally, we postpone since we consider them

sufficiently distinct and interesting, mathematically, to warrant a paper

of their own, c.f. the results mentioned in [1,3]. The semicomputable and

cosemicomputable algebras we will deal with in a comparative study of

initial and terminal algebra specification techniques.)

Obviously, we have already assumed the reader quite familiar with the

informal and technical issues to do with a~gebraic specification techniques;

for this the basic reference is ADJ [4]; to conclude this section we settle

the algebraic notation, and give the less widely known algebraic definitions,

used in what follows.

Typically, a many-sorted algebras A consists of a finite family

A1 , ••• ,An of domains together with a finite family of operations of the

form

A,µ
(J

Al, ••• , Ak µ
= (J I X • • • X ➔ A

µ

5

fork E w, the natural numbers, and A.µ E {1, .•. ,n}, 1 ~ i ~ k. Relations
1,

associated to A are subsumed in this description under the assumption that

one of the domains is the Boolean B = {0,1}. The signature EA of A carries

names for each domain, called sorts, symbolic names for the operations and

for a finite number of distinguished elements of A. Although a sort is

formally a numeral i we occasionally refer to a domain A. as a sort.
l

Let - be an equivalence relation on the many-sorted algebra A. A

traversal for= is a family of sets JA = {a~: i E IA,a~AE AA}, 1 ~A~ n,

for each b E AA there is one, and only one, ai E JA for which such that

b = A a .•
l

Let Ebe a signature. By T [X] we denote the E-algebra of .polynomials
E Al Ak

over E in the many-sorted list of indeterminates X = (x1 , ... , ~) _where
A.

1 Xi is some indeterminate of sort Ai E w. An equation over Eis a pair

(t(X),t' (X)) of polynomials over E of the same sort and which we hereafter

write t (X) = t ' (X) .

Let Ebe a set of equations over E. Then by T(E,E) we mean the E

algebra T(E)/=E where =Eis the smallest congruence on T(E) containing the

set

t I (X) E E &

A.
l

s . E T (E) of sort A . , 1 ~ i ~ k} .
l l

A many-sorted algebra A has a finite equational specification (E,E)

if E = E, Eis a finite set of equations over E, and A~ T(E,E).
A

Let A be a many-sorted algebra A of signature EA. Let Ebe a signature

E c EA and having the sorts of EA. Then we mean by

AIE the E-algebra whose domains are those of A and whose operations

and constants are those of A named in E: the E-reduct of A.

<A>E the E-subalgebra of A generated by the operations and constants

of A named in E viz. the smallest subalgebra of Air•

6

The algebra A is said to be E-minimal if Air= <A>E.

A many-sorted algebra A has a finite, equational hidden enrichment

specification (E,E) if EA c E, and E contains exactly the sorts of EA, E

is a finite set of equations over E such that

T(E,E) Ir = <TCE,E)>E ~ A.
A A

Henceforth whenever one signature is contained within another it is

to be assumed they contain precisely the same sorts •..

2. COMPUTABLE ALGEBRAS

A many-sorted algebra A is said to be effectively presented if corres-

ponding to its family of component data domains A1 , ••• ,An there are mutual

ly disjoint recursive sets n1 , ••• ,nn'

a.: n. ➔ A., 1 ~ i ~ n, such that for
l. l. l.

n. cw, 1 ~ i ~ n, and surjections
l.

. (A1, •.. ,Ak µ) each operation a= a ,

AAl x ••• x AAk ➔ Aµ of A there is a recursive tracking function
- (A1, •.• ,Ak µ). n n n h' h h d' cr0 - cr0 , . ~6Al x ••• x uAk ➔ ~6µ w 1.c commutes t e 1.agram:

cr

wherein aAl x ••• x aAk(xA1 , ••• ,xAk) = (aAl (xA1), ••• ,aAk(xAk)).

A is a computable many-sorted algebra if, in addition, for each

1 ~ i ~ n the relation defined on n. by -ai i

X - y
a.

iff
l.

is recursive.

These definitions are based upon work of M.O. RABIN [10] and, in

particular, A.I. MAL'CEV [8] aimed at creating a theory of computable

-7

algebraic systems. Noteworthy for us is the fact that they are completely

formal notions and that computability is now a finiteness condition of

Algebra: an isomorphism invariant possessed of all finite structures.

In case A is effectively presented, combining the n 1 , ••• ,nn and the

a 1, ••• ,an we can obtain a recursive many-sorted algebra of numbers n of the

same signature E as A and a E epimorphism a: n +A.Thus A is effectively

presented when it is the homomorphic image of a recursive number algebra.

Combining the =ai' 1 ~ i ~ n, into =a identifies the computability of A

with the recursiveness of the congruence= • The pair (Q,a) consisting of
a

·the algebra n and epimorphism a we refer to as effective, or recurive,

coordinatisations of A accordingly.

· This lemma was proved in our [l]:

2.1 LEMMA. Every computable many-sorted algebra A is isomorphic to a recur

sive number algebra n each of whose numerical domains n. is the set of
l. .

natural numbers, w, or the set of the first m natural numbers, U\n' accord-

ing to whether or not the corresponding domain A. is infinite or finite of
l.

cardinality m.

A reference for the elementary theory of the recursive functions is

MACHTEY & YOUNG [6], unfortunately our main tool is in no way elementary:

Let 2Z [x1 , .•. ,xn] denote the ring of polynomials in indeterminates

x 1, ••• ,xn. A set n c wk is said to be diophantine if there exists a poly

nomial p E 2Z [x1 , ••• ,xk,Y1, •.• ,Yl] such that

Of course, as far as the class of diophantine sets is concerned one could

equivalently place any r Ewin the position of O in the definition.

Clearly, each diophantine set is recursively enumerable~ the converse
V

is due to Y. Matijacevic:

2.2 DIOPHANTINE THEOREM

All recursively enumerable sets are diophantine

8

A good exposition of this result appears in MANIN [9].

3. PROOF OF THE THEOREM IN THE SINGLE-SORTED CASE

Let A be an infinite computable algebra with signature rand which is

arbitrarily chosen. By Lemma 2.1, we can identify A with a recursive number

algebra R whose domain is wand concentrate on providing R with a finite,

equational hidden enrichment specification wherein the number of hidden

operations is independent of our choice of R. We do this by adding 1 con-

·stant and 6 functions to R to construct a new recursive number algebra R0

such that Rolr = <Ro>r = R; and by then showing Ro has a finite equational

specification (t0 ,E0) in which only E0 is dependent on R. The choice of the

new functions and the structure of E0 is determined by the following tech

nical construction.
k

Let f: w ➔ w be recursive. Thus the graph off,

is recursively enumerable. By the Diophantine Theorem, there exists a poly

nomial pf E 2Z [x1 , ... '~'~+i 'Y 1 , ••• ,yl] such that

We take pf and separate it into polynomials p;,p; E w[x1 , .•• ,~'~+l'

y 1, ••• ,yl] by combining those monomials aAmA (x,y) whose coefficients aA E 2Z

are positive and negative respectively so that

9

Thus dissolving reference to :2Z in our enumeration of graph(f).

Define the. multiargument function hf (x,y) = min (p; (x,y) .:.p; (x,y),2) .mod 2.

Notice that hf is a polynomial function of this list A of functions,

and a constant, over w:

0, x+1, x+y, x.:.y, x•y, min(x,2), x.mod 2

And that

{:
+ .

p;(x,y) =I- 1; if pf(x,y) -
hf(x,y) =

+ .
p;(x,y) if pf(x,y) - = 1.

In particular: if hf(x1 , ••. ,~,xk+l'y) = 1 then f(x1 , ... ,xk) = ~+l·

Therefore, for all x = (x 1 , ... ,xk,xk+l), Y = (y1 , ••• ,yl)

We set R0 to be R with the list A adjoined. Let the signature r0 of

R0 be E with signature r carrying these names for the functions of A:

0, S, SUM, DIFF, PROD, MIN2 , MOD2 .

(A)

Here is a prescription for a finite set of equations E0 over r0 to specify

RO.

First, for each constant c Er naming numerical constant c in R, set

C =

Next came equations to define the functions in the list A; this is

routine:

Addition

Subtr-3.ction

SUM(X,0) = X

SUM(X,S(Y)) = S(SUM(X,Y))

DIFF(X,0) = X

DIFF(0,Y) = 0

DIFF(X,S(Y)) = DIFF(DIFF(X,Y),S(0))

(0)

(1)

(2)

10

Multiplication .

Minimum

Modulus

zero

'Unity

PROD(X,O) = 0

PROD(X,S(Y)) = SUM(PROD(X,Y),X)

MIN2 (0) = 0

MIN2 (S(O)) = S(O)

MIN2 (s2 (Y)) = s 2 (0)

_ MOD2 (0) = 0

MOD2 {S(O)) = S(O)

MOD2 (s2 (Y)) = MOD2 (Y)

PROD{X,O) = PROD(O,X) = 0

PROD(X,1) = PROD(l,X) = X

(3)

(4)

(5)

(6)

(7)

Finally, we add an equational translation of (*) for each~ EL naming

operation f of R. For each recursive operation f of R we make some hf. To

say hf is a polynomial function of the list of functions A of course means

h · h k+l+l d f' d.b f l l . l [fist e map w + w e ine y some orma po ynomia Hf E Tr x1 , •.. ,~,

~+l'Y11•••1Yl]; we abbreviate this by Hf{X,Y) € Tr[X,Y].

For each hf we choose an Hf and add the equation

This is all of E0 • Notice it contains 17+p+q equations.

Let= abbreviate =Eo and write elements of T(L0 ,E0) = T(L0)/= in the

form [t] fort E T{L0).

We claim the map$: R0 + T(L0 ,E0) defined by $(n) = [Sn(O)] is an

isomorphism. To prove$ bijective is to prove

3.1 LEMMA. The set {sn(O): n E w} is a traversal for=·

PROOF. We leave to the reader the task of checking Sn(O) = Sn(O)..,. n = m.

To show that fort E T(L0) there is some Sn(O) so that t - Sn{O) we use

induction on the complexity oft.

The basis sees t as a constant of LO and is immediate from equations

in E0 of type. (0). With a view to proving $ a homomorphism later on, we do

the induction step in the form of this lemma.

3.2 LEMMA. Let A beak -ary operation symbol of LO naming the function A
z.

of Ro. Let S11•••1Sk € T(Lo). If Si= s 1 (0) for 1 sis k then
'{) = SA(z1, ••• ,zk) (0)
~ S11•••1Sk - .

PROOF. Let t = ~ (/ 1 (0) , ••• , szk (0)) • By considering cases for ~ e: E0 we show

t = sX(z1,···•zk) (0). It is routine to do this, but important to take first

the operation symbols of r in order and then the operation symbols of E.

The first non-trivial case is addition.
U V Here t = SUM(S (O),S (0)), say, and we argue by induction on v. The

basis v = 0 is immediate from equation (1). So assume the lemma true for

v = k and consider v = k+1.

SUM(Su(O),Sv(O)) - SUM(Su(O),S(Sk(O))

- S(SUM(Su(O),Sk(O))

- S(Su+k(O))

- su+k(O)

by equation (1);

by induction;

Now for Xe: r the cases follow the same pattern though the case of

SUM, just proven, is used as a lemma for multiplication; we omit these

details and consider X = f e: E.

Substituting szl(o) for 1 ~ i ~ k and an arbitrary list
-+
r = (r1 , ••• ,rl) e: T(E0) into equation (**) results in this identity, where-

in z = (z 1 , •.• , zk) :

Sf(z) (O)•H z1 zk f(z) -+ f(S (O), ••• ,s (O),S (O),r).

Thanks to the multiplication equation (3) and equations (6) and (7), it is
-+

sufficient to prove there exists r such that

Since there exist y 1 , ••• ,yl e: w such that hf(z,f(z),y1 , ••• ,yl) = 1 we

choose; to be sY1 (o), ••• ,sYkco) whence the identity follows from a new

lemma:

3.3 LEMMA. Let Te: Tr[x1 , .•• ,xn] define function w: wn-+ w. Then for all

sz1(0), ••• ,szfi(O) e: T(f) substituting into T(X1, ••• ,Xn) we obtain

12

PROOF. We argue by induction on the complexity of T. The basis is trivial

as Tis either O or x .• Assume as induction hypothesis that the lemma is
l.

true of all polynomials over r of lower complexity. Let T(X) =

~(T 1 (X), ••• ,Tk(X)) where~ Er names function A EA and X = cx1 , .•• ,xn).

Let Ti define ~i: wn ➔ w, so the induction hypothesis says

zl zn
T.(S (0), ••• ,S (0))

l.

for 1 ~ i ~ k. To complete the proof we simply consider cases for A Er.
For example, let A= SUM. Then

zl zk
T(S (0), ••• ,S (0))

u (z 1 , ••• , z) +v (z 1 , ••• , z)
- S n n (0)

by the already proven case of addition of Lemma 3.2. The other cases proceed

exactly in the same way. Q.E.D.

This completes the proofs of Lemma 3.2 and 3.1.

To check$ is a homomorphism can be done using Lemma 3.2:

$(A(x1, ••• ,xn))
A(x1 , •.• ,¾)

= [S (0)]

xl xk
= [A(S (0), ••• ,s (0))] by Lemma 3.2;

xl xk
definition A = A([S (0)], ••• ,[s (0)]) by of

on TCI:o,Eo);
= ~ ($ (xl) , ••. , $ (xk)) •

This completes the proof of the theorem in the single-sorted case.

4. THE MANY-SORI'ED CASE

Dispensing with the case that A is finite, we assume A to be a comput

able, finitely generated many-sorted algebra with at least one domain

infinite. Without loss of generality we can assume these domains to be

Al'"""'¾r'

cardinality

B1 ,~ •• ,Bn where the A. are infinite and the B. are finite of
F i i

b.+1. Lemma 2.1 identifies A with a recursive many-sorted
i

algebra of numbers R with domains S\, ... , Qnr and r 1 , •.• , r nF where Qi = w

for 1 sis n and r. = {0,1, .•• ,b.} for 1 sis nF. When not interested
I i i

13

in the cardinality of a domain of R we refer to it as some Ri, 1 sis n 1+nF.

We wish to 9ive Ra finite equational hidden enrichment specification (I0 ,E0)

which meets the conditions mentioned in the theorem.

The idea is to build a mechanism to simulate the many-sorted algebra

Rover its first infinite domain n1 and to handle the encoding within n1

as in the single-sorted case. It is this machinery we add to R to make a

new recursive number algebra R0 which we provide with a finite equational

specification (I0 ,E0) having the appropriate independence properties.

To begin, we add the list A, of the last section, as a new constant

and new functions to the infinite sort Ql.

For each sort i 1' 1 , add as a new constant of sort i the number 0 E R ..
i

For each infinite sort i 1' 1 , add the successor function x+l to Q, and

for each finite sort i add

isucc(x) = fx+l

lb.
l i

its imitation,

if X < b,
i

otherwise.

i
Next add for every sort i-/: 1 a map copy: Q ➔ R. defined by

1 i
i copy(x) = x when i is an infinite sort and by

icopy(x) = {x
b,

i

when i is a finite sort.

if X < b,
i

otherwise

i

i 2
And, finally, we add for every sort i-/: 1 the function g: R. ➔ R.

i i

defined by

i {XO g(x,y) =

if y = 0

otherwise.

14

i
To understand the role of these g, observe that on interpreting each

operation fA,µ of Ras just a recursive function f: wk+ win the obvious

way and constructing an hf as in section three, but thinking of it as a

function on the first domain n1, we may formally write

k R.,
·where x = (x1 , ... ,xk) E n1, y = (y1 , .•. ,y,e_) E n1 and Z E n1 •

Notice, too, that we have added to Rn= nI+nF constants and

6+3(n-1) = 3n+3 new functions and that ob~iou~ly ~olr = ~R0>E = R.
. l. l. l. l. Let r0 be the signature of R0 where 0, s, COPY, G name the zero

successor and other maps associated to sort i; we let O,S name name the

zero and successor function assigned to n1 . The equations E0 which specify

R0 are as follows.
i First, if c EE is a constant naming c ER. then add

l.

(Here 1 ~ i ~ n.)

Next add all the equations (1)-(7) associated with the list of func

tions A.

For each finite sort i we add the equation

For each sort i # 1, add the equations

where Xis a variable of sort 1.

For each sort i # 1, add the equations

where iX,iY are variables of

Lastly, for each fA,µ E

fA,µ as a recursive f~ction

sort i.

E naming fA,µ, an operation of R, we treat
k w ➔ w, make hf, and choose some Hf, as a

polynomial of sort 1, so as to add the equation

where X = (x1 , ••• ,Xk), Y = (Y1 , ... ,Y,e:) and z are variables of sort 1.

This being all of E0 , notice that if A possesses p constants and q

operations then E0 contains

p+17+nF+2(n-1) +2(n-1) +q = 17+p+q+4(n-1)+nF

equations as required. It remains to prove R0 ~ T(E0 ,E0) and to do this

we follow exactly the same strategy as in section three.

15

Corresponding to Lelllllla 3.1, the family of sets J. = {iSz(iO): z ER.}
1 1

for 1 ~ i ~ n, is proved to be a traversal for =Eo· In particular, Lelllllla

3.2 is lifted by a simple inductive argument on term complexity, involving

case distinctions based on r0 • We look at the induction step in case the

leading function symbol of term t E T(E0) is !A,µ, naming fA,µ_

It is assumed • 1 , ••• ,.k are terms of sorts A1 , ••• ,Ak respectively
A· Z• A·

and that for 1 ~ i ~ k •· =Eo 1 s 1 (1 0) for z. E w. We are to show
1 A 1

t = !_A,µ(.1, ••• ,.k) =Eo µSf ,µ(z1,·••1zn)(µO).

Taking this identity a-s a trivial lemma:

for 1 ~ i ~ n and z E w

A Al zl Ak zk
we have t =Eo f ,µ(COPY(S (0)), ••• , COPY(S (0))). Thanks"to the equa-

tions defining µG, µCOPY and the identity involving fA,µ, we have only to

16

prove there exist some numbers y 1 , ••• ,yl such that

At this point we return the reader to the argument of Lemma 3.3.

That the family of mappings defined i~(z) = [iSz(iO)] for 1 ~ i ~ n

is an isomorphism R0 ~ T(L0 ,E0) is now obvious.

REFERENCES

[1] BERGSTRA, J.A. & J.V. TUCKER, Algebraic specifications of computable

and semicomputable data structures, Mathematical Centre, Depart

ment of Computer Science Research Report IW 115, Amsterdam,

1979.

[2] , A characterisation of computable data types by means of a

finite, equational specification method, Mathematical Centre,

Department of Computer Science Research Report IW 124, Amster

dam, 1979.

, On the adequacy of finite equational methods for data type

specification, ACM-SIGPLAN Notices_!! (11) (1979) 13-18.

[4] GOGUEN, J.A., J.W. THATCHER & E.G. WAGNER, An initial algebra approach

to the specification, correctness and implementation of abstract

data types, in R.T. YEH (ed.) Current trends in programming

methodology IV, Data structuring, Prentice-Hall, Engelwood

Cliffs, New Jersey, 1978.

[SJ KAMIN, s., Some definitions for algebraic data type specifications,

SIGPLAN Notices_!! (3) (1979) 28-37.

[6] MACHTEY, M. & P. YOUNG, An introduction to the general theory of

algorithms, North-Holland, New York, 1978.

[7] MAJSTER, M.E., Limits of the "algebraic" specification of abstract

data types, ACM-SIGPLAN Notices g (10) (1977) 37-42.

[8] , Data types, abstract data types and their specification

problem, Theoretical Computer Science~ (1979) 89-127.

17

[9] MAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys,

..!.§_,· (1961) 77-129.

[10] MANIN, Y., A course in mathematical logic, Springer-Verlag, New York,

1977.

[11] RABIN, M.O., Computable algebra, general theory and the theory of

computable fields, Transactions American Mathematical Society,

95 (1960) 341-360.

[12] THATCHER, J.W., E.G. WAGNER, & J.B. WRIGHT, Data type specification:

parameterization and the power of specification techniques, IBM

T.J. Watson Research Cente-r Report RC 7757, Yorktown Heights,

1979.

