
AFDELING INFORMATICA 

stichting 

mathematisch 

centrum 

( DEF'ARTMENT OF COMPUTER SC I ENCE) 

J. HEERING 
A COMPARITIVE ANALYSIS OF THE INTEL 8086, 
THE ZILOG Z8000 AND THE MOTOROLA MC68000 
MI Cf~OPROCESSORS 

Preprint 

~ 
MC 

IW 129/80 JANUARI 

2e boerhaavestraat 49 amsterdam 



PJii.nted a;t -the Ma.:themat.i.c.ai. Cen:tlte, 49, 2e Boell.ha.a.ve1i.:tJr.aa;t, Am.6:teJulam. 

The Ma.:themat.i.c.ai. Cen:tlte, 6ou.n.ded :the 11-:th 06 Feb1r.u.a1Ly 1946, ,ih a. non
p1r.06U -ivu>.tltu.tion a.,im,ing a;t -the pJr.omoUon 06 pUll.e ma.:themat.i.c.6 a.nd .l:t6 
a.ppUca.tlon6. U; ,ih i,pon601r.ed by -the Ne-thelli.a.nd6 GoveJr.nmen:t :thlr.ou.gh -the 
Ne:theJLla.nd6 01tga.nlzat.i.on 601r. -the Adva.nc.emen:t 06 PU/le Re1iea.1r.c.h (Z.W.O). 

1980 Mathematics subject classification: 68A05 

ACM Computing Reviews Category; 6.21, 6.35 



A comparative analysis of the Intel 8086, the Zilog Z8000 and the 
Motorola MCl58000 microprocessors*) 

by 

Jan Heering 

ABSTRACT 

The architectures of three of the latest 16-bi t microprocressors, 
viz. the Intel 8086, the Zilog Z8000 and the Motorola MC6800_0, are dis
cussed. 

KEY WORDS & PHRASES: 16-bit microprocessors, Intel 8086, Zilog Z8000, 
Motorola MC68000, decentralized systems, 
computer architecture 

*) This paper is not for review; it is intended for publication 
elsewhere. 





1 

1 • INTRODUCTION 

1.1. General 

Recent advances in large scale integrated circuit technology have 
made possible the cheap production of high-performance 16-bit micropro
cessors. In combination with a small nmnber of support chips and a suit
able amount of memory the new devices are powerful enough to compete with 
existing low and high end minicomputers. At the low end their applica
tion range overlaps with that of their 8-bit predecessors. 

The designer who decides to incorporate one or more of the new 16-
bit microprocessors in his system has to take into account a large nmnber 
of diverse factors, some of which have emerged only recently as a direct 
or indirect result of decreasing hardware prices. 

In the following an attempt will be made to isolate the most impor
tant technical issues facing the designer. They will be used as a frame
work for the discussion of three of the latest 16-bit micros, viz. the 
Intel 8086 [1,2), the Motorola MC68000 [3,4) and the Zilog Z8000 [5,6,7]. 

1.2. Trend towards decentralization 

Rapidly dropping hardware prices do not merely confront us with a 
quantitative change, but they imply both a nmnber of new application 
areas for computers as well as a need to rethink existing computer organ
izations. No longer are CPU's and memories expensive resources which 
must be shared to the utmost in order to reach an acceptable 
price/performance level. As a result, one of the key concepts in the 
current development is the decentralization of computing power. A few 
examples may clarify in what ways decentralization can be achieved at 
different levels of the system hierarchy: 

( 1) File buffering, packing of logical records into physical records 
(blocks) and unpacking of blocks to logical records, tasks which 
have traditionally been performed by the operating system, can be 
off-loaded into the device controllers. This has a dual advantage. 
Modularity is improved and the device relieves its host from a non
trivial task. This is an example of a general tendency to off-load 
device driver and file system functions into (programmable) peri
pheral controllers and I/O processors. 

(2) Screen editors can be split in two parts, a front-end which can be 
off-loaded into the terminal and a back-end which runs on the termi
nal host. The front-end keeps track of the cursor position, accepts 
edit commands from the user and modifies its display memory accord
ingly, while sending the modifications on to the back-end. The 
latter manages the workfile and supplies the front-end with new 
lines of text on request. A further step towards decentralization 
is to off-load the entire editor into the terminal. To this end the 



2 

terminal has to be equipped with a small mass memory for storage of 
editor text- and workfiles. 

(3) Multiprogramming and time-sharing were in large part invented to get 
more productivity out of expensive mainframes. Technically, time
sharing is difficult and the operating systems required for it tend 
to be very complex and expensive pieces of software. An alternative 
system should preferably eliminate the need to share CPU and memory 
resources, but it should retain or improve upon existing facilities 
for interprocess communication and data sharing, because these are 
essential for many applications. A network of single user systems, 
coupled by high capacity communication links to a central computer, 
which handles file system calls and manages disks, magnetic tape 
units and fast line printers, is an example of a configuration which 
is rapidly becoming an attractive replacement for a classical, cen
tralized time-sharing system. In such a system every process has 
its own CPU and memory, but data sharing and interprocess communica
tion are possible. The central machine runs a message driven 
multi-user file system and acts as an intermediate station in the 
exchange of messages between the satellites. Because different 
processes run on different computers, memory allocation is easy and 
there is no memory protection problem. File protection is h~ndled 
by the central machine. Not all satellite processors need have the 
same capabilities. Some of them might, for instance, be tailored to 
execution of a single language, while others might be oriented 
towards graphical interaction or text formatting. Many variations 
on this theme are possible, all of them belonging to the province of 
distributed systems. Nothing illustrates better the current drive 
towards decentralization than the fast pace at which distributed 
systems are evolving. 

(4) On a larger scale distributed systems are envisioned for the decen
tralized control of plants, electrical power networks, etc. (8] • 
Centralized control of plants has turned out to be extremely diffi
cult, essentially because the multiplexing of sharable resources 
(memory, CPU time, I/0 channels) leads to an unacceptable degrada
tion of system response. Even in relatively simple systems it is 
often difficult or impossible to obtain adequate resources for a 
high-priority process rapidly enough every time its execution is 
triggered. An obvious solution is to off-load high-priority 
processes into separate, dedicated processors and link these to the 
central machine. Depending upon the complexity of the environment 
to be controlled it can make sense to continue this off-loading 
strategy to a depth of several levels in order to keep resource 
sharing to a minimum. 



3 

1.3. Technical issues 

Any user of a 16-bit micro will be confronted with a number of 
technical issues, some of which have system-wide implications. The most 
important of them are listed below: 

(1) High-level languages and portability of software. 

(2) Interprocessor communication and portability of hardware. 

(3) (Decentralized) operating systems and functional off-loading. 

Some issues, like high-level languages and portability of applica
tion programs, are not in any way new, but others, like decentralized 
operating systems, portability of hardware and functional off-loading, 
have come to the fore as a direct result of the trend towards decentrali
zation. 

Because they are oriented towards interprocessor communication, 
decentralized systems are inherently more open-ended than their central
ized counterparts. As a result they are frequently heterogeneous (in the 
sense that they consist of interconnected processors of different types) 
and they almost always show a strong tendency to become more heterogene
ous with time. It is therefore important to make everything, ranging 
from application programs to operating systems and from peripheral inter
faces to data communication, as portable as possible. 

The requirement for portability of both software and hardware has 
lead to various standardization efforts in the fields of data communica
tion, peripheral buses, floating point representation and high-level 
languages [9]. The designer should be aware of the existence of these 
standards, because if he doesn't comply with them he is making things 
unnecessarily difficult for himself. He should also be aware of the fact 
that currently existing standards are no panacea. Making operating sys
tems portable will still be a difficult job, even if they are written in 
PASCAL which is becoming a standard high-level language for microproces
sors. The reason is, of course, that there are large architectural 
differences between different computers. In the near future micropro
grammable microprocessors may offer a cheap solution to this problem. 
Both the 8086 and the 68000 are microprogrammed, but their microprograms 
cannot be changed. Although they have not yet been announced, versions 
with writable control memory (either off- or on-chip) and writable opcode 
mapping tables can confidently be expected to be available soon [ 10] • 
These devices would have a variable macro architecture and ( depending 
upon their micro architecture) could be used as general purpose emula
tors. 

Together the points listed above constitute a suitable framework in 
which to discuss the merits of various 16-bit microprocessors and their 
associated families of support chips. Separate sections will be devoted 



4 

to the details of why each issue is of importance and how it might influ
ence the designer in his choice of specific implementations. The various 
existing standards will be discussed in the appropriate sections. 

2. SYNOPSIS OF THE 8086, THE Z8000 AND THE MC68000 

The main features of the three micros mentioned in the title of this 
section are listed in table 1. While the 8-bit micros developed so far 
are rather primitive in comparison with existing 16-bit minis, this is no 
longer true for their 16-bit successors. Table 1 will probably hold some 
surprises for readers accustomed to the Turing machine-like quality of 
8-bit microprocessors. 

First of all, address spaces have become huge. The 8086 supports a 
modest 4 se,gments of 64kbyte each per process as long as the latter does 
not modify its own relocation registers. If it does, 1Mbyte is available. 
The Z8000 is offered in two versions: the Z8001 and the Z8002. The Z8002 
package has fewer pins and does not allow for off-chip memory management. 
The Z8001, however, in combination with the Z8010 memory management unit 
supports se<:JII!ented virtual memory. A process which does not change its 
own memory map could have a total address space of 384 segments of 
64kbyte each. As each Z8010 can hold 64 segment descriptors, 6 Z80 1 O • s 
would be needed to perform virtual to physical address translation in 
this extrem,e case. Details on the virtual memory organization of the 
68000 were not available at the time of writing. Without memory manage
ment a proc,ess can address something like 16Mbyte code and 16Mbyte data 
on this machine. 

A second important point is that the 16-bit micros examined here all 
have full 16-bit integer arithmetic. The Z8000 even has full 32-bit 
integer arithmetic (including multiply and divide). The 8086 and the 
Z8000 also have byte-string instructions, such as string move and com
pare. Thesei are important in many applications such as text editing and 
parsing. They have hitherto rarely been present on 16-bit machines, how
ever. 

Last but not least all three processors have instructions with which 
interlocks !(semaphores) can be implemented to synchronize access to shar
able resources in a multiprocessor configuration. This is wholly in 
agreement with the trend towards decentralization mentioned in section 
1.2. 

A few remarkable implementational features deserve special mention. 
The 8086 us,es instruction pref etch to speed up its operation. It has a 
6-byte instruction queue, which it tries to keep filled at all times. 
The instruction set of the 68000 is interpreted by two levels of micro
code to minimize the number of control memory bi ts ( and thus the chip 
area) required. The first level has vertical type microinstructions. 
These consist of jump addresses and pointers to instructions at the 
second level. Instructions at this level (nano.instructions) are highly 



5 

horizontal (70 bits wide) and directly control the execution unit. There 
is a singlE~ nanoinstruction for every microinstruction in the sense that 
identical nanoinstructions are not duplicated in the nano control memory, 
but a single copy is shared between different microinstructions. Sequenc
ing is done at the microinstruction level [ 10]. The 8086 is micropro
grammed als:o, but the Z8000 is not. By sheer coincidence the Z8000 chip 
contains about as many transistors (17 500) as the ENIAC, the first gen
eral purpose electronic computer, had tubes ( 11 J • If one compares the 
performance of both processors (in instructions/second/dollar) it 
becomes clE~ar that CPUs do not constitute profitable investment. The 
inflation of CPUs is matched only by the inflation of the Deutsche 
Reichsmark between the First and the Second World War. 

The 8086 came into the market in the middle of 1978, about one year 
before the Z8000. Volume production of the 68000 is expected to begin in 
early 1980. This difference in age is reflected in the number of support 
chips available for each processor. For the Intel machine there are a 
bus controller for large configurations (8288), a floating point proces
sor (8087) and an I/O processor (8089) [12). Furthermore, Intel has a 
complete single board computer ( the iSBC 86/ 12) based on the 8086 and 
oriented towards multiprocessing [13]. Several other manufacturers offer 
single board systems based on the 8086 or the Z8000. These generally 
have S-100 bus interfaces ( see section 4) • Motorola has recently 
released the MEX68KDM design and evaluation module for the 68000. S-100 
bus oriented boards for the 68000 are expected to be available soon from 
independent manufacturers. 

In the following sections successive magnifications of table 1 will 
be presented corresponding to the various issues listed in paragraph 1.3. 
Together thE~Y should provide the reader with a fairly comprehensive pic
ture of the architectural features of the micros under discussion. 

3. HIGH-LEVEL LANGUAGES AND PORTABILITY OF SOFTWARE 

The advantages of high-level language programming as opposed to 
assembly language programming are well known. Programming in high-level 
languages is easier and the resulting programs are easier to debug and to 
maintain. Furthermore, programs in a high-level language are to a large 
measure machine independent. With the advent of microprocessors these 
advantages have lost nothing of their importance. First, the ratio of 
software costs to hardware costs tends to be very high for microprocessor 
based systems because the hardware is so cheap. The use of high-level 
languages helps to keep software costs down. Secondly, as was pointed 
out in section 1.3, the decentralized and heterogeneous character of many 
microprocessor based systems calls for program portability. The most 
important method to achieve this is to use a widely available, standard
ized high-lE~vel language. A second method, which is becoming increas
ingly popular, is to base software systems on a machine independent 
intermediate: language. If the intermediate language is of a low level, 
such software can simply be implemented on any computer by writing an 



6 

Manufacturer 

Second source 

Clock frequency 

Bus cycle time 

Execution time 
of 16-bit add 
memory to register 
(absolute address
ing mode) 

CPU organization 

I/O organization 

Vectored 
priority 
interrupt 

Byte addressing 

8086 Z8000 

Intel Zilog 

Mostek AMO 

5MHz 4MHz 
(fast 8MHz version 
announced, but 
not yet available) 

800nsec 
(500nsec for 8MHz 
version) 

3microsec 
(1.875microsec 
for 8MHz 
version) 
(prefetch 
not taken 
into account) 

register 
oriented 

I/O mapped or 
memory mapped 

yes - with 
separate 
8259A 
programmable 
interrupt 
controller(s) 

yes - 16-bit 
words can be 
fetched from 
both even and 
odd addresses. 
Odd-address 
fetches take 
an extra mem
ory cycle. 

750nsec 

2.25microsec 
(non-segmented) 
2. Smicrosec 
(8-bit segment 
offset) 
3microsec 
(16-bit segment 
offset) 

register 
oriented 

I/O mapped or 
memory mapped 

vectored inter
rupt - no on
chip priority 
arbitration 

yes - 16-bit 
words can be 
fetched from 
even addresses 
only. 

Table 1 

MC68000 

Motorola 

Rockwell 

8MHz 

500nsec read 
750nsec write 

1.Smicrosec 
(16-bit address) 
2microsec 
(24-bit address) 
(no timing 
available for 
segmented 
operation) 

register 
oriented 

memory mapped -
no separate I/O 
instructions 

yes - 7 levels 

yes - 16-bit 
words can be 
fetched from 
even addresses 
only. 



Virtual memory 
and memory 

,protection 

Max. address 
space per process 

Max. amount of 
physical memory 

System/user mode 

Interlock 
instructions for 
multiprocessor 
operation 

16-bit integer 
multiply/divide 

32-bit integer 
multiply/divide 

String operations 

Floating point 
operations 

8086 

no - on chip 
address 
relocation. 
No segment 
limit detect. 

64kbyte code 
2*64kbyte data 
64kbyte stack 

1Mbyte 

no 

yes 

yes 

no 

yes 

no 

z0OOO 

yes - with 
separate Z8O1O 
memory manag
ement unit(s) 
(Z8O1O announ
ced but not yet 
available) 

with memory 
management 
128*64kbyte code 
128*64kbyte data 
128*64kbyte stack 
without memory 
management 
8Mbyte code 
8Mbyte data 
8Mbyte stack 

with memory 
management 
16M}>yte/Z8O1O; 
without memory 
management 
24Mbyte user and 
24Mbyte system 

yes 

yes 

yes 

yes 

yes 

no 

MC68OOO 

yes - with 
separate memory 
management unit 
(announced -
no details 
available) 

with memory 
management 
unknown; 

7 

without memory 
management 
16Mbyte code and 
16Mbyte data 

with memory 
management· 
unknown; 
without memory 
management 
32Mbyte user and 
32Mbyte system 

yes 

yes 

yes 

no 

no 

no 



8 

interpreter for the intermediate language. Many PASCAL systems, for 
instance, use a low level intermediate language called P-code. These sys
tems are highly portable. 

The two most popular high-level languages for microprocessors are 
BASIC and PASCAL. Standards for both are in the making [14,15]. On the 
16-bit micros BASIC and PASCAL will probably be joined by FORTRAN, which 
has never been very popular on the 8-bi t machines. With features like 
programmer definable datatypes, recursive procedures, and ALGOL-like con
trol structures PASCAL is by far the most powerful of the three and is 
gaining rapidly in popularity. The acceptance of a PASCAL standard will 
only further this trend. other languages in use are mostly subsets of 
PL/I, like Intel's PL/M, Zilog' s PLZ and Motorola's MPL.. These languages 
have not found wide acceptance beyond the products of the companies that 
introduced them and they are not candidates for standardization at this 
time. PASCAL for the 8086 has just been released by Intel, while PASCAL 
compilers for the Z8000 and the 68000 have been announced. FORTRAN has 
also been announced for all three machines. 

Table 2 lists a number of features which may be of inte_rest to the 
compiler writer. All three machines are register oriented, i.e. gen
erally at least one of the operands of a dyadic operation has to ~eside 
in a register. Stacks are used mainly to store procedure activation 
records. The Z8000 and 68000 have much to offer in this respect. Apart 
from standard procedure call and return instructions, they have opera
tions to save/restore a selected set of registers on/from the stack on 
procedure entry/exit. The 68000 also has instructions to establish a new 
stack frame on procedure entry (link stack instruction), and to return to 
the previous stack frame on procedure exit (unlink stack instruction). 
In this way procedure call overhead can be significantly reduced. Local 
variables and paramaters can be addressed on all three processors using 
the register-indirect-with-offset addressing mode. On the 8086 and the 
Z8000 call-by-reference parameters can be implemented using the load
effective-address-into-register instruction followed by a push. The 68000 
can do this in one instruction. The 68000 also has a memory-to-memory 
move which is equivalent to a simple assignment statement in high level 
languages. 

The 8086 has a highly irregular architecture as far as the use of 
registers is concerned. Almost none of its 12 registers can be considered 
as truly general purpose. Many instructions as well as certain addressing 
modes implicitly use dedicated registers. The Z8000 and the 68000 are 
much better in this respect, although the Z8000 suffers from a lack of 
regularity in that memory reference instructions generally cannot be com
bined with all available addressing modes, but only with a subset which 
varies from instruction to instruction. Relative addressing, for 
instance, can be used only to a very limited extent, because most 
instructions do not permit it. Similarly, auto-increment and -decrement 
addressing modes apply only to string moves and string I/O. For the sake 
of coding efficiency the Z8000 in some cases has two identical 



9 

instructions, .which differ only with respect to admissible addressing 
modes. The 68000 has a reasonably consistent instruction set. It is 
expected to be the best architecture for the execution of compiler gen
erated code and the most convenient one for the assembly language pro
grammer. 

Although the second most important method to achieve program porta
bility is based on interpretation, interpreters do not seem to be 
foremost in the minds of 16-bit microprocessor designers, as evidenced by 
the nl.llllber of 'no' entries in table 3. All interpreters consist of a 
main loop, which does virtual instruction decoding and mapping, and a 
nl.llllber of interpretation routines corresponding to individual virtual 
instructions. If the code to be interpreted is low-level in nature (like 
PASCAL P-code), the main loop of the interpreter contributes decisively 
to total interpretation time. Even in case of high level code the over
head due to decoding is generally not negligible, because the most fre
quently occurring statements are simple assignments which take very lit
tle time to execute [16). Decoding and mapping overhead can be reduced 
if the host processor has the right instructions and an adequate nl.llllber 
of registers. As can be seen from table 3 interpreters are n~t very well 
supported by any of the three microprocessors, because they do not have 
bit field select instructions. The 8086 also lacks an indexed jl.llllp._ With 
bit field instructions lacking the intermediate language designer does 
best to pack everything in bytes or multiples of bytes, although he may 
incur a considerable space overhead in doing so. In some cases bit 
operations (on the Z8000 and the 68000) may be useful. 

4. INTERPROCESSOR COMMUNICATION AND PORTABILITY OF HARDWARE 

A network consisting of more than two or three computers will sur
vive any of its components. It is generally simply not practicable or 
necessary to replace the entire network. To facilitate replacement of 
subsystems and addition of new and different subsystems, the intercommun
ication network should conform to existing data communication standards, 
while individual processors should preferably use standardized buses. 
With larger computers this cannot yet be achieved, but with microproces
sors it is just now becoming possible to build such highly standardized 
systems. The main reasons are that IEEE standards have been proposed or 
established for a nl.llllber of microprocessor buses, viz. the S-100 bus 
[17), the General Purpose Interface Bus [18) and Intel's MULTIBUS [19), 
while the CCITT has almost finished work on its X.25 protocol for public 
(and private) data networks [20). 

The s-100 bus in its present, non-standardized, form is used by some 
200 000 personal computer systems. According to the latest standard pro
posal, the bus will be upgraded to 16 data lines and 24 address lines, 
while timing specifications will be rigorously defined. This extension 
will make the bus eminently suitable for use with 16-bit micros. Single 
board systems for the 8086 and the Z8000, which conform to the proposed 
s-100 standard, are already offered by several independent manufacturers. 



10 

Datatypes 

Registers 

Addressing 
modes 

8086 

1-digit ASCII 
numbers, 
2-digit BCD 
numbers, 
8- and 16-bit 
logicals, 
8- and 16-bit 
signed and un
signed integers, 

32-bit 
addresses 
(20 bits used), 
byte strings, 
word strings 

4 more or less 
general purpose, 
1 procedure 
call stack 
pointer, 
1 stack frame 
pointer, 
2 data offset/ 
index, 
4 segment relo
cation, 
1 status 

immediate, 
reg direct, 
reg indirect, 
reg indirect 
indexed, 
reg indirect 
with offset, 
reg indirect 
indexed with 
offset, 

Z8000 

bits, 

2-digit BCD 
numbers, 
8- and 16-bit 
logicals, 
8-, 16- and 
32-bit signed 
integers, 

32-bit 
addresses 
(23 bits used), 
byte strings, 
word strings 

15 general pur
pose, 
1 procedure 
call stack 
pointer, 
1 status 

immediate, 
reg direct, 
reg indirect, 
reg indirect 
indexed, 
reg indirect 
with offset, 

reg indirect 
with postdecre
ment, 

Table 2 

MC68000 

bits, 

2-digit BCD 
numbers, 
8-, 16- and 
32-bit logicals, 
8-, 16- and 
32-bit signed 
and unsigned 
integers, 
32-bit 
addresses 
(24 bits used) 

8 data (32-
bits)_, 
7 address (32-
bits), 
1 procedure 
call stack 
pointer (32-
bits), 
1 status 

immediate, 
reg direct, 
reg indirect, 
reg indirect 
indexed, 
reg indirect 
with offset, 
reg indirect 
indexed with 
offset, 
reg indirect 
with predecre
ment, 



Addressing 
modes (cont'd) 

Procedure call 
support 

other stacks 
besides procedure 
call stack 

Hardware stack 
overflow/under
flow detect 

Arithmetic 
error traps 

8086 

absolute, 

procedure 
call stack; 

call, return, 
and load effec
tive address 
operations; 

push and pop 
operations 

no 

no 

divide by zero, 
overflow 

z0OOO 

reg indirect 
with postincre
ment, 
absolute, 
absolute 
indexed, 
relative, 

procedure 
call stack; 
save/restore 
registers, 

call, return, 
and load effec
tive address 
operations; 

push and pop 
operations 

yes - 7 reg
ister pairs can 
be used as 
stack pointer 

yes - causes 
segmentation 
trap from exter
nal.memory 
management unit 

none 

Table 2 (cont'~) 

11 

MC68OOO 

reg indirect 
with postincre
ment, 
absolute, 

relative, 
relative index
ed with offset 

procedure 
call stack; 
save/restore 
registers, 
link/unlink 
stack, 
call, return, 
load _effec
tive address 
and push effec
tive address 
operations; 
move instruct
ion in com
bination with 
auto-increment 
and -decrement 
addressing 
modes 

yes - any of the 
7 address regis
ters can be used 
as stack pointer 

not on-chip. 
Maybe with exter
nal memory manag
ement unit. No 
details avail
able 

divide by zero, 
overflow 



12 

Decrement and 
branch not zero 
for loop control 

Multiple precision 
arithmetic support 
(add with carry, 
sign extend, etc.) 

Bit field select 
for opcode iso
lation 

Bit instructions 

Indexed jmnp for 
opcode mapping 

Adequate nmnber of 
registers to hold 
virtual PC, virtual 
stack pointer, etc. 

Multiple stacks 

Multiple precision 
arithmetic support 

Word string moves 
for compactifying 
garbage collector 
(for LISP, etc.) 

8086 z0000 

yes yes 

yes yes 

Table 2 (~',!!) 

8086 z0000 

no no 

no yes 

no yes - absolute 
indexed only 

marginal yes 

see table 2 

see table 2 

yes yes 

Table 3 

MC68000 

yes 

yes 

MC68000 

no 

yes 

yes - relative 
indexed only 

yes 

no 



Interrupt and 
I/O organization 

Direct memory 
access 

Compatible with 
already existing 
8-bit peripheral 
chips of the same 
manufacturer 

High-speed syn
chronous/asyn
chronous serial 
interface 

HDLC interface 

GPIB (IEEE-488) 
interface 

S-100 bus 
oriented 
single board 
systems 

8086 

yes 

yes 

yes - 8251A 

yes - 8273 
( 64kbi ts/ sec 
max.) 

yes - 8291, 
8292 

yes - several 
available from 
independent 
manufacturers 

zaooo 

see table 1 

yes 

no 

not yet, but 
expected soon 

not yet, but 
expected soon 

no 

yes - several 
available from 
independent 
manufacturers 

Table 4 

MC68000 

yes 

yes 

yes - MC6850, 
MC6852 

yes - MC68B54 
( 2Mb;i ts/ sec 
max.) 

yes - MC68488 

not yet, but 
expected soon 

13 

Cheap high capacity (tens of Mbytes) disk units (using the new a-inch 
Winchester technology pioneered by IBM) will be available soon together 
with S-100 interface cards. As yet there are no S-100 bus interfaces 
available for industry standard magnetic tape. 

The General Purpose Interface Bus (GPIB - IEEE-488 standard) is a 
small scale byte oriented bus. It is already in wide use to interface all 
kinds of devices to each other and to microprocessors and minicomputers. 
Due to its limited bandwidth ( S00kbyte/sec typical) and its limited 
addressing capability, the GPIB is not well suited to act as main system 
bus in microprocessor systems, but it can be used to advantage as auxili
ary I/O bus. GPIB adapters for the s-100 bus are available from several 
manufacturers. 

In tel' s MULTIBUS has been upgraded to 16 data and 2 0 address lines 
for use with the 8086. In its original form this bus is also quite popu
lar. An IEEE task force is currently working on a further standardization 



14 

of the MULTIBUS. The final standard is expected very soon. 

The CCITT x.25 protocol is already being used by several large scale 
data networks and most countries that are planning a public data network 
will adopt it. Small scale distributed systems will probably also 
increasingly be based on x.25 (except IBM's which use a different proto
col). X.25 level 1 (the physical level) specifies synchronous serial 
communication conforming to the EIA RS-422/423 standard. The latter is an 
upgraded version of the well-known RS-232 specification. Depending on 
the network speeds up to several Mbits/sec are possible. X.25 level 2 
(the data link level) specifies the basic frame format as well as address 
and control conventions and a frame check sequence for error detection 
purposes. Level 2 is compatible with the ISO High Level Data Link Con
trol (HDLC) standard. Chips for both level 1 and level 2 are available 
from many manufacturers, al though most of the HDLC chips ( like Intel's 
8273 and Motorola's 68B54) do not completely implement level 2. An excep
tion is the WD2501/2511 "micro packet network interface" recently 
announced by Western Digital Co. 

5. OPERATING SYSTEMS AND FUNCTIONAL OFF-LOADING 

With two processor modes and off-chip virtual addressing and memory 
protection (announced, but not yet available), the Z8000 and the. 68000 
are well suited to classical time-sharing and multiprogramming applica
tions. This may seem a bit surprising in view of the current trend away 
from multiuser systems, but the usefulness of both processors for per
sonal computers and distributed systems is in no way diminished by their 
multiprogramming capabilities. Without memory management the Z8001 still 
has an 8Mbyte direct addressing range (23-bits address), extendable to a 
maximum of 48Mbyte if a distinction is made between code, data and stack 
access for each processor mode. (32Mbyte is a more realistic maximum, 
because the Z8000 cannot in all cases distinguish a stack access from a 
data access, so in practice it will not be feasible to implement separate 
stack and data spaces.) The bare 68000 offers the user a 16Mbyte direct 
addressing range (24-bits address) and four times as much if access type 
and processor mode are taken into account. See table 5 for further 
details. 

As a result of the tendency to off-load functions into specialized 
slave processors (see paragraph 1.2), tightly coupled multi microproces
sor systems emerge rather naturally. Processors in such a configuration 
require special interlock ( semaphore) operations for synchronization pur
poses. Both the 8086 and the 68000 have such operations, while the Z8000 
provides a rather complicated mechanism the details of which will not be 
given here [6, 7). suffice it to say it is not at all clear that this 
mechanism is more powerful than the simpler operations offered by the 
other two. Multiprocessor configurations also require a special bus con
troller to resolve bus conflicts that would otherwise occur due to the 
uncoordinated operation of several CPUs. such multimaster bus controll
ers will shortly be available for all three processors. 



Virtual memory, 
memory protection, 
address space, etc. 

System/user mode 

Automatic memory 
map switch on 
processor mode 
switch 

Automatic stack 
pointer switch 
on processor 
mode switch 

Interrupt and 
I/0 organization 

Multiple stacks 
and stack limit 
detect 

Self-relative 
(position inde
pendent) code 

System call 

Reentrant 
procedures 

8086 

no 

not applicable 

not applicable 

no 

yes 

yes 

Z8000 

see table 1 

yes 

yes 

yes 

see table 4 

see table 2 

to a very limi
ted extent - most 
memory reference 
instructions do 
not permit rela
tive addressing 

yes 

yes 

Table 5 

15 

.MC68000 

yes 

unknown 

yes 

yes 

yes 

yes 

The 8086 has an interesting instruction (escape) which is intended 
for high speed transfer of control to a slave processor. The only thing 
the escape instruction does is to put the effective address of its 
operand on the bus. It is to be used in combination with the wait 
instruction, which suspends operation of the processor until the latters 
test input is asserted by an outside source. By monitoring the bus the 
slave processor is able to detect any escape instruction fetched by the 
master and to subsequently intercept the corresponding address. An exam
ple may clarify this. suppose one would like to let a slave processor 
perform a certain operation OP (for instance, a floating point add) with 
two operands A and Band result c. In that case one would write 



16 

esc OP 
esc A 
esc B 
esc C 
wait 

The four escape instructions supply the slave processor with pointers to 
the opcode, the two operands and the location of the result. After that 
the 8086 executes the wait and goes to sleep. When the slave is fin
ished, it wakes the 8086 by asserting its test input. If no slave pro
cessor is present, software interpretation of OP can be invoked simply-by 
changing the first escape to a trap instruction. Table 6 summarizes the 
multiprocessing and flmctional off-loading facilities offered by each 
processor. 

Trap to specified 
vector 

Escape to slave 
processor 

Interlock 
instructions for 
multiprocessor 
operation 

6. CONLUSION 

8086 

yes 

yes - see text 

yes - special 
lock prefix 
in conjunction 
with exchange 
memory with 
register 
instruction 

z0000 

no - use sytem 
call with param
ter or unimple
mented instruction 
trap 

no 

yes - see text 

Table 6 

MC68000 

yes 

no 

yes - indivi
sible test and 
set instruction 

Of the three 16-bit microprocessors examined in this report, the 
Motorola MC68000 is the fastest and has the best architecture for the 
execution of compiler generated code and the most convenient one for the 
assembly language programmer. The Zilog Z8000 has a comparable, but less 
regular architecture. Both processors support essentially infinite 
amounts of memory and, with off-chip memory management, are well suited 
for multiprogramming and time-sharing applications. The Intel 8086 is 
less sophisticated than the other two, but, at least at the present time, 
it is the strongest as far as support chips and single board systems are 
concerned. All three processors are suitable for multi processor 



17 

operation. Somewhat surprisingly, interpreters are not very well sup
ported by any of the three machines. 

REFERENCES 

[1] MCS-86 User's Manual. Intel eo., Pub. No. 9800722A, July 1978. 

[2] Morse, s.P., Pohlman, w.B. & Ravenel, B.w. 'The Intel 8086 micropro
cessor: A 16-bit evolution of the 8080.' Computer, June 1978, PP• 
18-27. 

[3] MC68000 Preliminary Product Description. Motorola Inc., 1978. 

[ 4] Str i tter, E. & Gunter, T. 'A microprocessor architecture for a 
changing world: The M:>torola 68000.' Computer, February 1979, PP• 
43-52. 

[5] Z8001/Z8002 CPU Product Specification. Zilog Inc., Pub. No. 03-
8002-01, Preliminary ed., March 1979. 

[6] Z8000 CPU Instruction Set. Zilog Inc., Pub. No. 03-8020-01, Prelim
inary ed., February 1979. 

[7] Peuto, B.L. 'Architecture of a new microprocessor.' Computer, Febru
ary 1979, PP• 10-21. [The Zilog Z8000]. 

[8] Kahne, s., Lefkowitz, I. & Rose, c. 'Automatic control by distri
buted intelligence.' Scientific American, June 1979, pp. 54-66. 

[9] Gustavson D.B. 'Standards Connnittee activities: An update.' Com
puter, July 1979, pp. 61-64. 

[10] Stritter, s. & Tredennick, N. 
single chip microprocessor.• 
Workshop, 1978, PP• 8-16. 

'Microprogrammed implementation of a 
The 11th Annual Microprogramming 

[11] Mauchly, J.W. 'Mauchly on the trials of building the ENIAC.' IEEE 
Spectrum, April 1975, PP• 70-76. 

[12] El-Ayat, K.A. 'The Intel 8089: An integrated I/O processor.' Com
puter, June 1979, pp. 67-78. 

[13] iSBC 86/12 Single Board Computer. Intel Co., Pub. No. 9800770A, 
1978. 

[14] ANS Committee X3J2/77 (Proposed standard for MINIMAL BASIC), May 
1977. 



18 

[15] Ravenel B.w. 'Toward a PASCAL standard.' Computer, April 1979, pp. 
68-82. 

[ 16] Klint P. 'How inefficient are stack oriented machines?' Report IW 
123/79, Mathematical Centre, Amsterdam, 1979. 

[17] Elmquis:t, K.A., Fullmer, H., Gustavson, D.B. & Morrow, G. 'Standard 
specification for S-100 bus interface devices.' Computer, July 1979, 
pp. 28-·52. 

[18] IEEE Standard Digital Interface for Programmable Instrumentation. 
IEEE Std 488-1978. IEEE, 1978. (can be ordered from IEEE Service 
Center, 455 Hoes lane, Piscataway, N.J. 08854, USA.) 

[ 19] Barthmaier, J. Intel MULTIBUS Interfacing. Intel Application Note 
AP-28A, Intel Co., Pub. No. 9800587B, 1979. 

[20] Folts H.C. 'Status report on new standards for DTE/DCE interface 
protocols.' Computer, September 1979, pp. 12-19. 






