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On bounds for the specification of finite data types by means 

* of equations and conditional equations. 

by 

** J.A. Bergstra & J.V. Tucker 

ABSTRACT 

Within the framework of the ADJ Group's initial algebra semantics for 

data types, we prove that while any finite data type can be specified by 

means of finitely many equations the number of equations required is 

sometimes necessarily a function of the size of the data type. By using 

hidden operators, however, the number of equations needed to specify a 

finite data type A can be proved to be bounded by numbers depending only 

on the signature L of A. For example, if A is any finite single-sorted 

data type, generated by p initial values and having q operations, then A 

can be specified using 1 hidden constant, 6 hidden functions and 

15 + p + q equations. We also prove that such a data type A can be speci­

fied using 1 hidden function, 1 equation and 2 conditional equations. 

KEY WORDS & PHRASES: algebraic data types; finite data types; equational 

and conditional specifications with, and without, 

hidden operators; boundedness properties 
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INTRODUCTION 

In this paper,we shall prove four theorems about the comparative 

complexities of equational and conditional equation specifications of 

finite data types. To do this we shall work strictly within the mathemat­

ical framework of the initial algebra semantics for data types created by 

the ADJ Group. 

Our starting point is the observation that each finite data type A 

of signature E possesses a finite equational specification (E,E). At 

first sight, this seems a comforting fact: no hidden operators are 

required (which is not the case for rather straightforward looking 

infinite data type semantics, see ADJ[7]). The equations of E turn out to 

be elementary identifications between terms over E. The observation is 

easy to prove. 

However, the number IEI of equations in Eis a function of the 

size IAI of the data type A. Actually, IEI ls O(AIAIµ) where A,µEw, the 

set of natural numbers, and these constants one can read off the sig­

nature E. The method which provides the specification E amounts to a 

syntactic tabulation of every operation of A on all data: we call this 

technique graph enumeration. Disappointed, one wonders whether or not 

theory can illuminate more subtle and interesting relationships between 

finite semantics and specifications. Surely there are more concise, if 

more sophisticated, ways of defining finite data types? In Section 3 we 

shall show there are no such general methods to be found which use only 

equations: 

There is a family of finite data types {A :n£w} of common 
n 

single-sorted signature E such that to specify An by graph 

enumeration requires O(IA I) simple identifications over E 
n 

1 

and each A cannot be specified with less than o(IA I) equations 
n n 

over E. 

The proof of this theorem explicitly shows that the work of defining an 

A must fall on identifications rather than equations and so that graph 
n 

enumeration is sometimes optimal among equational techniques. 
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The idea that conditional equations are more powerful than equations 

and can lead to concise specifications can now be neatly illustrated by 

proving that c~ach A can be specified using 8 identifications over E and 
,n 

1 conditional equation. 

In section 4 we consider how hidden operators can be used to make 

concise specifications for finite data types. Let A be any finite data 

type whose sicJnature I names n sorts, p constants and q operations. We 

prove that 

and that 

A 1XJssesses a specification involving at most n hidden 

constants, 2n+4 hidden operators and 15+p+q+3(n-1) equations 

A possesses a specification involving at most n hidden 

operators, n identifications over E and 2n conditional 

equations. 

Section l documents notation, some algebraic definitions, and 

describes the graph enumeration method. Section 2 is something of a 

digression: there we give an example of a family of data type 

specifications: whose syntactic size grows linearly but defines semantics 

which outgrows the Ackermann Function. In Section 5 we discuss the next 

stage in the analysis of bounded specifications for finite data types. 

This paper is the fourth in our series of mathematical studies of 

the power of definition and adequacy of algebraic specifications for 

data types [1,2,3], see also [4]. In particular, it acts as a companion 

to our [3] where we proved essentially the same boundedness result for 

equational hidden functions specifications mentioned above, but for 

infinite computable data type semantics. 

In what follows, it is assumed the reader is familiar with both the 

raison d'etre of the ADJ Group's algebraic theory of data types as well 

as with its technical machinery, at least to the level of the basic 

paper ADJ[S] but not extending beyond the material of ADJ[6,7]. At one 

place we refer to a longish technical argument of [3], rather than rewrite 
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it here; otherwise knowledge of our previous work, although desirable, is 

not essential. 

1. DATA TYPES: SEMANTICS AND SPECIFICATIONS 

After recording, or referencing, some notation and technical ideas, 

we prove our basic observation that finite equational specifications are 

adequate to define all finite data types. For most of what follows the 

original sources are ADJ[5,6,7]. 

Typically, a many-sorted algebra A of signature LA is composed of 

n (non-empty) component domains A1 , ... ,An named in LA by sorts 1, .•. ,n. 

Each operation of A is of the form 

' ( A 1 , •.. , Ak) , µ 
/1., µ 

(J = (J 

where A= (A 1 , ... ,Ak) and Ai,µ E {1, ... ,n} fork E w. For such an operation 

crA,µ we call k the arity of crA,µ and speak of crA,µ as a k-ary operation of A. 

In thE~ algebraic theory of data types, the semantical structure of a 

data type is modelled by a many-sorted algebra A which is assumed to be 

finitely gr:merated by elements named as constants in its signature. 

Such algebras are minimal in the sense that they contain no proper 

subalgebras. The following facts are obvious: 

1.1. LEMMA. Let A and B be algebras of common signature L both finitely 

generated jby elements named as constants in L. Then (1) any L-homomorphism 

q>:A-+B is surjective; (2) if <j>,iµ: A-+B are L-homomorphisms then q>=iµ; 

and ( 3) if there are L-homomorphisms q>: A-+B and 1jJ: B➔A then A:! B (by either 

q> or 1jJ) • 

Let= be an equivalence relation on the many-sorted algebra A. A 

traversal for= is a family of sets JA c AA indexed by the sorts 1 ~A~ n 

of LA, such that for each b E AA there is one, and only one, 

aA E JA fo:r which b = aA. 

Let L be a signature and let T(L) denote the L-algebra of all terms 

over Land TL[x1 , .•. ,xn] denote the algebra of polynomials in the 

many-sorted list of indeterminates x 1 , ... ,Xn. If A is any L-algebra then 
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by term evaluation in A we mean a map valA:T(E)+A which evaluates each 

term t e: T (E) •. on substituting the constants of A for their names in t 

and the operations•of A for their names int; valA is uniquely definable 

as an epimorphism T(E)+A. 

1.2. LEMMA- Let ~:A+B be a homomorphism between E-algebras. Then the 

following diagram commutes 

Lemma 1.2 follows immediately from Lemma 1.1 

By polynomial evaluation in A we mean the process of substituting 

( ) nf 'd · C ) h some a= a 1 , ••• ,an e: A or in eterminates X = x1 , ... ,xn, were ai 

is an element of the same sort as Xi, into polynomial t(X) e: TE[x1 , ••• ,xn]' 

along with the constants and operations of A for their names in t(X), and 

evaluating t(a) in A. 

A simple equation or simple identification over Eis a pair 

(t,t') of terms from T(E) invariably written t = t' while an equation 

is a pair (t(X), t'(X)) of polynomials from some TE[x1 , ••• ,xn] invariably 

written t(X) = t' (X), although this does not mean that t(X) and t' (X) 

must contain any indeterminate in common. Conditional equations are 

formulae of the form 

The length of any of these types of equation ewe write Hell and by this 

we mean the length of the equation thought of as a string over signature 

E and the alphabet 

) = I\ 0 1 

where {0,1} is used to represent indeterminates by means of the binary 

representations of their natural number indices. 



If Eis a set of formulae over I and A is a I-algebra satisfying 

the laws of E we say A is an E-algebra and occasionally write A I= E. 

The class of all E-;-algebras we denote ALG(E,E). We assume the reader 

is familiar with the construction of the initial algebra for ALG(E,E) 

from T(E) and we write this T(E,E) = T(E)/= where= denotes the 
E E 

smallest congruence on T(E) containing those identifications between 

terms determined by the laws of E. See ADJ[S,6] for details. 

A many-sorted algebra A has a finite equational specification (E,E) 

if I = I, Eis a finite set of equations over I, and T(E,E) ~A.The 
A 

definition of a simple equational specification and of a conditional 

equational specification follows mutato nomine. 

5 

We now formally define the nature of our hidden function specifica­

tions (see [1]). 

Let A. be a many-sorted algebra of signature EA. Let I be a 

signature I c EA and having the same sorts as EA. Then we mean by 

Air the I-algebra whose domains are those of A and whose operations 

and constants are those of A named in I: the I-reduct of A; and by 

<A>E the E-subalgebra of A generated by the operations and constants 

of A named in I viz the smallest E-subalgebra of AjE. 

A many-sorted algebra A has a finite, equational hidden enrichment 

specification (E,E) if I c I, and I contains exactly the sorts of I , 
A A 

and Eis a finite set of equations over I such that 

Again one also defines hidden enrichment specifications involving simple 

equations and conditional equations in the obvious way. 

The following fact was noted, casually, in our [1]. 

1.3. BASIC OBSERVATION. Let A be a finite many-sorted algebra finitely 

generated by elements named as constants in its signature E. Then A has 

a specification (E,S) involving a finite number of equations which are 
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simple identifications between terms over I. 

More spc9cifically: let A have component domains A1 , ••• ,An and q 

operations. Let M = max{IA. I :1::; i ::,n} and let m be the maximum arity of 
' l. 

the operations of A. Then the set of equations scan be chosen with 

Isl ::; q.Mm. 

PROOF. Let A be finitely generated by_a1 , ..• ~al 

Let A. consist 
l. 

m. polynomials 
l. 

X such that 

l. l. 
say, bl, ..• ,b m, 

l. 
in an appropriately sorted 

of m. elements, 
. l. 

t~(X) 
J 

lying in various domains. 

For each sort i, choose 

list of indeterminates 

>,., µ 
Now for each operation a :AA x ..• xA>,. 

>,., µ 1 k 
+ A write out the graph of 

)l 

a 

>,., µ 
graph(cr ) 

in terms of the polynomials 

t~ (a) 
J 

where a= (a1 , ... ,an). Collect (the syntactic versions of) these identities 

to make the set S of simple identifications over I. It is routine to check 

T(I,S) ~ A and to verify the bound on Isl claimed. Q.E.D. 

The method used in this last proof we refer to as the graph 

enumeration technique. 

2. APERITIF 

In this :section we wish to make the point that a family of small 

equational spiecifications can give rise to a family of very large data 

type semantics. 

Let I be any signature. By an effective family of equational 

specifications over I we mean a family E = {E :nEw} of sets of equations 
n 



over I such that the relation e EE is decidable uniformly inn. 
n 

2.1. THEOREM. Let I consist of a constant symbol 0, a unary function Sand 

a binary function fYmhol ACK. Then there exists an effective family 

E = {E :n E: w} of finite equational specifications over I such that, for 
n 

each n E w,, (i) IE I = 4 (ii) for each e EE UeU is 0(n) and (iii) 
n n 

IT(I,E) I > a(n) = ack(n,n) where ack(n,m) is Ackermann's Function. 
n 

PROOF. Consider the sequence of finite numerical algebras 

A = ({0, ... ,a(n)}; 0, s, ack) 
n n n 

wheres (x) = min(x+1,a(n)) and ack (x,y) = min(ack(x,y) ,a(n)) for n E w. 
n n 

The n~quired family E = {E :n E w} is meant to specify the family 
n 

A = {An :n E: w}. As E* we simply take the 3 equations over I 

ACK(0,X) = S(X) 

ACK(S(X) ,0) = ACK(X,S(0)) 

ACK(S(X) ,S(Y)) = ACK(X,ACK(S(X) ,Y)). 

And, on defining equation e to be 
n 

we set E == E u {e} for each n E w. Obviously, our family Eis effective 
n * n 

and satisfies conditions (i) and (ii). It remains to prove T(I,E) ~A. 
n n 

i 
2.2.LEMMA. {S (0): 0 ~ i ~ a(n)} is a traversal for_ 

En 

PROOF. It is easy to see that Si(O) =E Sj(O) if, and only if, i = j. So 
n 

we have only to consider the completeness property for the sets: that 
z 

for each t E T(I), t = S (0). This is done by induction on the complexity 
En 

of terms in T(I). The basis is obvious so assume t = ~(s 1 , ... ,sk) and 
z 

s. -ES (0). There are two cases: either A= Sor A= ACK. The first 
1. n 

of these cases is trivial and the second follows from the identity 

ackn(i,j) 
-E S (0) 

n 

7 
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which we leave to the reader to verify (using the equations of E and 
n 

induction on i). Q.E.D. 

From Lemma 2.'2 we know that the map <p :A ➔ T(I:,E ) , defined by 
n n n 

<p (i) = [Si (0)] 
n 

is a bijection. That <p is a homomorphism is an easy calculation: 
n 

ACK ( <p ( i) , <p ( j ) ) 
n n 

= ACK([Si(O)],[Sj(O)]) 

= [ACK(Si(O) ,Sj(O))] 
ackn(i,j) 

= [s (O) J 

= <p ( ack ( i , j ) ) 
n n 

by identity (*); 

Q.E.D. 

3. A FAMILY OF FINITE DATA TYPE SEMANTICS WHOSE EQUATIONAL SPECIFICATIONS 

CANNOT BE BOUNDED 

Let [0,n] denote the interval {0, ... n} cw and let B = {T,F}. A 

finite arithmetic of order n with (embedded) booleans is a single-sorted 

algebra FAB(n) defined on [0,n] u B by taking 0,n,T,F as constants and by 

defining two unary functions S,P on [0,n] by 

S(x) = x+1 (x < n) P(x) = x-1 (x > 0) 

S(n) = n P(0) = 0 

and trivially extending these successor and predecessor functions to 

B by defining 

S(T) = F 

S(ll<') = F 

P(T) = T 

P(F) = T 

FAB(n) can be conveniently visualised by means of Figure 3.1. Let I: be 

the signature of such algebras. 

Define A = FAB(2(n+1)). Now IA I = 2(n+1)+1+2 = (2n+5) and, accord-
n n 

ing to Basic Observation 1.3, each algebra A can be specified using 
n 



2. jA I = 2(2n+5) simple identifications over E. We will now prove that 
n 

9 

the general technique of graph enumeration is, in all essential respects, 

optimal for the family {A :n E w}. 
' n 

3 .1. THEOREM. Each algebra A fails to possess a finite equational 
n 

specifica t~[on with less than n equations. 

PROOF. We begin by constructing a new family of algebras K of signature 
. n 

Eby addinq n special points a 1 , ... ,an to An which disturb the 

definition of the predecessor function Pon the odd numbers in A. K 
n n 

is best defined, pictorially, 

Formally, s is unchanged 

1 s i s n. And p is redefined 

for 1 s i ~; n; while for the 

cs 
s 

p • • • 
0 .-.--1 2 

p p 

by Figure 3. 2. 

on [0,2(n+1)] u B and S (a.) = 2i+1 for 
J. 

only on {2i+1:i E [1,n]} where P(2i+1) = 
new points P (a.) 

J. 
= 2i-1, 1 < . - J. s n. 

s s 

. ·:J s p C· ·J n-1--n T-F 
p p 

Figure 3.1 

• s -~- s -~ 
2n-1-+--- 2n 2n+H--2 (V 

Figure 3.2 

p\.? p 
a 

n 

a. 
J. 

s 

S u B 
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"Pushing in the triangles (of Figure 3.2)" defines a map cI> :K ➔A. 
n n n 

Precisely, take cI> :[0,2(n+l)] u B ➔ [0,2(n+l)] u B to be the identity map 
n 

and, elsewhere in K, take cI> (a.) = 2i for 1:,; i:,; n. cI> is an epimorphism. 
,n n 1. n 

Assume n is fixed so that we may simplify our notation by writing 

A for A, K for K and cI> for cI> • We subsequently distinguish between the 
n n n 

boolean parts of Kand A by writing BK and BA respectively. Let 

E = {e1 , .•• ,em} be a finite set of equations specifying A. We shall prove 

m ~ n. To do this we make use of the semantics intermediate between Kand 

A: 

Consider the following family of congruences on K. Let A= (A 1 , .•• ,Ak) 

where 1:,; k:,; n and 1:,; Ai:,; n. Define =A to be the smallest congruence on 

K containing the identifications {aAi = 2Ai: 1:,; i:,; k} and set 

BA= K/=A and let ~A:K ➔ BA be the canonical factor map determined by 

=A· Clearly, the equivalence classes of =A are the sets 

The map PA simply pushes in those triangles of Figure 3.2 which are 

indexed by A1 , .•. ,Ak. Thus, if A andµ are numerical sequences containing 

the same entries then~, - ~ and B = B . If A contains each element of 'f'/\-'f'µ A µ 

[1,n] then ~A= cI> and BA= A. 

A splitting o-': Kand A is a minimal algebra C together with 

homomorphisms a,S such that 

Of course, the minimality of C implies a,S are epimorphisms. We can now 

establish that we have a complete parameterisation of the semantics 

between Kand A. 

3.2.LEMMA. Let K~ c~ A be a splitting. Then C ~ BA for some A. 

We leave the proof of Lemma 3.2 as an easy exercise for the reader. 

Let I be the set of all BA with that BAO~ A replaced by A and with 

K adjoined. I contains precisely K,A and one isomorphic copy of each 

algebra belonging to a proper splitting. Notice that irl = 2n. 
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3.3.LEMMA. A is the only algebra in I which satisfies all the equations of 

E. 

PROOF. Let B E I a1id assume B is an E-algebra. By the initiality of 

T(I,E) ~ A for E-algebras there exists a homomorphism ~:A ➔ B. On the 
a. a other hand, since BE I there is a splitting K--➔B~A. Thus there are 

epimorphisms A ➔ B and B + A and so, by Lemma 1 . 1 , A ~ B and, by the 

definition of I, A= B. Q.E.D. 

Technically, the key to the proof of the theorem is this lemma. 

3.4-LEMMA. For each e EE, either e is satisfied in Kor there exists 

1 ~ i(e) ~ n such that Bi(e) EI satisfies e. 

Given Lemma 3.4 the rest of the proof is as follows. Let e 1 , ••• ,ek 

be those equations of E which are not satisfied in K. Then calculate 

i(e 1), ... ,i(ek) and set A= (i(e1 ) , .•. ,i(ek)). Clearly, all of e 1 , .•. ,ek 

are true in BA. Since BA is an epimorphic image of K, all the other 

equations of E are true in BA. Thus BA is an E-algebra. Now if 

IAI = k ~ m < n then BA~ A; a fact which contradicts Lemma 3.3. 

Therefore, m ~ n. 

PROOF OF LEMMA 3.4. 

First let us consider the simple identifications in E. 

3.5. LEMMA. Let t,t' E T(I) and suppose valA(t) = valA(t') but 

va~(t) ~ valK(t'). Then there is 1 ~ i ~ n such that 

either valK(t) = 2i and va1K(t 1 ) = ai 

or valK(t) = ai and valK(t') = 2i 

PROOF. Since valA(t) = valA(t') and by Lemma 1.2, valA(-) = ~valK(t) = 

~valK(t'). We consider the values of~ when va\. (t) is a boolean, a 

number, and an additional point. 

Case (i) : 

of ~:BK+BA implies valK(t) = valK(t'): a contradiction. So this case 

cannot arise. 
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Case (ii): valK(t) = l E [0,2(n+1)]. Here ~valK(t') = ~(l) = l. If 

l f 2i for 1 ~ i ~ n then, by the definition of~, valK(t') = l which 

contradicts valK(t) f valK(t'). Therefore l = 2i for 1 ~ i ~ n and 

' valK(t) f valK(t') entails valK(t') = ai. 

Case (iii): valK(t) = ai for 1 ~ i ~ n. Here ~valK(t') = ~(ai) = 2i 

and since ~-1 (2i) = {2i,ai} we must have valK(t') = 2i if valK(t) f 

valK(t'). Q.E.D. 

If e = t == t' E E is a simple identification which is not satisfied in 

K then, by Lemma 3.5, we can choose i(e) from valK(t), valK(t') such that 

Bi(e) makes the right identification in K so as to satisfy e. Thus we 

know Lemma 3.4 to be true of the simple identifications in E. 

Consider the equations in E. In principle, these are of essentially 

3 kinds: 

(1) t(X) = t' (Y) (2) t(X) = t' (X) (3) t(X) t' 

where X,Y are single indeterminates and t' ET([). The upshot of our 

analysis will be that an equation is true in A if, and only if, it is 

true in K. First we shall show that E may contain equations of type (2) 

only. 

Case (3). Let e = t(X) = t' and suppose valA(t') EBA. Choosing 

X = 0 we observe that valA(t(O)) i B . Conversely, if val (t') i B 
A A A 

then choosing X = T we see that valA(t(T)) EBA. Thus e cannot be true-

in A. 

Case (1). Let e = t(X) = t' (Y). Such an e cannot be true in A 

because setting Y = T yields an equation of type (3). 

So let e = t(X) = t' (X) and suppose this is not true in K. Then 

there is z EK such that t(z) ft' (z) and we may choose some r ET([) 

such that valK(r) = z. We now consider the simple identification 

t(r) = t' (r) which is true in A but not in K. Using Lemma 3.5 we can 

calculate i such that (say) 

We can now embark on a case distinction argument based upon the leading 



function symbols oft and t'. In each case we obtain a contradiction to 

the hypothesis that e is not true in K. 

Let t(X) = P(T(X)) and t' (X) = P(T' (X)). Substituting X = r, as 

chosen above, we know valA(PT(r)) = valA(PT' (r)) but va1i<_(PT(r)) # 

valK(PT' (r)). Clearly, valK(L(r)) = valK(T' (r)) - suppose not and there 

is an immediate contradiction. This means that valK(T(r)), valK(T' (r)) 

are a pair i,j EK such that P(i) = P(j) but i # j. On inspecting the 

algebra K (Figure 3.2) we see that this implies i = 0, j = 1 or i = 1, 

j = 0. In both cases valK(PT(r)) = 0 = valK(PT' (r)) which is the required 

contradiction. 
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The other case distinctions, such as t (X) = P ( T (X) ) , t' (X) = S ( T' (X) )· 

• and so on, we leave to the reader. 

This completes the proofs of Lemma 3.4 and Theorem 3.1. 

We are now in a position to formally illustrate that conditional 

equation specifications can concisely specify a data type which cannot 

be concisely specified by equations alone; see ADJ [7]. 

3.6. THEOREM. Each finite arithmetic with booleans FAB(n) (and so, in 

particular, each A) possesses a specification involving 8 simple 
n 

identifications and 1 conditional equation. 

PROOF. Let the signature of the algebras be E = {0,b,T,F,S,P} where 

names the largest number in each FAB(n). Define E 
n 

equations 

S (T) = F p (T) 

S(F) = F p (F) 

Sn (0) = b P(0) 

S(b) = b Pn(b) 

S (X) = p (X) -+ PS (X) = X 

We invite the reader to verify T(E,E) ~ FAB(n). 
n 

to be the set of 

= T 

= T 

= 0 

= 0 

Q.E.D. 

b 

3.7. PROBLEM. Does there exist a family of finite algebras {A :n E w} of 
n 

common single-sorted signature E such that to specify A by graph 
n 
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enumeration requires O(AIA Iµ> simple identifications over Land each 
n 

A cannot be specified with less than O(AIA Iµ> conditional equations 
n n 

over E? 

4. BOUNDS FOR THE SPECIFICATION OF FINITE DATA TYPE SEMANTICS USING 

HIDDEN OPERATORS 

Let us begin with a resume of the role of hidden operators in the 

theory of data type specifications. To specify certain infinite computable 

data type semantics by means of equations, or conditional equations, it 

is known that the use of hidden operators is necessary; see our [1], or, 

better, ADJ [7]. On the other hand, it is also known [1] that equations 

and hidden functions are sufficient to define any computable data type 

semantics, the finite data types requiring only simple identifications, of 

course. In this section we use hidden operators to reduce the number of 

equations, or conditional equations, needed to specify a finite data type. 

The theorem we prove for equations and hidden functions is meant to be 

contrasted with Theorem 3.1 as well as to complement our earlier study 

of bounds for equational specifications of infinite computable data 

types [3]. Since the theorem about bounds for conditional specifications 

is simpler than the theorem for equational specifications we shall prove 

it first. 

4.l~THEOREM. Let A be a finite many-sorted algebra containing n sorts and 

assumed finitely generated by elements named as constants in its 

signature L. Then A possesses a finite conditional hidden enrichment 

specification involving n hidden functions, n identifications and 2n 

conditional equations. In particular, any such single-sorted algebra may 

be specified by means of 1 hidden operator, 1 identification and 2 

conditional equations. 

PROOF. We shall prove this theorem for the case of single-sorted finite 

algebras since the technical ideas involved have obvious modifications 

which cover the many-sorted case. 

Given single-sorted finite algebra A, choose some named constant 



a EA and any function h:A3 ➔ A such that 

h(x,y,z) = a if, and only if, x y and z = a. 

Add this function h to A to make a new algebra A0 of signature I 0 • 

Obviously,, A0 It = <A0 >I = A. We shall give an appropriately bounded 

specification for A0 • 
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First, using Basic Observation 1.3, choose any finite simple equational 

specification (I 0 ,s0 ) for A0 . Let s0 ={ti= si:l :o; i :o; m}. Now define 

E0 to consist of these 3 formulae over I 0 , where H names h of A0 in I 0 : 

H(X,Y,Z) =a ➔ X y 

H(X,Y,Z) =a ➔ Z = a 

H(t ,s ,H(t 1 ,s 1 ,H(... . .. H(t1 ,s1 ,a_) ..• ) 
n n n- n-

a 

We claim T(I0 ,E0 ) ~ A0 . 

Clearly, AO is an E0 -algebra and so, by initiality, there is an 

epimorphism cj>:T(I0 ,E0 ) ➔ A0 . Thanks to Lemma 1.1, it is enough to show 

the existence of an epimorphism ijJ:A0 ➔ T(I0 ,E0 ). 

Define inductively the I 0 terms , 1 = H(t1 ,s1 ,~) 

'k+l = H(tk+l'sk+l''k) 

(1) 

(2) 

(3) 

Thus equation (3) is merely T = a, and observe that this implies t = s 
n n n 

and T 1 == a by equation (1) and (2). A trivial induction now shows that 
n-

equation (3) implies ti= si for 1 :o; i :o; m. Therefore, T(I0 ,E0 ) is an 

s0-algebra and, by initiality, there is an epimorphism ijJ:T(I0 ,s0 ) ➔ 

T(I0 ,E0 ). Since AO~ T(I0 ,s0 ) we are done. 

The strategy for the many-sorted case is simply this. One knows each 

domain A. of A is non-empty and so one chooses either a named constant 
1 

of sort 1 :o; i :o; nor some other element from A. which, by minimality, is 
1 

a polynomial function of named constants of various sorts. With these 
3 

elements an h. :A. ➔ A. can be made for each domain and added to A to 
1 1 1 

form A0 . ~~hus A0 has n more functions than A. To define E0 , choose a 

simple spE~cification (I0 ,s0 ) for A0 and copy down equations (1)-(3) simply 

adding a sort index i to (1) and (2) , and in the case of equation (3), 

selecting only those terms obtained from s0 which are of the correct 
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sort i under consideration. This way E0 contains 2n conditional equations 

and n equations. The formal arguments are just as in the single-sorted 

case. Q.E.D. 

4.2. THEOREM. Let A be a finite many-sorted algebra containing n sorts and 

assumed finitely generated by elements named as constants in its 

signature~- Then A possesses a finite equational hidden enrichment 

specification involving n hidden constants, 2n+4 hidden functions and 

15+p+q+3(n-1) equations. In particular, any such single-sorted algebra 

may be speciEied by means of 1 hidden constant, 6 hidden functions and 

15+p+q equations. 

PROOF. We follow our usual method of explaining the proof for the 

single-sorted case in detail before discussing the proof for the many­

sorted case. 

Let !Al = n+l and choose a bijection a:[O,n] + A so as to construct 

a finite numerical algebra Ron [O,n] by inducing operations on [O,n] 

from those of A. Thus, if f is a k-ary operation of A let f (temporarily) 
a 

denote that unique map which commutes the diagram 

Ak 
k t 

a 
k 

[O,n] 

f 
+A 

t 
a 

k 
where a (x1 , ••• ,xk) = (ax1 , ... ,axk). Obviously, a:R + A is an isomorphism 

and we can identify A with Rand concentrate on providing an appropriate 

specification for R. We build a new algebra R0 of signature E0 by adding 

to ROE R, as a constant, and 6 new functions: 

I x+l if x<n I 0 if x=O 
s (x) = P (x) 

n 1 n if x=n n 1 x-1 if x>O 

I X if x~y 
min(x,y) = sum (x,y) = min(x+y,n) 1 y if x>y n 



null(x,y,z) = 
J y if x=O 

L z if x~O 
h(x,y,z) 

= { 0 if x=y & z=O 

1 otherwise 

Clearly, ROIL= <RO>L =Rand so it is enough to prove that Ro has 

a finite equational specification (L0 ,E0 ) with IE0 1 = 15+p+q. 

Let the above additions to R be named in LO by 

0, S, P, MIN, SUM, NULL, H 
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Here is a prescription for the finite set of equations E0 over L0 • 

First, for each constant c € L naming numerical constant c € R, set 

(0) 

Next come equations to define the 6 functions above. 

Successor sn+1(0) = Sn(O) (1) 

Minimum MIN(X,Y) = MIN(Y,X) 

MIN(O,Y) = 0 

MIN(S(X) ,S(Y)) = S(MIN(X,Y)) 

Predecessor 
n-2 

SP(MIN(X,S (0))) = MIN(X,Pn-2 (0)) (3) 

p (0) = 0 

PSn(O) = sn-1(0) 

Addition SUM(X,O) = X (4) 

SUM(X,S (Y)) = S(SUM(X,Y)) 

Equality with zero NULL(O,Y,Z) = y (5) 

NULL(S(X) ,Y,Z) = z 

Equality H(X,Y,Z) = H(Y,X,Z) (6) 

H(X,X,0) = 0 

H(X,Y,S(Z)) = S(O) 

H(P(X) ,S(SUM(X,Y)) ,0) = S(O) 
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It remains for us to give the equations which are to define the 

operations of R. This is fairly involved as we will assign to each 

operation of R just one equation over r0 into which the graph of that 

operation has been coded. 

Let f be a k-ary operation of R named by! EI. 

First WE! choose some linear enumeration of [O,n]k say a 1 ,a2 , ••• ,ai, 
k 

••. a where 1. ::::: i ::::: d = (n+ 1) • Let a. ( j) denote the j-th coordinate 
d k i 

of a. E [O,n] for 1 S j::::: k. 
l 

Secondly, we define a family {ei (x1 , ••• ,Xk): 1::::: i S d} of polynomials 

over I: 0 in indeterminates x 1 , ••• ,Xk. Each ei is defined inductively over 

the list of i.ndeterminates: for 1 Si S d we define polynomials 
0 k 

e. , ... , e. by 
l l 

so that 

nomials 

0 
ai(j) j-1 

H(X.,S (0),e. (X 1 , ••. ,X. 1)) 
J l J-

k 
ei (x1 , •.. ,Xk) = ei (x1 , ... ,Xk). The point is that we want poly-

with this property: let z 1 , ... ,zk E [O,n] 

a fact which is realised in our specification later on (Lemma 4.6). 

Using these e. we may now inductively build the equation for f. 
l . 

Define more polynomials ui for OS i S d. 

0 u (X1 , ••• ,Xk) = 0 

u i ( X l , ... , xk) = NULL ( e i ( X l , ... , xk) , Sf ( a i) ( 0) , u i - l ( X l , ... , xk) ) . 

These polynomials have the property that, for each 1::::: i::::: d and any 

z 1 , ••. , zk E [ 0, n] , 

= { f(z1,·••1Zk) if (z1,·••1Zk)=aj E [O,n]k & jSi 

0 otherwise 

This fact is realised by our specification in Lemma 4.5. Whence our 



equation for f is 

and, having completed the description of E0 , we may observe that 

IEol = 15+p+q. 

It now must be shown that T(L0 ,E0 ) = - abbreviate -

4.3. LEMMA. {Si(O): i E [O,n]} is a traversal for=· 

PROOF. We leave to the reader the task of checking that 

(7) 

on Ea 

and prove that each t E T(E0 ) is equivalent to some numeral Sz(O). This 

is done by induction on term complexity. The basis is obvious and the 

induction step follows from this next proposition. 
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4.4.LEMMA. Lett= A(s 1 , .•• ,sk) where~ E r0 names operation A of R0 • If 

s. = szi(O) for 1 :;;; i:;;; k and z. E [O,n] then t = SA(z1'··· 1 zk) (0). 
i i 

PROOF. This is proved by considering the different cases for A in the 

order 

S, MIN, P, SUM, NULL, H, f 1 , •.• ,f 
- -q 

All cases are routine except that of~=! naming a k-ary operation f 

of Rand this we will now explain. (Notice the ordering is based on the 

equations of E0 : MIN is used to define P and so in proving Lemma 4.4 in 

case~= Pone needs to know the lemma is true in case A= MIN.) 
z1 Zk f(z1; •.• ,Zk) 

It must be shown that !(S (0) , ••. ,s (0)) _ S · (0). By 

equation (7), 

z1 Zk d z1 Zk 
f (S (0), ••. ,S (0)) - u (S (0), ••• ,S (0)). 
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The result now follows from this next lemma. 

4 . 5. LEMMA. For each 1 ::; j ::; d, 

j z1 zk 
u (S (O), ••• ,s (0)) 

otherwise 

PROOF. This is proved by induction on j. The basis is trivial so 
. -1 . 

assume the lemma true of uJ and consider uJ. Let z = (z 1 , ••. ,zk) = 
k z z1 Zk 

a. E [O,n] and let S (0) abbreviate (S (0), ... ,s (0)). We know 
]. 

- NULL (e. (Sz (0)), Sf (z) (0) , uj-l (Sz (0))) 
J 

z 
and to apply equation (5) for NULL we first need to calculate e. (S (0)): 

J 

4.6. LEMMA. For any 1::; i::; d and any z 1 , .•. ,zk E [O,n] 

z1 zk 
e. ( S ( 0) , ••• , S ( 0) ) = 0 if, and only if, 

]. 

z 1 _ ai(l) zk(O) ai(k) 
S (0) = S (0) & ... &S = S (0) • 

We shall not prove this fact as it is an easy induction on the 

complexity of e .. Lemma 4.5 presents us with 3 cases: 
]. 

Case (1): i > j. Here Lemma 4.6 and equation (5) yields uj(Sz(O)) _ 

uj-l(Sz(O)) which, using the induction hypothesis and the assumptions 

that z = a., i > j > j-1, allows us to conclude uj(Sz(O)) = O. 
]. 

z 
Case (2): i = j. This is precisely the case when e. (S (0)) = 0. By 

equation (5) for NULL, uj(Sz(O)) - Sf(z) (0) and weJ are done. 
j z _ j-1 z 

Case (3): i < j. Again, by Lemma 4.6, u (S (0)) = u (S (0)) which by 

the induction hypothesis has the correct value. 

This completes the proof of Lemmas 4.2, 4.3, and 4.4. 

Now Lemma 4.3 allows us to define ~:R0 ➔ T(r0 ,E0 ) by ~(i) = [Si(O)] 

and to conclude it is a bijection. It is easy to check~ is a homomorphism 
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by a calculation based upon Lemma 4.4. 

Having proved Theorem 4.2 in the single-sorted case we shall turn to 

the many-sorted case. The pattern established in our [2] and [3] is to be 

repeated: we are to choose the largest component data domain of the 

algebra and simulate the whole algebra on it. 

First, we make a many-sorted numerical copy R of A and to each of its 

n domains we add Oas a constant and a finite successor function tailored 

to the size of its domain just. as above. Let.R1 be one of the largest 

domains of R. We simulate Rover R1 by adding to R1 the other 5 functions 

min, P, sum, null, h 

i 
along with projection functions copy: R1 + Ri for i ~ 1. These are all 

the hidden functions we use in making the new algebra R0 • To give a 

finite equational specification cr0 ,E0 ) for R0 we now take an equation 

of type (1) above for each successor function, the 5 operator equations 

(2)-(6) and the pair of equations for each icopy we gave in [3]. What 

now remains are the normalising equations for the p constants, of the 

type (0) above, and the q equations for the operators defined 

Since a formal description of the argument is nothing more than an obvious 

merge of the simulation argument in [3] and the single-sorted case 

argument given here we omit it. Q.E.D. 

The bounds obtained in the infinite case treated in [3] were, 

incidentally, n hidden constants, 3n+3 hidden functions, and 

17+p+q+4(n-l)+nF equations where nF is the number of finite sorts in the 

infinite many-sorted algebra. (This nF as a bound is essentially a 

signature invariant because nF ~ n-1). Obviously, the bounds of [3] 

cover all computable data types. 
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5. CONCLUDING REMARKS 

The bounds on the numbers of hidden functions and equations, or 

conditional equations, are obtained by coding up data type semantics into 

a few long equations. The extent to which this is inevitable is a subject 

of some theoretical interest and is probably best organised around the 

derivation of trade-off formulae: 

5.1. THEOREM. Let Ebe a single-sorted finite signature. If every E-algebra 

of cardinality n can be specified by a hidden enrichment specification 

over some siqnature E0 ::i E using at most e conditional equations each 

of which is of length at most l, where e > 0 and l ~ 3, then 

1 
le log(le) > 3 log (N(E,n)) 

wherein log(x) = log2 (x) and N(E,n) is the number of distinct (up to 

isomorphism) E-algebras of size n. 

PROOF. Define E 
u 

for each O ~ k < 

to be a signature containing le k-ary function symbols 

l so that Ir I = l 2e. One can check that if A is any 
u 

E-algebra possessing a hidden enrichment specification (EO,EO) in which 

E0 satisfies the (e,l) condition then r0 can be chosen as a subset of 

Eu. So we consider all sets of conditional equations EO over Eu 

satisfying IE0 i ~ e and with the length of formulae bounded by l. 
Recalling, from Section 1, that, for the purposes of measuring 

formula length, we consider each conditional equation as a string over 

E and the list 
u 

A 0 1 

0 2 le 
we see that the number of sets E0 is at most (8+~ e) . Thus, the 

hypothesis of the theorem implies 

2 le 
(8+l e) ~ N(E,n). 
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3 3 2 
Now fore> O, l ~ 3 it is the case that le > (8+l e). The rest of the 

proof is a routing calculation: 

Q.E.D. 

The restrictions e > 0 and l ~ 3 in Theorem 5.1 are there to rule out 

degenerate cases in the sense that e = 0 gives rise to infinite algebras 

and the smallest equations, such as those which identify constants in a 

signature, require at least 3 symbols. 

The invention of more general and more exact formulae is a problem 

well worth pursuing, along with investigations of the structure of such 

expressions as N(E,n) for commonly used signatures L Clearly, if 

I: is single-sorted and names p constants and q operations, and m 

bounds the arity of these operations, then on any set A of size none 

can define not more than 

E-structures on A. Since isomorphism of E-structures is the criterion of 

semantical identity, one knows that 

More refined statements of these kinds of facts is the objective of an 

entirely new project, _of course. 
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