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* On the power of real-time Turing machines under varying specifications 

(Extended abstract) 

by 

Paul M.B. Vitanyi 

ABSTRACT 

We investigate the relative computing power of Turing machines with 

differences in the number of work tapes, heads pro work tape, instruction 

repertoire etc. We concentrate on the k-tape, k-head and k-head jump models 

as well as the 2-way multihead finite automata with and without jumps. 

Differences in computing power between machines of unlike specifications 

emerge under the real-time restriction. In particular it is shown that k+l 

heads are more powerful thank heads for real-time Turing machines. 

KEY WORDS & PHRASES: Complexity, real-time computations, multitape Turing 

machines, multihead Turing machines, jump Turing ma

chines, multihead finite automata 

*) This paper is to be presented at the Seventh International Colloquium 
on Automata, Languages and Programming, July 14-18, 1980, in Noordwijker
hout, The Netherlands. The results in sections 2 and 3 are taken from 
VITANYI [1979]. 
This paper is not for review as it is meant for publication elsewhere. 





1. INTRODUCTION 

Since the first Turing machine appeared in 1936, there have been many advances 

in the field. In the late 1950's the multitape Turing machine was introduced, often 

equiped with a separate read-only input tape. Since then we saw the arrival of the 

multihead Turing machine, Turing machines with a fast rewind square (also called 

limited random-access machines) and Turing machines with head-to-head jumps, and 

many others. One common feature in this abundance of models is that they all have a 

finite control and an unrestricted read-write storage facility. This allows each 

model, whatever its specification, to compute all recursive functions. Differences in 

capabilities become apparent if we impose time limitations, and in particular when 

we demand the machines to operate in real-time. As a standard in this area we may 
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take the class of real-time definable languages R, which is the class of all languages 

accepted by multitape Turing machines in real-time, ROSENBERG 119677. It has been 

shown that all of the above mentioned variations of Turing machines accept in real

time precisely R. Hence we observe that, within the world of real-time Turing ma

chine-like devices, R plays somewhat the same role as the class of recursively enu

merable languages in the world of computability at large. Like in this wider setting, 

we shall impose restrictions on the machines and observe what happens. In the prov

ince of real--time computations, differences in computing power amongst unlike Turing 
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machines may come out under variations in instruction repertoire, amount or type of 

storage devices, in short, under different specifications. 

The class of real-time definable languages is remarkably extensive (e.g. the set 

of unmarked palindromes is in R, GALIL [1978]). To prove that a given language is not 

in R is often hard. Proofs usually rely on an information-capacity argument, see 

HARTMANIS & STEARNS [ 1965] and ROSENBERG r 1967]. 

Real-time computations of Turing machines are especially interesting because of 

their intrinsic feasibility. Originally, they were defined relative to the multitape 

Turing machines. Most algorithms, however, are more naturally stated in terms of com

puting models which allows faster memory access. A k-head tape unit consists of a 

Turing machine with a single storage tape on which k read-write heads operate. 

P. FISCHER, MEYER & ROSENBERG Ci972l proved that one can simulate a k-head tape unit 

in real-time by a multitape Turing machine with llk-9 tapes. Later, LEONG & SEIFERAS 

[1977] improved this to 4k-4 tapes. RABIN [19631 has observed that 2-tape Turing ma

chines are more powerful in real-time than 1-tape Turing machines. (Recall that a 1-

tape Turing machine has one input tape and one storage taoe with a single head.) 

AANDERAA [1974] demonstrated that k+l tapes are more powerful thank tapes in real

time. Together with the LEONG & SEIFERAS' result this shows that more heads will yield 

additional power in real-time. Specifically, it follows that a (4k-3)-head tape unit 

is more powerful in real-time than a k-head tape unit. We shall show that AANDERAA's 

result implies that a (k+l)-head tape unit is more powerful than a k-head tape unit 

in real-time, section 2. 

In ROSENBERG [1967] several closure properties of Rare investigated. We investi

gate such questions for the classes R(k) (languages recognized by k-tape real-time 

Turing machines) , RH (k) ( languages recognized by k-head real-time Turing machines) 

and RJ(k) (languages recognized by k-head real-time Turing machines with head-to-head 

jumps). Furthermore, we shall consider the relations between R(k), RH(k) and RJ(k), 

sections 3 and 5. 

In SAVITCH & VITANYI [1977] it was shown that a k-head jump Turing machine can 

be simulated in linear time by an (8k-8)-tape Turing machine. KOSARAJU r1979J has 

claimed a proof that jump Turing machines can be simulated in real-time by multitape 

Turing machines at the cost of many tapes in the latter pro head in the former ma

chine. In section 4 we show that the analog of this result does not hold if we restrict 

ourselves to 2-way multihead finite automata. The sample languages we use to prove 

this result are interesting in their own right, since they give once more an indication 

how wrong our intuition can be with respect to which languages belong to Rand which 

languages do not. 

But for RABIN's and AANDERAA's results, all results in the area of models of 

real-time Turing machines are about feasibility of simulating one type of machine by 

another one. Virtually nothing is known about the nonfeasibility of certain computa

tions, which are possible on a machine of specification A, by a machine of specifica-



tion B. Obvious open problems in this area of specified Turing machines are, for in

stance: 
H H H J J H J 

R(2) c R (2); R (k) C·R (k+l); R (k) c R (k+l); R(k) c R (k); R(k) c R (k); 

RH(k) c RJ(k) ? Some of these questions we shall decide, or alternatively, show some 

interdependence among seemingly unrelated questions. 

For formal definitions and so on concerning multitape- and multihead Turing ma

chines, real-time computations, etc. we refer to ROSENBERG [1967], FISCHER, MEYER & 

ROSENBERG [1972] and LEONG & SEIFERAS r1977J. In this paper we do not give all proofs; 

complete proofs and additional results shall be provided in a final version to appear 

elsewhere. 

2. k+l HEADS ARE BETTER THAN k HEADS IN REAL-TIME 

AANDERAA [1974] proved by a very complicated argument that there is, for each 

k ~ 0, a language ¾+l which can be recognized by a (k+l)-RTTM but not by a k-RTTM. 

For completeness we define ¾+l below by a real-time algorithm which accepts it using 

k+l pushdown stores. The input alphabet is Ek 1 = {O. ,1. ,P. J 1 $ i $ k+l}. The al-+ J. J. J. 

gorithm is as follows: 

"ACCEPTENABLED := TRUE; 

Initialize k+l stacks to empty; 

REPEAT FOREOVER 

CASE NEXTINPUTLETTER OF 

0: Push O in stack i 
i 

1.: Push 1 on stack i 
J. 

Pi: IF stack i empty 

THEN ACCEPTENABLED := FALSE and reject input 

ELSE BEGIN 

ENDCASE" 

pop stack i; 

IF element popped was 1 

AND ACCEPTENABLED 

THEN accept input 

ELSE reject input 

END 

The strategy used to prove that k+l heads are more powerful in real-time thank 

heads (on a single tape) is, by a judicious choice of input, to force the heads so far 

apart that for a given recognition problem the k-head ~nit must act like a k-tape 

Turing machine since the heads will never read each others writing. 

THEOREM 2.1. There is a language which is recognized by a k+l head real-time Turing 

machine but not by any k head real-time Turing machine. 

3 
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PROOF. By induction on the number o~ heads. (k=0 is obvious). 

k=~- The language A2 cannot be recognized by a 1-tape (= 1-head) real-time Turing ma

chine, but can be recognized by a 2-tape (and hence by a 2-head) RTTM. Set H2 = A2 . 

k > 1. Suppose the theorem is true for all j < k. Hence, in particular there is a 

language Hk such that Hk is recognized by a k-head RTTM but not by a (k-1)-head RTTM. 

Define Hk+l as follows: 

where* is a special. symbol not in the alphabet of A., i ~ 2. 
- i 

Let Mk beak-head RTTM claimed to recognize Hk+l" Present Mk with strings of 

the form 

w 
(2) (2) (2) (3) (3) (3) (k+l) (k+l) (k+l) 

a 1 a 2 ... a *a1 a 2 ..• a *···*a1 a 2 ..• a 
n2 n3 nk+l 

such that wi is over the alphabet of Ai, 2 $ i $ k+l. During the processing of w2 , 

Mk must recognize A2 . Since A2 cannot be recognized by a 1-head RTTM, the distance 

between the outermost heads on the storage tape of~ must grow larger than any given 

constant c 2 for a suitable choice of w2 . Hence, subsequent to the processing of w2 , 

we can single out a tapesegment of length at least c 2/k tape squares, contained 

by the tapesegment delineated by the outermost heads, such that no tape square of the 
k+l 

former segment is scanned by a head. Choose c 2 later so that c /k > 2 E. 3 (n.+1). 
2 i= i 

Therefore, for the remainder of the computation on w, Mk consists in effect of at 
(1) (1) . (1) (1) (1) (1) 

best a k 1 -head and a k 2 -head tape unit, k 1 , k 2 ~ 1 and k 1 + k 2 = k, where 
( 1) . (1) 

k 1 is the number of heads left of the unscanned tapesegment and k 2 is the number 

of heads right of it, at the end of processing w2 . Now Mk is presented with w3 . SincE 

w3 E A3 cannot be decided in real-time by 2 single-headed tapes, Mk must use one, or 

both, of its remaining tape units in an essential way during the processing of w3 . 

I.e., for at least one of the tape units (and one containing more than one head), 

say the kil)_head unit, the distance between the outermost heads must grow larger 

than any given constant c 3 for a suitable choice of w3 • Hence, subsequent to the pre -

cessing of w3 , we can single out a tapesegment, no square of which is scanned by a 

head and of length at least c 3/kil), which is in between the outermost heads of thi 

kil)_head tape unit. Now choose c 3 , and hence w3 , later so that c 3/kil) > 2 E::!<nj .• 
(1) . (2) (2) 

Similar to before, we now divide the k 1 heads into k 1 and k 2 heads to the le:~ 

and right, respectively, of the latter nonscanned tapesegment, and we observe that 

for the remainder of the computation on 
(2) (2) . 

a k 2 -head- and a k 3 -head tape unit, 

k( 2 ) + k( 2 ) = k(l) d k( 2 ) = k(l) 
1 2 1 an 3 2 · 

w, Mk now consists in 

k (2) (2) k (2) 
1 k2 ' 3 ~ l, 

(2) 
effect of a k 1 -heau-, 

k (2) +k(2) +k(2) = k 
1 2 3 ' 

Repeating the argument we can choose w4 , ... ,wk such that after the processing of 



wk we are left in effect with a k-tape RTTM which is required to determine whether 

wk+l E 1\+l· According to AANDERAA ~1974], for each k-tape RTTM claimed to recognize 

Ak+l we can construct a word v which fools the machine. Let wk+l be such a word, and 

choose ck,wk,ck~l'wk_ 1 , ••• ,c2 ,w2 , in that order, so that the above inequalities and 

conditions are satisfied. Hence w is accepted by Hk iff w I Hk+l which contradicts 

the assumption that ~\ recognizes Hk+l. (The above argument seemingly contains a cir

cularity which might invalidate it. The word v which fools the machine trying to 

recognize Ak+l does not only depend on the finite control but also on the initial 

tape contents. Thus the argument seems to become circular: wk+l depends on 

w2 *w3* •.. *Wk*' while w2 ,w3 , ••• ,wk depend on the length of wk+l" As it happens, 

AANDERAA's argument does not need to make any assumptions about the initial tape con

tents of the k-RTTM assumed, by way of contradiction, to acceot 1\+l. Hence he proves 

in fact that for all k-R'rTM H there exists a positive integer n such that for all 

initial tape contents of M there exists a word v of at most length n which fools M. 
The existence of such a bound n eliminates the apparent circularity from the above 

argument.) It is easy to see that k+l pushdown stores can recognize Hk+l in real

time. 0 

Surprisingly, an argument like "Hk is not accepted by a (k-1)-head RTTM and 

hence Hk+l = Hk u Hk * 1\+l is not accepted by a k-head RTTM" does not work, since we 

cannot assume a priori that in a k-head RTTM recognizing Hk all heads get pairwise 

arbitrarily far apart for some input. We could only conclude that all k heads are 

necessary, but it might very well be that for each time t some heads are near to each 

other. Then we could be stuck with a set of tape units, one of which is a multihead 

one, for which AANDERAA's proof might not work. 

The situation we have in mind is exemplified by, e.g., the languages Ek, k 2': 4, 

in section S (although AANDERAA's proof technique fails there for another reason, as 

shall be pointed out). As an example of a language which can be recognized by a 4-

head RTTM in which there are always 2 heads together, and which probably cannot be 

recognized by a 4-RTTM, or a 3-head RTTM, we give the language L below. Clearly, we 

cannot conclude from LI RH(3) (if that is the case) that Lu L * AS I RH(4) just be

cause AS I R(4). We would need to show at least that AS cannot be recognized by a 

RTTM with one 2-head tape and 2 1-head tapes as storage. 

L' { R R 2 O!u1wl 2 O2lwl 2 O!u3vl 2 Olvl I {o l}*} u 1wwu2vvu3 u 1wu2vu3 E , ; 

L {x E {0,1,2}* J xis a prefix of a word in L'}. 

For suppose we want to recognize L by a 3-head or a 4-head RTTM. Essentially, up to 

reading the marker 2 on the input tape, it would seem that we can do nothing more 

than record the input prefix over {O,1} on the storage tape. 

Now if we take lwl, !vi E 0(n213 i, lu2 1 E 0(n), lu1 I, lu3 ! E 0(n213 ), where n is 

the length of the input word, we need 2 heads to check wwR (since to check wwR with 

1 head takes time 0(n413 )) and 2 heads to check vvR (for the same reason). To cross 

5 
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u 2 with some head takes time 0(n), but upon meeting the first letter 2 we have only 

time 0(n213 i left. Hence 4 heads seem necessary, although there always are 2 together. 

If this conjecture is true, then L € RH(4) - RH(3). But in this case L € RH(4) -RH(3) 

together with AS i R(4) does not, without additional considerations, imply 
H 

LU L * AS i R (4). 

By the proof method of Theorem 2.1 we precluded this flaw in the argument. Due 

to the form of 1\+l' the line of reasoning works also for 1\+l itself. Hence, 

1\+l € R(k+l) - RH(k). 

COROLLARY 2.2. There is a language which can be recognized by k+l pushdown stores in 

real-time (and hence by a (k+l-RTTM)) but not by any k-head RTTM. 

The relation between tapes and pushdown stores is direct; clearly 2k pushdown 

stores can simulate k tapes in real-time. Hence from AANDERAA's result we have: (if 

RP(k) denotes the class of languages recognizable by k pushdown stores in real-time) 

RP(k+l) - R(k) ~ 0; 
RP (kl C RP (k+l) 

R(k) C R(k+l) 

R(k) c Rp(2k) 

H 
By the result above it follows that we can replace R by R in the first 

formula above. It also follows that 

R(k+l) - RH(k) ~ 0; 

RH(k) c RH(k+l). 

By using LEONG & SEIFERAS' 119771 result we obtain 

LEMMA 2.3. R(k) .':: RH(k) c R(4k-4). 

3. CLOSURE PROPERTIES OF R (k) 

In ROSENBERG 11967] several closure properties of the class R of languages ac

cepted by real-time Turing machines were investigated. It appeared that R is closed 

under union a:s well as intersection, complementation, suffixing with a regular set, 

inverse real-time transducer mapping, and minimization. R is not closed under con

catenation, Kleene star, reversal, (nonerasing) homomorphism, inverse nondeterminis

tic sequential machine mapping, quotient with a regular set, maximization and pre

fixing with a regular set. 

When we restrict the number of tapes the picture gets different: R(k) is closed 

under complementation, union as well as intersection with regular sets, suffixing 

with regular sets, inverse gsm mapping and minimization. R(l) is not closed under 

union or intersection, nor under inverse real-time transducer mapping. 
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In this section we will investigate some more closure properties of (number of) 

tape restricted real-time languages. It will e.g. appear that R(k) is closed under 

several marked operations; furthermore it often happens that the closure under cer

tain operations of R(k) is in R(2k) but not in R(2k-1). (Proofs to be provided later). 

LEMMA 3.1. R(k) is closed under marked union, marked concatenation and marked Kleene 

star. 

LEMMA 3.2. Let k 1 ,k2 be positive integers such that kl+ k2 ~ 1. 

(i) 

(ii) 

R(k) is not closed under union or intersection, fork> 0. If we take A E R(k 1) 

and BE R(k 2) then AUB,AnB E R(k1+k2), but not necessarily AUB,AnB E R(k 1+k2-1). 

If A E R(k 1) and BE R(k 2) and the alphabets of A and Bare disjoint, then 

shuffle (A,B) E R(k1+k2) but shuffle (A,B) does not need to belong to 

R(k1+k2-1). Hence R(k) is not closed under shuffle over disjoint alphabets. 

(iii) R(k) is not closed under inverse real-time transducer mapping. The closure of 

R(k 1) under inverse k2-RTTM mapping is contained in R(k 1+k2) but not in 

R(k 1 +k2-1). 

(iv) (i)- (iii) hold also if we replace everywhere "R" by "RH" 

The results in Lemma 3 . 2 are obtained by reducing the prub1ems t.o Lite recogni-

tion problem of Ak 1+k2 • 

LEMMA 3.3. If A E R(0) and BE R(l) then shuffle (A,B) does not need to belong to R. 

I.e., R is not closed under shuffle. 

(L {r*xr*2xR I E = {0,1}, x Er*} i Rand an isomorphic language can be obtained 

as a shuffle of languages in R(0) and R(1) .) 

According to FISCHER, MEYER & ROSENBERG [1972], the family of multihead RTTM 

languages equals Rand hence the (non) closure properties mentioned before apply. 

If we look at multihead RTTM languages in RH(k) the situation is different. Here not 

more was known than we could readily deduce from the results on R(k) and simulations 
H 

like LEONG & SEIFERAS [1977]. With the preceding results we obtained more. Also, R (kl 

is closed under complementation, union and intersection with regular sets, suffixing 

with regular sets, inverse gsm mapping and minimization. Lemma 3.2 holds even if we 

denote by k only the total number of heads on the storage tapes, and don't take into 

account the way in which the heads are distributed. 

Clearly, RH(k) is closed under marked union. The markers in an input, due to 

marked concatenation or marked Kleene star, serve to indicate the beginning of a new 

task. Accordingly, it seems reasonable to assume that recognizing RTTMs ignore, sub

sequent to reading such a marker, the garbage left on the storage tapes by the preced

ing computation segment. Under this assumption we can prove Conjectures 3.4 and 3.5. 

CONJECTURE 3.4. RH(k) is closed under marked concatenation iff RH(k) is closed under 

marked Kleene star iff RH(k) = R(k). 
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A k-head jump Turing machine (cf. SAVITCH & VITANYI 119771) is a k-head Turing 

machine where at each step the k heads may be redistributed over the scanned tape 

squares. In SAVITCH & VITANYI [1977] it was shown that a k-head jump Turing machine 

can be simulated in linear time by a (Bk-8)-tape Turing machine. KOSARAJU [1979] has 

claimed that, by a complicated simulation, a k-head jump Turing machine can be simu

lated in real-time by a multitape Turing machine. It is at present unresolved whether 

k heads are more powerful thank tapes in real-time. A possibly easier problem is 

to show that k heads with jumps are more powerful th.an k tapes in real-time. We will 

show that these matters are related. 
J 

It is ,easy to see that R (k) (the class of languages accepted in real-time by 

k-head jump Turing machines) is closed under marked concatenation and marked Kleene 

star. By first feeding¾• we can always reduce a k-head RTTM to a k-tape RTTM. This, 

however, is not the case for a k-head jump RTTM. Hence, k jump heads are more power

ful thank tapes iff k jump heads are more powerful thank heads. Similarly, if k 

heads are more powerful thank tapes then k jump heads are more powerful thank heads. 

Hence we have 

CONJECTURE 3 . 5 . 

(i) R(k) C RJ(k) iff RH(k) C RJ(k); 

(ii) if R(k) c RH (k) then RH (k) c RJ (k). 

4. REAL-TIME 2-WAY MULTIHEAD FINITE AUTOMATA WITH AND WITHOUT JUMPS 

Recall that we saw before that KOSARAJU [1979] has shown that the jump Turing 

machine as defined in SAVITCH & VITANYI 11977] may be simulated in real-time by multi

tape Turing machines. Hence RJ = R (where RJ u;=l RJ(k)). In this section we show 

that for 2-way multihead finite automata the head-to-head jump facility does extend 

the class of languages accepted in real-time. Incidentally, this shows also that the 

class of languages accepted by real-time 2-way multihead finite automata is strictly 

included in R. To obtain the result, we give several example languages which are ac

ceptable in real-time by 2-way 2-head finite automata with jumps, but not by any real

time 2-way multihead finite automaton without jumps. Hence these languages belong to 

R, and constitute nontrivial examples of the power of the head-to-head jump option. 

- - * * Let in the following h: {0,1,0,1} ➔ {0,1} be a homomorphism which is defined by 

h {a) =h(a)=a for a 6 {0,1}. 

{wv.;:av 
R {0,1,0,1}*, {o,1}*, {0,1}, h(;) = V}; Ll WV E V E a E 

{;bucva {0,1,0,1}*, * {o, n, lul ]vl, L2 WU E V E {0,1} , C E = 

a E {O,l}, b E {0,1,0,1}, h(b) a}. 

The reader will easily figure out more complicated examples along these lines. 



Note that L1 , L2 are linear context free but not deterministic context free. 

LEMMA 4.1. L1 , L2 are accepted by real-time 2-way 2-head finite automata with jumps. 

PROOF. Let M be a 2-way 2-head finite automaton with jumps as follows. The front head 

reads from left to right one letter at a time. Whenever this first head reads a barred 

letter it calls the second head to its present position. This second head starts 

reading from right to left one letter at a time. So Mis able to recognize L1 • A 

minor variation of M can recognize L2 • 0 

LEMMA 4.2. L1 , L2 are not accepted by any real-time 2-way multihead finite automaton. 

PROOF. Along the same lines as the proof of Theorem 2.1. D 

Hence we have: 

THEOREM 4.3. (i) There are languages accepted by real-time 2-way 2-head finite auto

mata with jumps which are not accepted by any real-time 2-way multihead finite auto

maton without jumps. 
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(ii) The class of languages accepted by real-time 2-way k-head finite automata with 

jumps properly includes the class of languages accepted by such automata without jumps. 

Computations of 1-way multihead finite automata have been considered by YAO & 

RIVEST ~1978]. They show that k+l heads are better thank heads for both the deter

ministic and the nondeterministic versions of the machine. Furthermore, they show 

that the k-head nondeterministic variety is strictly more powerful than the k-head 

deterministic one. Recently, JANIGA [1979] studied the analog questions for 2-way 

real-time multihead deterministic (resp. nondeterministic) finite automata, from now 

on called 2DRTFA and 2NRTFA, respectively. He obtained, mutatis mutandis, the same 

results for the 2-way real-time machines as did YAO and RIVEST for the 1-way (no time 

limit) variety. Whereas the latter used "palindromes" of (~) strings to obtain their 

result, for the 2-way real-time case the former employed strings of k palindromes. 

* * k E.g., let PALM be the set of palindromes in {0,1} {2} {0,1} . Let Pk= (PALM{*}) . 

Then Pk is recognized by a (k+l)-head 2DRTFA but not by any k-head 2NRTFA. 

* {0,1,2,*} -Pk is accepted.by a 2-head 2NRTFA but not by any k-head 2DRTFA. Now con-

sider the language P = u:=l Pk. It is easy to see that Pis recognized by a 2-head 

2DRTFA with jumps, but that Pis not accepted by any multihead 2NRTFA without jumps 

because of JANIGA's result. Therefore we have: 

THEOREM 4.4. The class of languages accepted by k-head 2NRTFA with jumps properly in

cludes the class of languages accepted by k-head 2NRTFA without jumps, k ~ 2. The 

same holds for 2DRTFA's (i.e. Theorem 4.3). 

Another matter which we would like to decide is the power of jumps versus non-
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determinism for the machines. 

THEOREM 4.5. There is a language acceptable by a 2-head 2NRTFA which is not accept

able by any multihead 2DRTFA with jumps. 

PROOF. The language Lin the proof of Lemma 3.3 was not in R, and hence, by KOSARAJU's 

r1979] result, is not acceptable by any multihead 2DRTFA with jumps. It is easy to 

see how L can be accepted by a 2-head 2NRTFA. 0 

The only question remaining seems to be whether· (k+l)-head 2DRTFA's with jumps 

are more powerful thank-head 2DRTFA's with jumps, and the same matter for the non

deterministic versions. For a proof we might use the language Jk over the alphabet 

where 

E = {0,1} x F x M x ~. 

F 

M 

{f 

{m 

k 
f is a total function f: {0,1} x .Q ➔ {0,1}}, 

mis a total function m: {1,2, ... ,k} x ~ ➔ 

➔ {left,right,no move} and m(l,q) = right 

for all q E Q}. 

The interpretation is as follows. Jk is recognized by a k-head 2DRTFA 14 with 

state set Q. Suppose H has an input s 1s 2 ... sisi+l ... sn on its tape, 

si = (ai,fi,mi,qi) EE, 1 $ i $ n. At the i-th step the vanguard head 1 of M reads si 

in state qi-l E ~ and outputs fi (ajl'aj 2 , ... ,ajk'qi_ 1) where ajh is the first element 

of the symbol read by the head hat that moment, 1 $ h $ k. Subsequently, 11 reposi

tions head h according to mi (h,qi), 1 $ h $ k, and enters state qi. 

THEOREM 4.6. Jk+l is accepted by a (k+l)-head 2DRTFA but not by any k-head 2NRTFA 

with jumps. Hence (k+l)-head 2DRTF'A (2NRTFA) with jumps are strictly more powerful 

thank-head 2DRTFA (2NRTFA) with jumps. 

If we take Jk equal to Jk but without "left" in the range of m EM we can simi

larly prove: 

COROLLARY 4.7. Jk+l is accepted by a (k+l)-head lDRTFA but not by any k-head lNRTFA 

with jumps. This implies that all inclusions according to the number of heads in the 

lXRTFA are proper, where XE {D,N,D with jumps, N with jumps}. 

All results in this section hold whether or not we assume end markers, or that 

the heads can detect coincidence. 

We think that Theorem 4.3 also holds for the corresponding Turing machine ver

sions which are allowed to modify the contents of each square on the storage tapes 

but a bounded number of times, for some fixed constant bound. 



5. ON THE RELATIVE POWER OF TAPES, HEADS AND JUMP HEADS IN REAL-TIME TURING MACHINES 

One of the major drawbacks in the game of showing a difference in power between 

two very similar machine types A and B such as considered in this paper, apart from 

the difficulties involved in giving a proof, is to find some likely candidates for 

showing a difference between type A and type B. RABIN's r1963l language in R(2) -R(l) 

did not generalize in an obvious way to show a difference between R(k+l) and R(k), 

11 

k > 1. AANDERAA ~ 1974 l provided a uniform construction for a language in R (k+l) - R (k) , 

k 2'. 1. No likely candidates for showing the difference 

or RH(k) and RJ(k) have been proposed, except possibly 

b t R(k) and RH(k) e ween, e.g., 

{xy2x I xy E {0,1}*} for show-
H 

ing a difference between R (2) and R(2). In the present section we propose to fill 

this gap, besides proving some facts about the candidates. The only languages known 

to be in R - R (k) are ¾,, k' > k, put unfortunately these languages are not in RH (k) 

either. SEIFERAS :personal communicationl claims to ~ave proven that¾• i RJ(k), 

and we will proceed on this assumption. Hence the only candidates of which we have 

negative results are not acceptable either by placing all heads on the same tape nor 

by adding the jump option. From the existing simulation results it is also clear that 

there cannot be a single language L which is acceptable by some k-head (jump) RTTM 

but not by any multitape (multihead) RTTM, thus proving the required results by a 

single examplE, as in section 4. Now consider a language which is like¾ but with 

the extra requirement that at all times during the processing of the input w by a k 

stack machine at least 2 of the stacks are of equal length for w to be accepted. More 

formally, if lvli denotes the number of Oi's and li's subtracted by the number of Pi's 

in v, then: 

Ek= {wEl:; lwEAk & VvEprefix(w) '3i,j(iij and 1:Si,j:Sk) rJvli=lvlj+o,-1:<;oS+l]}. 

H J 
LEMMA 5.1. Ek i R(k-2), R (k-2), R (k-2). 

PROOF. Suppose, by way of contradiction, that the (k-2)-RTTM M accepts Ek. Now change 

M to a (k-2)-RTTM If* which accepts ¾-l by having the finite control of II, for every 

letter Ok-l'lk-l'Pk-l read Ok-lOk,lk-llk,Pk-lpk' respectively, and speed up the 

storage handling as much as required. Then Ak-l is accepted by the (k-2)-RTTM /{* 

contradicting known results. Ek i RH(k-2) then follows by Theorem 2.1 and for 
J 

Ek i R (k-2) see the introduction of this section. n 

(The case k = 2 above is obvious since E2 is not regular.) Note that AANDERAA's 

* proof does not show that Ek i R(k-1) since the subset SLk used in AANDERAA's proof 

* (which in fact shows that no k-RTTM can distinguish between SLk n ¾ and 

* * srk n (Lk-Ak)) is disjoint from Ek. 
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PROOF. E2 € R(l) is obvious. E3 € RH(2): keep the 3 stacks on different tracks of 

the recognizing 2-head RTTM H. Whenever there is a change in pairs of equal size 

stacks, all 3 stacks must be of equal length, otherwise we reject the input. Both 

heads of M therefore come together with everything to the right of them blank, and 

therefore the role of the "fat" head, maintaining 2 tracks, can change. 0 

We conjecture that E3 i R(2). To prove this conjecture would also prove that 
H 

R(2) c R (2), a well-known open problem. In general we conjecture that Ek i R(k), 

k ~ 3, which for the case k = 3 would show that the LEONG-SEIFERAS simulation is op

timal for 2 heads. By Lemma 5.1 and the fact that a multihead machine can detect 

coincidence we have that 

LEMMA 5.3. Ek€ RH(k) - RH(k-2). 

LEMMA 5.4. Ek€ RJ(k-1) for all k > 1. 

COROLLARY 5.5. Ek€ RJ(k-1) - RJ(k-2). 

We conjecture that Ek cannot be recognized by a (k-1)-head RTTM fork~ 4. A 

proof of this fact would show that RH(k) c RJ(k) fork~ 3, leaving open the case 

k = 2. Although we have an upper bound on the recognition of Ek by multihead RTTM's 

(with respect to the number of heads needed) we have not yet a good upper bound for 

recognition by multitape RTTM's, except by the crude Ek€ R(4k-4) offered by Lemma 

5.3 and the LEONG-SEIFERAS' result. 

LEMMA 5.6. E2 € R(l); E3 € R(4); Ek€ R(2k-2), k ~ 3. 

We can generalize the above anproach in several directions. For instance, by re

quiring that i of the k stacks have the same height at all times during the process

ing of the input, Formally, 

{w € i:: I w € ¾ & Vv € prefix (w) 

[ I I v I . - I v I . I s; 3 for 
J Q, Jm 

~j1,j2,···,ji € {1, ..• ,k} 

jl <j2 ... <ji 
) 

all jQ,,jm € {j1,j2,···,ji}lJ-

These languages are especially suited to jump Turing machines since it is easily 

seen that: 

LEMMA 5.8. E(~) € RJ(k-i+l). 
1. 

Furthermore, we can easily show that E(~) € RH(k-i+l) provided i > k/2; 

E(~) I R(k-i) ,RH(k-i) ,RJ(k-i); and E(~) € RH1k) for i < k/2. (Some border cases-for 
1. H H 1. 

i c: k / 2 : E ( j) E R ( 3 ) and E ( ~) E R ( 2) c R ( 4) . ) 

Looking at the above we see there is a relation between the optimality of the 
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real-time simulations of jump heads by heads and heads by tapes and how many tapes or 

heads are needed to recognize E(t). Let f(k) be the minimum number of tapes (heads) 
l. 

needed for simulating k jump heads in real-time. Then, if we need at least k tapes 

(heads) for accepting E(t), i < k/2, then 
l. 

f(k-i+l) ~ k. 

Hence the conjecture that we need k or more tapes (heads) to recognize E(t) for 
l. 

i < k/2 can be dissolved if we can improve KOSARAJU's result to "less than 2 k tapes 

(heads) are necessary for the real-time simulation of k jump heads". From the real

time simulation of heads by tapes it follows that E(t) E R(4(k-i)) for i > k/2, and 
l. 

therefore e~g. E(k ) E R(k). 
3k/4 

Yet another language sequence we might consider is¾ - Ek, k ~ 1. Since¾ - Ek 
* H J contains AANDERAA's subset Ak n SE, it follows that ¾-EkiR(k-1),R (k-1),R (k-1). 

RH(k) ,R5(k). With respect to acceptance by k-RTTM's the we also see that¾ - Ek E 

same upper bounds apply as argued for Ek. This is not so for the 

where Ek is like Ek but the condition of two stack heights being 

the end of the processing of the input word, i.e., 

languages¾ - Ek, 

equal only holds at 

E ¾ & 3i,j E {1, ••. ,kHjlwl.-lwl.l:;; 3]}. 
i;,!j l. J 

Here we have that A2 - E2 E R(3) but, presumably, that A2 - E2 i R(2). By the now 

familiar reasoning, if the latter case is affirmative then A2*(A2-E2) ERJ(2)-Fl1(2), 

settling the question whether or not RH(2) c RJ(2). 

Some of the candidates to try for solving the various questions met are given 

in the table below. 

k = 2 : L = {xy2x I xy € {o,1}*} A2*(A2-E2) 

E3, A2 - E2 

arbitrary k ~ 3: Ek, ¾ - Ek Ek+l 

Acknowledgements. J. SEIFERAS pointed out to me that the earlier version of the 

proof of Theorem 2.1 may have been prone to circularity of the argument. Discussions 

with W. SAVITCH were valuable for section 4. 
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