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A natural data type with a finite equational final semantics specification 

* but no effective equational initial semantics specification 

by 

** J. A. Bergstra & .J. V; Tucker 

ABSTRACT 

Initial and final algebra semantics are two ways of assigning a unique 

meaning to an axiomatic specification (I,E) of a data type. First, we point 

out how easy it is to find natural data types with effective specifications 

with respect to initial algebra semantics, but without effective specifica­

tions with respect to final algebra semantics. Secondly, we suggest that a 

natural source of data types for which the opposite is true are those 

programming systems with undecidable program equivalence problem. We work 

out in detail the situation when the denotational semantics of a system are 

the primitive recursive functions. 
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INTRODUCTION 

Suppose you want to define a data type by a set of operators E satisfying 

some axioms E. Initial and final algebra semantics are two natural ways of 

assigning to the specification (E,E) a unique meaning in the class 

ALG(E,E) of all E-algebras satisfying the properties of E. Initial seman­

tics insists that two terms t,t' over E are identical iff t,t' can be 

proved equal from axioms E while final semantics agrees to identify t,t' 

as long as t = t' is consistent with the axioms E. Both techniques have 

been discussed in the programming methodology and theoretical literatures 

with varying degrees of partiality: we assume the reader is aware of at 

least ADJ[7], BROY et al [6], GUTTAG & HORNING[8], KAMIN[9], WAND[13]. 

Here we wish to point out a pleasing mathematical symmetry: if (E,El is a 

specification in which Eis an r.e. set of equations then the initial se­

mantics of (E,E) is an r.e. semantics while the final semantics of (E,El 

is a co-r.e. semantics. So a data type possessing effective specifications 

with respect to both initial and final algebra semantics must be computable. 

(A more formal statement of this is Basic Lemma 2.1.) 

Clearly, it is easy to find natural data types which fail to possess 

effective equational final algebra specifications for algebras with r.e., 

but not recursive, word problems abound. For natural systems with. co-r.e., 
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but not recursive, equality problems we look to the denotational semantics 

of thos-e program languages where the program equivalence problem is un­

decidable but co-r.e. The easiest example is PR the unary.primitive re­

cursive functions PR on the natural numbers w (because as a function al­

gebra, made from the usual operators on PR and w, it is a total algebra). 

In §3 we organise PR into a 2-sorted algebra A and prove it can be speci­

fied by finitely many equations and hidden operators with respect to final 

semantics. In §4 we present, as a curio, an initial specification of an 

impoverished fragment of A. 

This little paper introduces final algebra semantics into our series 

of mathematical studies of the power of definition and adequacy of alge­

braic methods for data type definition [1,2,3,4], see also [5]. We would 

like to thank G. Rozenberg for encouraging us to write down these notes. 

1. DATA TYPE SPECIFICATIONS 

We assume the reader accustomed to working with many-sorted algebras 

and record here only terminology not to be found in the standard reference 

Let A be a many-sorted algebra. Then A is minimal if it is finitely 

generated by elements named in its signature E. All signatures are assumed 

finite, but not all algebras are minimal. By a unit congruence on A we mean 

a congruence which identifies all elements in one domain of A. Let 

Sc Ax A. By =min(S) we denote the smallest congruence on A containing the 

identifications· of S. By =max(S) we denote the largest congruence on A 

containing S which is not a unit congruence, if such exists, and otherwise 

we take =max(Sl to be a unit congruence. The word "largest" in this context 

means that if= is any congruence, except a unit congruence, containing S 

then= is contained in =max(S). 

Let Ebe a signature. A set of equations E over E determines a set of 

basic identifications D(E} between elements of the term algebra T(El. Let 

TI(E,E) be T(E)/=min(E) where -min(E) abbreviates =min(D(E}) and let 

TF(E,El be T(E)/=max(El where -max(E) abbreviates =max(D(E)l" 
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The pair o:::,El is. said to he a finite equational specification of al­

gebra A with_ respect to (11 initial algebra semantics or (21 final algebra 

semantics if E is a finite set of equations over E and (1) TI (E,E) ~ A or 

(2) TF(E,E) ~ A. 

We now define our favoured method of making hidden function specifica­

tions. 

Let A be a many-sorted algebra of signature EA and let Ebe a signa-

ture E C E A having the same sorts as EA. Then we mean by 

AIL the E-algebra whose domains are those of A and whose operations 

and constants are those of A named in E: the E-reduct of A; and by 

<A>E the E-subalgebra of A generated by the operations and constants 

of A named in E viz the smallest E-subalgebra of AIE. 

The pair (E,E) is said to be a finite equational hidden enrichment 

specification of algebra A with respect to (1) initial algebra semantics 

or (2) final algebra semantics if EA c E and E contains exactly the sorts 

of EA, and Eis a finite set of equations over E such that 

(1) TI(E,E) Ir = 
A 

<TI(E,E)>E 
A 

~A 

= ~ or (2) TF(E,E)IE <T (E ,E) >E A. 
A F A 

2. COMPUTABLE DATA TYPE SEMANTICS 

Any countable many-sorted algebra A with component data domains 

A1 , ••• ,An can be effectively presented in the following sense: to each Ai 

there is associated a recursive set n. cw and a surjection a.: n. + A. 
1 1 1 1 

such that for each operation cr: AA 1x ••• xAAk + Aµ of there is a recursive 

tracking function cr which coIIDnutes the diagram 
a 

AA1x ••• xAAk 

"'1 X ••• xa,kr 
cr 

er 
QA1x ••• xnAk ___ a __ ➔ Q 

11 



A many--sorted algebra A is, said to be computable (semicomputable or 

cosemicomput.ablel if it can be effectively presented, just as above, and, 

in addition, each relation -ai defined on Qi by 

X - y 
a. 

if, and only if, a. (x) = a. (y} in A. 
l. l. l. 

l. 

is recursivE~ (r .e. or co-r .e.). 
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Together with. finiteness, these notions of effectivity are isomorphism 

invariants and make up four basic properties of algebra semantics. See our 

[1] and, in particular, RABIN[ll] and MAL'CEV[lO] for further information. 

2 .1. BASIC LEMMA. Let o: ,E) be a specification with E a recursively enumer­

able set of equations. Then TI(L,E) is semicomputable and TF(L,E) is co­

semicomputahle. In particular, if algebra A possesses an r.e. equational 

hidden enrichment specification with respect to (1) initial algebra seman­

tics or (2} final algebra semantics then (1) A is semicomputable or (21 A 

is cosemicomputable. If A possesses such specifications with respect to 

both initia.l and final algebra semantics then A is computable. 

In a forthcoming paper we shall prove theorems which may be taken as 

strong convE~rses to implications indexed (1) and (2) in Lemma 2.1. These 

will yield a neat characterisation of computable data type semantics. 

This last fact is taken from the proof of Theorem 3.1 of our [1]. 

2.2. LEMMA. Let A be a computable minimal algebra of signature IA. Then 

there exists a computable minimal B of signature LB => IA having a finite 

equational specification =(EB ,EB) with respect to initial semantics such that 

Moreover, Band (IB;EBl can be chosen with (1} each domain Bi of B equal 

tow or to a finite initial segment of w, (21 OE B. as a constant of sort 
l. 

i in LB and with (3) a unary function symbol is of sort i such that the 
i n 

family of t12rms { S (01: n E Bi}, indexed by the sorts i of IB, is a 

traversal or set of normal forms for -EB. 



3 • FINAL ALGEBRA SEMANTICS FOR PR 

We algebraically structure the primitive recursive functions on the 

natural numbers into a 2-sorted algebra A with domains wand PR named in 

the signature E of A by sorts N and M (for "number" and "map"l. A is- de­

fined by using a 2-sorted operation to glue a single-sorted arithmetic to 

a single-sorted function algebra. 

Let~ be the single-sorted algebra on w with constant OE wand 

operations x + 1, x !. 1, x + y, ?..(x} = x-L✓x.1 2 • Let EN= {O,S,P,+,?i.} he 

the signature of~-
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Let AM be a single-sorted algebra on PR with constants- the operations 

of~ plus the everywhere zero function and whose operators are 

sum(f,g)(x) = f(x)+g(x) 

comp(f,g) (x) = f(g(x) l 

if X = 0 

if X 'r 0 

Let LM = {ZERO,SUCC,PRED,ADD,A,SUM,COMP,IT} be the signature of AM. 

Now define A by joining AM and AN with eval: PR x w ➔ w defined by 

eval(f,x) = f(x). 

Let r. = EN u EMU {EVAL}. 

3.1. LEMMA. A is a finitely generated minimal algebra which is cosemicom­

putable but not computable. 

PROOF. That A is finitely generated and minimal follows from ROBINSON[12] 

where it is shown that every unary primitive recursive function is the 

result of a finite number of applications of sum, comp, it to O ,x + 1, )dxl. 

The rest of the result we leave as an exercise in recursive function theory. 

Q.E.D. 

3 .1. THEOREM. The algebra of primitive recursive functions A has a finite 

equational hidden enrichment specification with respect to final algebra 

semantics but fails- to possess an r.e. conditional hidden enrichment . 
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specification with respect to :initial algebra semantics. 

PROOF. The second statement follows from Lemma 2.1 and Lemma 3.1. We prove 

the existence of a final algebra specification for A. 

By Lemma 2.2 there is a computable algebra A~, with a finite equational 

initial semantics specification cr_;;,E~J, with domain w such that 

A~IIN =<~>IN= ~ and so TI(I~,E~)trN =<TI(I~,Eil>IN ~~-Define a new 

algebra A0 by replacing AN in A by AN. Clearly, A0 1r = <A0 >I =A.we will 

give A0 the required finite equational specification (t: 0 ,E0 ) with respect 

to final semantics. 
0 

E0 is defined to be EN, interpreted as equations over t:0 , plus the 

following equations. 

EVAL(ZERO,Y) 0 EVAL(PRED,Y) = P(Y) 

EVAL(SUCC,Y) = S(Y) 

EVAL (A , Y) = ;\ (Y) 

EVAL(SUM(x1 ,x2 ) ,Y) = ADD(EVAL(X 1 ,Y) ,EVAL(X2 ,Y)) 

EVAL(COMP(X1 ,x2 ) ,Y) = EVAL(X 1 ,EVAL(X2 ,Y)) 

EVAL(IT(X) ,0) = 0 

EVAL(IT(X) ,S(Y)) = EVAL(COMP(X,IT(X)) ,Y) 

wherein x,x 1 ,x2 are function indeterminates and Y is a numerical indeter­

minate. 

Let <ti he the unique epimorphism T(t:0 ) ➔ A0 • Then A0 ~ T(t: 0 )/ -=<ti and so 

what we have to prove is that =<ti is =max(Eo}. Clearly, =<pis non-unit (be-

cause A0 is non-trivial) and =Eo = is contained in =A-. (because A0 -min (Eo) 't' 

is an E0-algebra). What remains to be shown is that any non-unit congruence 

=extending= is contained within =A-.· 
Eo 't' 

Let= be any non-unit congruence extending - composed of the two com­Ea 
ponent relations =N and =M. Let <ti split into component functions </JN and </JM 

with _<ti consisting of =</JN and =</JM" 

We consider maximality for the numerical terms first. 

3.3. LEMMA. Lett be a numerical term of T(t:0 1. Then t -

Maximality follows easily: let t 1,t2 be numerical terms in T(t:0 1 and 



qiN(t.l 
supposE t 1 =N t 2 • Th.en b.y Lemma 3.3 we can write t. = s 1 (01 for 

qiN(t1J 1 Eo qiN(t2} 
i = 1,2 and, rlnce = extends ~O, we have S (0) =N s (01. Now 
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if qiN(t1) f qiN(t2} then, using the predecessor functions, all numerals can be 

identified under=~· This contradicts the non-triviality of =N because the 
n . 

numerals{S (0) :nEw} were already a complete set of coset representatives for 

=E (Lemma 3.3). Thus qiN(t1 l = qiN(t2I and t 1 =.i.. t 2 • 
0 · 't'N 

Before proving Lemma 3 • 3 we cons·ider maximality for the function terms. 

Let·t1 ,t2 be map terms of T(E0 ) and assume t 1 =M t 2 • For any n E w we know 

that 

EVAL(t1 ,Sn(O}) =N EVAL(t2 ,sn(O)) 

qiNEVAL(t1 ,sn(O)) =N qiNEVAL(t2 ,sn(O)) 

eval (~_,t1 ,n) = eva:Z. (~ t 2 ,n) in A0 

Therefore t 1 =qi t 2 • 
M 

PROOF OF LEMMA 3.3 

because= is a congruence; 

because we have shown = c = .i.. 
N 't'N 

because qi is a homomorphism 
n 

and qiN(S (0)) = n. 

This is done by induction on the complexity of numerical term t. Be­

fore describing the argument it is necessary to fix in the mind all the 

components of the algebras and specifications involved. Thes·e are best 
0 displayed in a diagram of EN-algebras: 

T (Eo Eo) 
I N' N 

/ 
/ 

/ 
/ 

/ 

k. 
v' 

K 
' ' 

" ' ' 
T (EON) 
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In this diagram i is inclusion; v,v' denote projection maps; broken arrows 

are maps uniquely defined oy initiality. 

We consider the induction step only. This is divided into cases deter-
0 . 

mined by the leading 
a 

function symbol cr EE u {EVAL} oft. Those cases when 
0 . N 

cr E EN are routine because E c E, but we do one as an example; let 
N 0 

t = ADD(t1,t2) where t 1 ,t2 are assumed to be numerical terms in T(E0 ] of 
c/>N(t·I 

which Lemma 3.3 is true. Since t. = S i-.(0) for i = 1,2 we can calculate 
i Ea 

as follows 

t -
EO 

t -
EO 

t -
EO 

c/> (t ) cf> (t ) 
ADD(S N l (O),S N 2 (0)) 

c/>N (tl) +cf>N (t2) 
s (0) 

cf>N(ADD(t1 ,t2)) 
s (0) 

by substitution; 

a 
because EN c E0 , or, more 

formally, by diagram chasing; 

because cf>N is a E~ homomorphism 

TCEo> lro + ~-
N 

Let us turn to the interesting case of cr = EVAL. This follows directly from 

this next fact. 

3.4. LEMMA. For any function term t E T(E0) and fox any n E w 

cf>N(EVAL(t,Sn(O}) 
S (0) 

PROOF. This is done by induction on the complexity oft. The basis cases 

are direct calculations. Consider the induction step in case t = SUM(t1,t2) 

where t 1 ,t2 are function terms in T(E0 ) for which it is assumed that Lennna 

3.4 is true. We calculate 

ADD (EVAL (~1 ,Sn (0)) ;EVAL (t2 ,Sn (01 )J. 

cf,N (EVAL (tl ,s:n (O}) c/>N (EVAL (t2 ,Sn (0)) l 
ADD (S (0] ,S (01) 

by induction; 

cf>N(ADD(EVAL(t1 ,~(0}),EVAL(t2 ,sn(O]})) 
S . (0) 

as above; 
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The case t =: COMP (t1 ,t2l follows the same pattern. The case t = IT (t0) 

requires a secondary induction on n for EVAL(IT(t0 ).,Sn(O)), but it is never­

theless straightforward. Q,E.D. 

4. INITIAL ALGEBRA SEMANTICS FOR PR 

By stripping down the algebra A an initial algebra specification of 

the primitive recursive functions can found. Let B be the 2-sorted algebra, 

with domains PR and w, obtained by deleting all the operations of A which 

are internal to PR. Thus B consists of AN joined to the set PR by 

eval: PR x w + w; put simply: if I= IN u {EVAL} then B = AII. Of course, 

Bis not a finitely generated algebra, but 

4.1. THEOREM. With respect to initial algebra semantics, B possesses a 

finite equational specification (I0 ,E0 ) involving hidden functions such 

that 

PROOF. We shall first show that Bis a computable algebra. 

4. 2. LEMMA. :There is a computable enumeration of the primitive recursive 

functions S: w + PR which is bijective and possesses a recursive universal 

function US (e,x) = S (e) (x). 

PROOF. Let c: S + PR be any standard enumeration of PR having recursive 

universal function U. The problem is to remove the repititions inc hence 
C 

we define a recursive function h: w ➔ w which will list from S one, and 

only one, code for each function. This done we can set S = ch: w + PR and 

take u6(e,x) = U (h(e) ,x) as a recursive universal function. 
- C 

Here is an h, defined inductively, which will find the smallest c-code for 

each primitive recursive function. Base: h(O) = 0. Induction Step: suppose 

h(O) , ••• ,h(n) have been computed. To compute h(n+1) search out the smallest 

bound b E w t:or which there is a c-code e < b such that 

(11 ('ve'<el(3x<b)[U (e' ,x) -/c U (e,x}] and (2) e 4: {h(O), .•• ,h(n)}. Now seek 
C C 



the smallest c-code e 0 < h satisfying (11 and (21 and take h(n+l) = e 0 • 

We leave the reader to check h satis£ies the required conditions. Q.E.D. 
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Thus we may now fix up a computable numbering for B by using the 

identity map i: w-+ wand B: w-+ PR of Lemma 4.2. The operations of Bare 

all recursive with respect to this pair (i,Bl as are the induced equality 

relations (because both maps- are bijections}. Theorem 4 .1 now follows from 

this next lennna used in connection with Lemma 2.2. 

4.3. LEMMA. Let A be any many-sorted computable algebra of signature E one 

of whose domains is w. Then there exists a finitely generated minimal 

computable algebra A. of 
min 

signature E . => E such that A . I"' e:: A. 
min min~ 

PROOF. To make A. from A first add OE was a constant and successor 
min 

x+l as a unary operation to A. Next choose any computable numbering B of 

A each of whose component mappings B. have domain wand add each 8.: w-+ A. 
l l l 

as a new operation. This is A . and it is clearly minimal and computable 
min 

(even without the informal hypothesis that Bis effective for Bas an 

operation of A. is officially tracked by the identity in the original 
min 

B coding of A!). Forgetting all these new operations, we see 
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