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ABSTRACT

Initial and final algebra semantics are two ways of assigning a unique
meaning to an axiomatic specification (I,E) of a data type. First, we point
out how easy it is to find natural data types with effective specifications
with respect to initial algebra semantics, but without effective specifica-
tions with respect to final algebra semantics. Secondly, we suggest that a
natural source of data types for which the opposite is true are those
programming systems with undecidable program equivalence problem. We work
out in detail the situation when the denotational semantics of a system are

the primitive recursive functions.
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INTRODUCTION

Suppose you want to define a data type by a set of operators I satisfying
some axioms E. Initial and final algebra semantics are two natural ways of
assigning to the specification (I,E) a unique meaning in the class
ALG(Z,E) of all I-algebras satisfying the properties of E. Initial seman-
tics insists that two terms t,t' over X are identical iff t,t' can be
proved equal from axioms E while final semantics agrees to identify t,t'
as long as t = t' is consistent with the axioms E. Both techniques have
been discussed in the programming methodology and theoretical literatures
with varying degrees of partiality: we assume the reader is aware of at
least ADJ[7], BROY et al [6], GUTTAG & HORNINGI8], KAMIN[9]1, wanD[131].
Here we wish to point out a pleasing mathematical symmetry: if (I,E) is a
specification in which E is an r.e. set of equations then the initial se-
mantics of (I,E) is an r.e. semantics while the final semantics of (Z,E)
is a co-r.e. semantics. So a data type possessing effective specifications
with respect to both initial and final algebra semantics must be computable.

(A more formal statement of this is Basic Lemma 2.1.)
Clearly, it is easy to find natural data types which fail to possess

effective equational final algebra specifications for algebras with r.e.,

but not recursive, word problems abound. For natural systems with co-r.e.,



but not recursive, equality problems we look to the denotational semantics
of those program languages where the program equivalence problem is un-
decidable but co-r.e. The easiest example is PR the unary primitive re-
cursive functions PR on the natural numbers w (because as a function al-
gebra, made from the usual operators on PR and w, it is a total algebra).
In §3 we organise PR into a 2-sorted algebra A and prove it can be speci-
fied by finitely many equations and hidden operators with respect to final
semantics. In §4 we present, as a curio, an initial specification of an
impoverished fragment of A.

This little paper introduces final algebra semantics into our series
of mathematical studies of the power of definition and adequacy of alge-
braic methods for data type definition [1,2,3,4], see also [5]. We would

like to thank G. Rozenberg for encouraging us to write down these notes.
1. DATA TYPE SPECIFICATIONS

We assume the reader accustomed to working with many-sorted algebras
and record here only terminology not to be found in the standard reference
apJl7].

Let A be a many-sorted algebra. Then A is minimal if it is finitely
generated by elements named in its signature ¥. All signatures are assumed
finite, but not all algebras are minimal. By a unit congruence on A we mean
a congruence which identifies all elements in one domain of A. Let

S ¢ A X A, By = we denote the smallest congruence on A containing the

min (S)

identifications of S. By = we denote the largest congruence on A

max (S)
containing S which is not a unit congruence, if such exists, and otherwise

we take Emax(S) to be a unit congruence. The word "largest"”" in this context

means that if = is any congruence, except a unit congruence, containing S

then = is contained in = .
max (S)

Let I be a signature. A set of equations E over I determines a set of

basic identifications D(E) between elements of the term algebra T(IZ). Let

TI(Z,E) be T(X)/Emin(E) where = nin (E) abbreviates Znin(D(E)) and let

’ = = i =
TpiZ/EL be TL)/Z () WHeTe Sax(m) 2PPreviates = @)



The pair (Z,E) is said to be a finite equational specification of al-
gebra A with respect to (1] initial algebra semantics or (2) final algebra
semantics if E is a finite set of equations over I and (1) TI(Z,E) = A or
(2) TF(Z,E) = A.

We now define our favoured method of making hidden function specifica-
tions.

Let A be a many-sorted algebra of signature ZA and let I be a signa-
ture I c ZA having the same sorts as ZA. Then we mean by

A 5 the I-algebra whose domains are those of A and whose operations
and constants are those of A named in I: the I-reduct of A; and by

<A>Z the I-subalgebra of A generated by the operations and constants
of A named in ¥ viz the smallest I-subalgebra of AIZ'

The pair (Z,E) is said to be a finite equational hidden enrichment
specification of algebra A with respect to (1) initial algebra semantics
or (2) final algebra semantics if ZA c I and I contains exactly the sorts

of ZA’ and E is a finite set of equations over ¥ such that

IR

(1) TI(Z,E){Z <T_(L,E)>. =a

A A

IR
>

or (2) TF(Z,E)Iz <T(Z,E)>y

A A

2. COMPUTABLE DATA TYPE SEMANTICS

Any countable many-sorted algebra A with component data domains
Al""’An can be effectively presented in the following sense: to each Ai
there is associated a recursive set Qi c w and a surjection ai: Qi > Ai
such that for each operation o: AA1X°-°xAkk > Au of there is a recursive

tracking function Oa which commutes the diagram

(o}
——
Axlx...XAAk A}1
0, X...X0O o
1 k u
. ‘Ua
Qllx"‘XQAk _—— QU



A many-sorted algebra A is said to be computable (semicomputable or
cosemicomputable}] if it can be effectively presented, just as above, and,

in addition, each relation E“i defined on Qi by

X Eai v if, and only if, ai(x) = ai(y) in Ai

is recursive (r.e. or co-r.e.).
Together with finiteness, these notions of effectivity are isomorphism
invariants and make up four basic properties of algebra semantics. See our

[1] and, in particular, RABIN[11] and MAL'CEV[10] for further information.

2.1. BASIC LEMMA. Let (I,E) be a specification with E a recursively enumer-
able set of equations. Then TI(Z,E) is semicomputable and TF(Z,E) is co-
semicomputable. In particular, if algebra A possesses an r.e. equational
hidden enrichment specification with respect to (1) initial algebra seman-
tics or (2) final algebra semantics then (1) A is semicomputable or (2) A
is cosemicomputable. If A possesses such specifications with respect to

both initial and final algebra semantics then A is computable.

In a forthcoming paper we shall prove theorems which may be taken as
strong converses to implications indexed (1) and (2) in Lemma 2.1. These
will yield a neat characterisation of computable data type semantics.

This last fact is taken from the proof of Theorem 3.1 of our [1].

2.2. LEMMA. Let A be a computable minimal algebra of signature ZA. Then
there exists a computable minimal B of signature ZB > ZA having a finite

equational specification (ZB,EB) with respect to initial semantics such that

Moreover, B and (ZB;EB) can be chosen with (1) each domain Bi of B equal
to w or to a finite initial segment of w, (2) O € Bi as a constant of sort
i in ZB and with 53) a unary function symbol iS of sort i such that the
family of terms {(*s™0): n e Bi}, indexed by the sorts i of Igr is a

traversal or set of normal forms for EE .
B



3. FINAL ALGEBRA SEMANTICS FOR PR

We algebraically structure the primitive recursive functions on the
natural numbers into a 2-sorted algebra A with domains w and PR named in
the signature I of A by sorts N and M (for "number" and "map"). A is de-
fined by using a 2-sorted operation to glue a single-sorted arithmetic to
a single-sorted function algebra.

Let AN be the single-sorted algebra on w with constant O € w and
operations x + 1, x ~ 1, x +y, A(x) = x—~L/kJ2. Let ZN = {0,s,P,+,)\} be
the signature of AN.

Let AM be a single-sorted algebra on PR with constants the operations

of AN plus the everywhere zero function and whose operators are

f(x)+g(x)
f(g(x))

0 ifx =20
£20) ifx #0

sum(£,qg) (x) () (x) = {

comp (£,qg) (x)

Let L, = {ZERO, SUCC,PRED,ADD, A,SUM,COMP,IT} be the signature of Ay-
Now define A by joining AM and AN with eval: PR X w > w defined by

eval (f,x) = £(x).

Let I = zN u zM v {EVAL}.

3.1. LEMMA. A is a finitely generated minimal algebra which is cosemicom-
putable but not computable.

PROOF. That A is finitely generated and minimal follows from ROBINSON[12]
where it is shown that every unary primitive recursive function is the
result of a finite number of applications of sum, comp, it to O,x + 1, A(x).
The rest of the result we leave as an exercise in recursive function theory.

0.E.D.

3.1. THEOREM. The algebra of primitive recursive functions A has a finite

equational hidden enrichment specification with respect to final algebra

semantics but fails to possess an r.e. conditional hidden enrichment



specification with respect to initial algebra semantics.

PROOF. The second statement follows from Lemma 2.1 and Lemma 3.1. We prove
the existence of a final algebra specification for A.
0
"By Lemma 2.2 there is a computable algebra AN, with a finite equational

initial semantics specification (%N,EN), with domain w such that

0 0 0 _o 0 _0
= < > = E = > = . i
AN ZN AN Iy AN and so TI(ZN, N)IZN <'TI(ZN,EN) I AN Define a new
. i i e = > = i
algebra AO by replacing AN in A by AN. Clearly, AOIZ <AO 5 A. We will
give AO the required finite equational specification (ZO,EO) with respect

to final semantics.
EO is defined to be Eg, interpreted as equations over ZO, plus the
following equations.

EVAL (ZERO, Y) 0 EVAL (PRED,Y) = P(Y)
S(Y)
EVAL(A,Y) = A(Y)

EVAL (SUCC,Y)

EVAL(SUM(Xi,XZ),Y) = ADD(EVAL(XI,Y),EVAL(XZ,Y))

EVAL(COMP(Xl,Xz),Y) = EVAL (X EVAL(XZ,Y))

1!
EVAL(IT(X),0) =0

EVAL(IT(X),S(Y)) = EVAL(COMP (X,IT(X)),Y)

wherein X,Xl,X2 are function indeterminates and Y is a numerical indeter-

minate.

Let ¢ be the unique epimorphism T(ZO) - A Then A = T(ZO)/ =, and so

0° 0 0
hat h t is that =, is = . 1 =, i -uni be-
what we have to prove is a 6 is max (Eq) Clearly, 6 is non-unit (be
cause AO is non-trivial) and EEO = Emin(Eo) is contained in E¢ (because AO
is an E_-algebra). What remains to be shown is that any non-unit congruence

= extenging EEO is contained within E¢.
Let = be any non-unit congruence extending EE' composed of the two com-
ponent relations EN and EM' Let ¢ split into component functions ¢N and ¢M
with =, consisting of = and =, .
¢ bn Oy

We consider maximality for the numerical terms first.
oy (E)
S

Eq (0).

3.3. LEMMA. Let t be a numerical term of T(ZO). Then t =

Maximality follows easily: let t,,t, be numerical terms in T(ZO) and

172



¢ _(t,)
=t Then by Lemma 3.3 we can write t, =_ S N1 (O) for
1w 2 én(e1) & B0 oy(ty)
i =1,2 and, since = extends ;EO, we have S (0) =_8 (0) . Now

suppose t

N
if ¢N(t1) # ¢N(t2) then, using the predecessor functions, all numerals can be

identified under EN' This contradicts the non-triviality of E because the
numerals{S (0) :new} were already a complete set of coset representatlves for

:EO (Lemma 3.3). Thus ¢N(t1) = ¢ (t,) and tl.:¢N £,
Before proving Lemma 3.3 we consider maximality for the function terms.

Let t,,t, be map terms of T(ZO) and assume t, = t_ . For any n € w we know

1’72 1 M 2
that

EVAL(tl,Sn(O)) EN EVAL(tz,Sn(O)) because = is a congruence;
¢NEVAL(t1,Sn(0)) = ¢NEVAL(t2,Sn(O)) because we have shown =g © by
eval(qw,tl,n) = eval(qwtz,n) in A because ¢ is a homomorphism

and ¢N(sn(0)) = n.

0

Therefore t1 :¢M t2.

PROOF OF LEMMA 3.3

This is done by induction on the complexity of numerical term t. Be-
fore describing the argument it is necessary to fix in the mind all the
components of the algebras and specifications involved. These are best

displayed in a diagram of Zg—algebras:

0 - 0.0
A!23=AN<%* = y TI(Z/EQ)
/,/ A
i N L
| k‘/
Vl
by ; [Tz /= leo = T (B |0
N =
[ ~
/ ™~
N
i S0
»
T(ZO)IZO < T(Z N)



In this diagram i is inclusion; v,v' denote projection maps; bfoken arrows
are maps uniquely defined by initiality.

We consider the induction step only. This is divided into cases deter-
mined by the leading function symbol ¢ € Zg u {EVAL} of t. Those cases when

-0 0 v
g € ZN are routine because EN c E but we do one as an example; let

OI
t = ADD(t, ,t.) where t,,t. are assumed to be numerical terms in T(I.) of
1772 1772 ‘i’N(tiI 0
which Lemma 3.3 is true. Since ti EEO S (0) for i = 1,2 we can calculate
as follows
by (ty) by (£,)
t EE ADD (S (0),s (0)) by substitution;
O (B +oy(E)) 0
t EE S (0) because EN c EO' or, more
0 . .
¢N(ADD(t1,t2)) formally, by dlaggam chasing;
t = S (0) because ¢ is a I_ homomorphism
Eo N N

0
T(ZO)IZS + Ay.

Let us turn to the interesting case of ¢ = EVAL. This follows directly from

this next fact.

3.4. LEMMA. For any function term t € T(ZO) and for any n € w

o ¢N(EVAL(t,Sn(O))
EVAL(t,S (0)) =, S (0)
EO

PROOF. This is done by induction on the complexity of t. The basis cases
are direct calculations. Consider the induction step in case t = SUM(tl,tz)
where t,,t

1772
3.4 is true. We calculate

are function terms in T(ZO) for which it is assumed that Lemma

EVAL (t,S7(0)) = u'ADD(EVAL(tJ,Sn(Ol);EVAL(tZ,Sn(O)))
¢. (EVAL(t

E
0
N ST ¢ (EVAL(t,,s"(0)))
=5 ADD(S (Q),s (0))
0 by induction;
¢__(ADD (EVAL (t ,sn(OI).EVAL(t ,Sn(O))H
= gV 1 2 (0)

EO
as above;

¢ (EVAL(t,S" (0)))

= S because =_ < =,.
Fo E, ¢



The case t = COMP(tl,tzl follows. the same pattern. The case t = IT(tO)
requires a secondary induction on n for EVAL(IT(tO),Sn(O)), but it is never-

theless straightforward. Q.E.D.
4. INITIAL ALGEBRA SEMANTICS FOR PR

By stripping down the algebra A an initial algebra specification of
the primitive recursive functions can found. Let B be the 2-sorted algebra,
with domains PR and w, obtained by deleting all the operations of A which
are internal to PR. Thus B consists of A_ joined to the set PR by

N

eval : PR x w = w; put simply: if I = ZN u {EVAL} then B = A Of course,

5
R is not a finitely generated algebra, but

4.1. THEOREM. With respect to initial algebra semantics, B possesses a

finite equational specification (X ) iInvolving hidden functions such

0Fo
that

T_(Z,,Ey) |, = B.

PROOF. We shall first show that B is a computable algebra.

4.2. LEMMA. There is a computable enumeration of the primitive recursive
functions B: w -+ PR which is bijective and possesses a recursive universal

function U _(e,x) = B(e) (x).

B

PROOF. Let c: S = PR be any standard enumeration of PR having recursive
universal function Uc' The problem is to remove the repititions in c hence
we define a recursive function h: w - w which will list from S one, and
only one, code for each function. This done we can set B = ch: w - PR and
take UB(e,x) = Uc(h(e),x) as a recursive universal function.

Here is an h, defined inductively, which will find the smallesf c~code for
each primitive recursive function. Base: h(0) = 0. Induction Step: suppose
h(0),...,h(n) have been computed. To compute h(n+l) search out the smallest

bound b € w for which there is a c-code e < b such that

(1) (Ve'<e) (Ix<b)[U (e",x) # Uc(e,x)] and (2) e ¢ {h(0),...,h(n)}. Now seek



10

the smallest c—code ed < b satisfying (1) and (2) and take h(n+l) = ey-
We leave the reader to check h satisfies the required conditions. Q.E.D.
Thus we may now fix up a computable numbering for B by using the
identity map i: w > w and 8: w - PR of Lemma 4.2. The operations of B are
all recursive with respect to this pair (i,B) as are the induced equality
relations (because both maps are bijections). Theorem 4.1 now follows from

this next lemma used in connection with Lemma 2.2.

4.3. LEMMA. Let A be any many-sorted computable algebra of signature I one
of whose domains is w. Then there exists a finitely generated minimal
computable algebra Amin of signature Zmin > % such that Amin 5 = A.

PROOF. To make Amin from A first add 0 € w as a constant and successor

x+1 as a unary operation to A. Next choose any computable numbering B of

A each of whose component mappings Bi have domain w and add each Bi: w > Ai
as a new operation. This is Amin and it is clearly minimal and computable
(even without the informal hypothesis that B is effective for B as an
operation of Amin is officially tracked by the identity in the original

B coding of A!). Forgetting all these new operations, we see

A. Q.E.D.

Amian =
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