
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

J.A. BERGSTRA & J.V. TUCKER

IW 133/80

A NATURAL DATA TYPE WITH A FINITE EQUATIONAL
FINAL SEMANTICS SPECIFICATION BUT NO EFFECTIVE
EQUATIONAL INITIAL SEMANTICS SPECIFICATION

Preprint

~
MC

APRIL

2e boerhaavestraat 49 amsterdam

Punted a;t .the Ma.:thema.:Ucal CentJr.e, 49, 2e BoeJl.haa.vetdJr.a.a.t, Am6.teJulam.

The Ma.:thema.:Ucal Cen;tJr.e, 6ou.nded .the 11-.th 06 Feblr.WVLy 1946, ,l6 a non­
pM 6U .lrui.tUu.tlo n cum.lng a;t .the p11.omo.tio n. o 6 pUlle ma.:thema.:UC-6 and .l.t6
appUca.:t.loru,. 1.t ,l6 .6poruiOJr.ed by .the Ne.theJr.i.a.nd6 Govell.nmen.t :thtc.ough the
Ne.theJr.i.a.nd6 ~ll.gan.lza.:Uon 60"- .the Advanc.emen.t 06 PU/le RueaJr.c.h (Z.W.O).

1980 Mathematics subject classific;:a:t;:.iom 03D45 03D80 68B15

ACM - Computing Review-categories: 4.34

A natural data type with a finite equational final semantics specification

* but no effective equational initial semantics specification

by

** J. A. Bergstra & .J. V; Tucker

ABSTRACT

Initial and final algebra semantics are two ways of assigning a unique

meaning to an axiomatic specification (I,E) of a data type. First, we point

out how easy it is to find natural data types with effective specifications

with respect to initial algebra semantics, but without effective specifica­

tions with respect to final algebra semantics. Secondly, we suggest that a

natural source of data types for which the opposite is true are those

programming systems with undecidable program equivalence problem. We work

out in detail the situation when the denotational semantics of a system are

the primitive recursive functions.

KEY WORDS & PHRASES: Algebraic data types, algebraic specifications, initial

algebra semantics, final algebra semantics, primitive

recursive functions

*

**

This report will be·suomitted for publication elsewhere.

Department of Computer Science, University of Leiden, Wassenaarseweg

80, Postbus 9512, 2300 RA LEIDEN, The Netherlands.

1

INTRODUCTION

Suppose you want to define a data type by a set of operators E satisfying

some axioms E. Initial and final algebra semantics are two natural ways of

assigning to the specification (E,E) a unique meaning in the class

ALG(E,E) of all E-algebras satisfying the properties of E. Initial seman­

tics insists that two terms t,t' over E are identical iff t,t' can be

proved equal from axioms E while final semantics agrees to identify t,t'

as long as t = t' is consistent with the axioms E. Both techniques have

been discussed in the programming methodology and theoretical literatures

with varying degrees of partiality: we assume the reader is aware of at

least ADJ[7], BROY et al [6], GUTTAG & HORNING[8], KAMIN[9], WAND[13].

Here we wish to point out a pleasing mathematical symmetry: if (E,El is a

specification in which Eis an r.e. set of equations then the initial se­

mantics of (E,E) is an r.e. semantics while the final semantics of (E,El

is a co-r.e. semantics. So a data type possessing effective specifications

with respect to both initial and final algebra semantics must be computable.

(A more formal statement of this is Basic Lemma 2.1.)

Clearly, it is easy to find natural data types which fail to possess

effective equational final algebra specifications for algebras with r.e.,

but not recursive, word problems abound. For natural systems with. co-r.e.,

2

but not recursive, equality problems we look to the denotational semantics

of thos-e program languages where the program equivalence problem is un­

decidable but co-r.e. The easiest example is PR the unary.primitive re­

cursive functions PR on the natural numbers w (because as a function al­

gebra, made from the usual operators on PR and w, it is a total algebra).

In §3 we organise PR into a 2-sorted algebra A and prove it can be speci­

fied by finitely many equations and hidden operators with respect to final

semantics. In §4 we present, as a curio, an initial specification of an

impoverished fragment of A.

This little paper introduces final algebra semantics into our series

of mathematical studies of the power of definition and adequacy of alge­

braic methods for data type definition [1,2,3,4], see also [5]. We would

like to thank G. Rozenberg for encouraging us to write down these notes.

1. DATA TYPE SPECIFICATIONS

We assume the reader accustomed to working with many-sorted algebras

and record here only terminology not to be found in the standard reference

Let A be a many-sorted algebra. Then A is minimal if it is finitely

generated by elements named in its signature E. All signatures are assumed

finite, but not all algebras are minimal. By a unit congruence on A we mean

a congruence which identifies all elements in one domain of A. Let

Sc Ax A. By =min(S) we denote the smallest congruence on A containing the

identifications· of S. By =max(S) we denote the largest congruence on A

containing S which is not a unit congruence, if such exists, and otherwise

we take =max(Sl to be a unit congruence. The word "largest" in this context

means that if= is any congruence, except a unit congruence, containing S

then= is contained in =max(S).

Let Ebe a signature. A set of equations E over E determines a set of

basic identifications D(E} between elements of the term algebra T(El. Let

TI(E,E) be T(E)/=min(E) where -min(E) abbreviates =min(D(E}) and let

TF(E,El be T(E)/=max(El where -max(E) abbreviates =max(D(E)l"

3

The pair o:::,El is. said to he a finite equational specification of al­

gebra A with_ respect to (11 initial algebra semantics or (21 final algebra

semantics if E is a finite set of equations over E and (1) TI (E,E) ~ A or

(2) TF(E,E) ~ A.

We now define our favoured method of making hidden function specifica­

tions.

Let A be a many-sorted algebra of signature EA and let Ebe a signa-

ture E C E A having the same sorts as EA. Then we mean by

AIL the E-algebra whose domains are those of A and whose operations

and constants are those of A named in E: the E-reduct of A; and by

<A>E the E-subalgebra of A generated by the operations and constants

of A named in E viz the smallest E-subalgebra of AIE.

The pair (E,E) is said to be a finite equational hidden enrichment

specification of algebra A with respect to (1) initial algebra semantics

or (2) final algebra semantics if EA c E and E contains exactly the sorts

of EA, and Eis a finite set of equations over E such that

(1) TI(E,E) Ir =
A

<TI(E,E)>E
A

~A

= ~ or (2) TF(E,E)IE <T (E ,E) >E A.
A F A

2. COMPUTABLE DATA TYPE SEMANTICS

Any countable many-sorted algebra A with component data domains

A1 , ••• ,An can be effectively presented in the following sense: to each Ai

there is associated a recursive set n. cw and a surjection a.: n. + A.
1 1 1 1

such that for each operation cr: AA 1x ••• xAAk + Aµ of there is a recursive

tracking function cr which coIIDnutes the diagram
a

AA1x ••• xAAk

"'1 X ••• xa,kr
cr

er
QA1x ••• xnAk ___ a __ ➔ Q

11

A many--sorted algebra A is, said to be computable (semicomputable or

cosemicomput.ablel if it can be effectively presented, just as above, and,

in addition, each relation -ai defined on Qi by

X - y
a.

if, and only if, a. (x) = a. (y} in A.
l. l. l.

l.

is recursivE~ (r .e. or co-r .e.).

4

Together with. finiteness, these notions of effectivity are isomorphism

invariants and make up four basic properties of algebra semantics. See our

[1] and, in particular, RABIN[ll] and MAL'CEV[lO] for further information.

2 .1. BASIC LEMMA. Let o: ,E) be a specification with E a recursively enumer­

able set of equations. Then TI(L,E) is semicomputable and TF(L,E) is co­

semicomputahle. In particular, if algebra A possesses an r.e. equational

hidden enrichment specification with respect to (1) initial algebra seman­

tics or (2} final algebra semantics then (1) A is semicomputable or (21 A

is cosemicomputable. If A possesses such specifications with respect to

both initia.l and final algebra semantics then A is computable.

In a forthcoming paper we shall prove theorems which may be taken as

strong convE~rses to implications indexed (1) and (2) in Lemma 2.1. These

will yield a neat characterisation of computable data type semantics.

This last fact is taken from the proof of Theorem 3.1 of our [1].

2.2. LEMMA. Let A be a computable minimal algebra of signature IA. Then

there exists a computable minimal B of signature LB => IA having a finite

equational specification =(EB ,EB) with respect to initial semantics such that

Moreover, Band (IB;EBl can be chosen with (1} each domain Bi of B equal

tow or to a finite initial segment of w, (21 OE B. as a constant of sort
l.

i in LB and with (3) a unary function symbol is of sort i such that the
i n

family of t12rms { S (01: n E Bi}, indexed by the sorts i of IB, is a

traversal or set of normal forms for -EB.

3 • FINAL ALGEBRA SEMANTICS FOR PR

We algebraically structure the primitive recursive functions on the

natural numbers into a 2-sorted algebra A with domains wand PR named in

the signature E of A by sorts N and M (for "number" and "map"l. A is- de­

fined by using a 2-sorted operation to glue a single-sorted arithmetic to

a single-sorted function algebra.

Let~ be the single-sorted algebra on w with constant OE wand

operations x + 1, x !. 1, x + y, ?..(x} = x-L✓x.1 2 • Let EN= {O,S,P,+,?i.} he

the signature of~-

5

Let AM be a single-sorted algebra on PR with constants- the operations

of~ plus the everywhere zero function and whose operators are

sum(f,g)(x) = f(x)+g(x)

comp(f,g) (x) = f(g(x) l

if X = 0

if X 'r 0

Let LM = {ZERO,SUCC,PRED,ADD,A,SUM,COMP,IT} be the signature of AM.

Now define A by joining AM and AN with eval: PR x w ➔ w defined by

eval(f,x) = f(x).

Let r. = EN u EMU {EVAL}.

3.1. LEMMA. A is a finitely generated minimal algebra which is cosemicom­

putable but not computable.

PROOF. That A is finitely generated and minimal follows from ROBINSON[12]

where it is shown that every unary primitive recursive function is the

result of a finite number of applications of sum, comp, it to O ,x + 1,)dxl.

The rest of the result we leave as an exercise in recursive function theory.

Q.E.D.

3 .1. THEOREM. The algebra of primitive recursive functions A has a finite

equational hidden enrichment specification with respect to final algebra

semantics but fails- to possess an r.e. conditional hidden enrichment .

6

specification with respect to :initial algebra semantics.

PROOF. The second statement follows from Lemma 2.1 and Lemma 3.1. We prove

the existence of a final algebra specification for A.

By Lemma 2.2 there is a computable algebra A~, with a finite equational

initial semantics specification cr_;;,E~J, with domain w such that

A~IIN =<~>IN= ~ and so TI(I~,E~)trN =<TI(I~,Eil>IN ~~-Define a new

algebra A0 by replacing AN in A by AN. Clearly, A0 1r = <A0 >I =A.we will

give A0 the required finite equational specification (t: 0 ,E0) with respect

to final semantics.
0

E0 is defined to be EN, interpreted as equations over t:0 , plus the

following equations.

EVAL(ZERO,Y) 0 EVAL(PRED,Y) = P(Y)

EVAL(SUCC,Y) = S(Y)

EVAL (A , Y) = ;\ (Y)

EVAL(SUM(x1 ,x2) ,Y) = ADD(EVAL(X 1 ,Y) ,EVAL(X2 ,Y))

EVAL(COMP(X1 ,x2) ,Y) = EVAL(X 1 ,EVAL(X2 ,Y))

EVAL(IT(X) ,0) = 0

EVAL(IT(X) ,S(Y)) = EVAL(COMP(X,IT(X)) ,Y)

wherein x,x 1 ,x2 are function indeterminates and Y is a numerical indeter­

minate.

Let <ti he the unique epimorphism T(t:0) ➔ A0 • Then A0 ~ T(t: 0)/ -=<ti and so

what we have to prove is that =<ti is =max(Eo}. Clearly, =<pis non-unit (be-

cause A0 is non-trivial) and =Eo = is contained in =A-. (because A0 -min (Eo) 't'

is an E0-algebra). What remains to be shown is that any non-unit congruence

=extending= is contained within =A-.·
Eo 't'

Let= be any non-unit congruence extending - composed of the two com­Ea
ponent relations =N and =M. Let <ti split into component functions </JN and </JM

with _<ti consisting of =</JN and =</JM"

We consider maximality for the numerical terms first.

3.3. LEMMA. Lett be a numerical term of T(t:0 1. Then t -

Maximality follows easily: let t 1,t2 be numerical terms in T(t:0 1 and

qiN(t.l
supposE t 1 =N t 2 • Th.en b.y Lemma 3.3 we can write t. = s 1 (01 for

qiN(t1J 1 Eo qiN(t2}
i = 1,2 and, rlnce = extends ~O, we have S (0) =N s (01. Now

7

if qiN(t1) f qiN(t2} then, using the predecessor functions, all numerals can be

identified under=~· This contradicts the non-triviality of =N because the
n .

numerals{S (0) :nEw} were already a complete set of coset representatives for

=E (Lemma 3.3). Thus qiN(t1 l = qiN(t2I and t 1 =.i.. t 2 •
0 · 't'N

Before proving Lemma 3 • 3 we cons·ider maximality for the function terms.

Let·t1 ,t2 be map terms of T(E0) and assume t 1 =M t 2 • For any n E w we know

that

EVAL(t1 ,Sn(O}) =N EVAL(t2 ,sn(O))

qiNEVAL(t1 ,sn(O)) =N qiNEVAL(t2 ,sn(O))

eval (~_,t1 ,n) = eva:Z. (~ t 2 ,n) in A0

Therefore t 1 =qi t 2 •
M

PROOF OF LEMMA 3.3

because= is a congruence;

because we have shown = c = .i..
N 't'N

because qi is a homomorphism
n

and qiN(S (0)) = n.

This is done by induction on the complexity of numerical term t. Be­

fore describing the argument it is necessary to fix in the mind all the

components of the algebras and specifications involved. Thes·e are best
0 displayed in a diagram of EN-algebras:

T (Eo Eo)
I N' N

/
/

/
/

/

k.
v'

K
' '

" ' '
T (EON)

8

In this diagram i is inclusion; v,v' denote projection maps; broken arrows

are maps uniquely defined oy initiality.

We consider the induction step only. This is divided into cases deter-
0 .

mined by the leading
a

function symbol cr EE u {EVAL} oft. Those cases when
0 . N

cr E EN are routine because E c E, but we do one as an example; let
N 0

t = ADD(t1,t2) where t 1 ,t2 are assumed to be numerical terms in T(E0] of
c/>N(t·I

which Lemma 3.3 is true. Since t. = S i-.(0) for i = 1,2 we can calculate
i Ea

as follows

t -
EO

t -
EO

t -
EO

c/> (t) cf> (t)
ADD(S N l (O),S N 2 (0))

c/>N (tl) +cf>N (t2)
s (0)

cf>N(ADD(t1 ,t2))
s (0)

by substitution;

a
because EN c E0 , or, more

formally, by diagram chasing;

because cf>N is a E~ homomorphism

TCEo> lro + ~-
N

Let us turn to the interesting case of cr = EVAL. This follows directly from

this next fact.

3.4. LEMMA. For any function term t E T(E0) and fox any n E w

cf>N(EVAL(t,Sn(O})
S (0)

PROOF. This is done by induction on the complexity oft. The basis cases

are direct calculations. Consider the induction step in case t = SUM(t1,t2)

where t 1 ,t2 are function terms in T(E0) for which it is assumed that Lennna

3.4 is true. We calculate

ADD (EVAL (~1 ,Sn (0)) ;EVAL (t2 ,Sn (01)J.

cf,N (EVAL (tl ,s:n (O}) c/>N (EVAL (t2 ,Sn (0)) l
ADD (S (0] ,S (01)

by induction;

cf>N(ADD(EVAL(t1 ,~(0}),EVAL(t2 ,sn(O]}))
S . (0)

as above;

9

The case t =: COMP (t1 ,t2l follows the same pattern. The case t = IT (t0)

requires a secondary induction on n for EVAL(IT(t0).,Sn(O)), but it is never­

theless straightforward. Q,E.D.

4. INITIAL ALGEBRA SEMANTICS FOR PR

By stripping down the algebra A an initial algebra specification of

the primitive recursive functions can found. Let B be the 2-sorted algebra,

with domains PR and w, obtained by deleting all the operations of A which

are internal to PR. Thus B consists of AN joined to the set PR by

eval: PR x w + w; put simply: if I= IN u {EVAL} then B = AII. Of course,

Bis not a finitely generated algebra, but

4.1. THEOREM. With respect to initial algebra semantics, B possesses a

finite equational specification (I0 ,E0) involving hidden functions such

that

PROOF. We shall first show that Bis a computable algebra.

4. 2. LEMMA. :There is a computable enumeration of the primitive recursive

functions S: w + PR which is bijective and possesses a recursive universal

function US (e,x) = S (e) (x).

PROOF. Let c: S + PR be any standard enumeration of PR having recursive

universal function U. The problem is to remove the repititions inc hence
C

we define a recursive function h: w ➔ w which will list from S one, and

only one, code for each function. This done we can set S = ch: w + PR and

take u6(e,x) = U (h(e) ,x) as a recursive universal function.
- C

Here is an h, defined inductively, which will find the smallest c-code for

each primitive recursive function. Base: h(O) = 0. Induction Step: suppose

h(O) , ••• ,h(n) have been computed. To compute h(n+1) search out the smallest

bound b E w t:or which there is a c-code e < b such that

(11 ('ve'<el(3x<b)[U (e' ,x) -/c U (e,x}] and (2) e 4: {h(O), .•• ,h(n)}. Now seek
C C

the smallest c-code e 0 < h satisfying (11 and (21 and take h(n+l) = e 0 •

We leave the reader to check h satis£ies the required conditions. Q.E.D.

10

Thus we may now fix up a computable numbering for B by using the

identity map i: w-+ wand B: w-+ PR of Lemma 4.2. The operations of Bare

all recursive with respect to this pair (i,Bl as are the induced equality

relations (because both maps- are bijections}. Theorem 4 .1 now follows from

this next lennna used in connection with Lemma 2.2.

4.3. LEMMA. Let A be any many-sorted computable algebra of signature E one

of whose domains is w. Then there exists a finitely generated minimal

computable algebra A. of
min

signature E . => E such that A . I"' e:: A.
min min~

PROOF. To make A. from A first add OE was a constant and successor
min

x+l as a unary operation to A. Next choose any computable numbering B of

A each of whose component mappings B. have domain wand add each 8.: w-+ A.
l l l

as a new operation. This is A . and it is clearly minimal and computable
min

(even without the informal hypothesis that Bis effective for Bas an

operation of A. is officially tracked by the identity in the original
min

B coding of A!). Forgetting all these new operations, we see

REFERENCES

[1] BERGSTRA, J.A. & J.V. TUCKER, Algebraic specifications of computable

and semicomputable data structures, Mathematical Centre, De­

partment of Computer Science Research Report IW 115, Amsterdam,

1979.

[2]

[3]

, A characterisation of computable data types by means of a -----
f.inite, equational specification method, Mathematical Centre,

Department of Computer Science Research Report IW 124, Amsterdam,

1979. (To appear in ICALP'80 Springer Verlag, Berlin 1980.l

, Equational specifications- for computable data types: six hidden -----
functions suffice and other sufficiency bounds, Mathematical

Centre, Department of Computer Science Research Report IW 128,

Amsterdam, 1980.

11

[4] BERGSTRA, J.A. & J.V. TUCKER, On bounds for the specification of finite

data types by means of equations and conditional equations,

Mathematical Centre, Department of Computer Science Research

Report IW 131, Amsterdam, 1980.

[SJ , On the adequacy of finite equational methods for data type ----
specification, ACM-sIGPLAN Notices.!_! (111 (1979) 13-18.

[6] BROY, M., w. DOSCH, H. PARTSCH, P. PEPPER, M. WIRSING, Existential

quantifiers in abstract data types, in H. MAURER (ed.} Automata,

languages and programming, 6th Colloquium, Graz, July 1979

Springer-Verlag, Berlin, 1979, 72-87.

[7] GOGUEN, J.A., J.W. THATCHER & E.G. WAGNER, An initial algebra approach

to the specification, correctness and implementation of abstract

data types, in R.T. YEH (ed.) Current trends in programming

methodology IV, Data structuring, Prentice-Hall, Engelwood Cliffs,

New Jersey, 1978, 80-149.

[8] GUTTAG, J.V. & J.J. HORNING, The algebraic specification of abstract

data types, Acta Informatica .!-.Q (1978) 27-52.

[9] KAMIN, S., Final data type specifications: a new data type specification

method, 7th POPL Conference, Las Vegas, ACM, 1980, 131-138.

[lo] ;Jl,IAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys,

.!.§_, (1961) 77-129.

[11] RABIN, M.O., Computable algebra, general theory and the theory of com­

putable fields, Transactions American Mathematical Society, 95

(1960) 341-360.

flt] ROBINSON, R.M., Primitive recursive functions, Bull. American Math.

Soc.,~ (1947) 925-942.

[13] WAND, M., Final algebra semantics and data type extensions, J. Computer

Systems Sciences 19 (19791, 27-44.

